Single-cell printing technology has arisen as a potent instrument for investigating cell biology and disease pathophysiology. Nonetheless, current single-cell printing methodologies are hindered by restricted throughput, a limited field of view, and diminished efficiency. We present an innovative single-cell printing chip that utilizes thermal inkjet technology for single-cell printing, therefore addressing these constraints. We have accomplished high-throughput, wide-field, and efficient single-cell printing by merging a high-density thermal foam-based inkjet nozzle array on a chip with high-speed cameras and computer vision technologies for optical image capture and single-cell identification training. We have shown the efficacy and adaptability of the printing chip by printing various concentrations of Chinese hamster ovary cells and human embryonic kidney 293 cells. The printing of a single 96-well plate is accomplished in 2–3 min, facilitating one-time loading and uninterrupted multi-plate paving. Our thermal bubble single-cell printing chip serves as a viable platform for high-throughput single-cell analysis applications.

1.
K.
Galler
,
K.
Brautigam
,
C.
Grosse
,
J.
Pop
, and
U.
Neugebauer
, “
Making a big thing of a small cell – recent advances in single cell analysis
,”
Analyst
139
,
1237
(
2014
).
2.
S.
Gordon
and
P. R.
Taylor
, “
Endothelial cell heterogeneity
,”
Nat. Rev. Immunol.
5
,
953
964
(
2005
).
3.
W. C.
Aird
, “
Monocyte and macrophage heterogeneity
,”
Cold Spring Harbor Perspect. Med.
2
,
a006429
(
2012
).
4.
F. S. O.
Fritzsch
,
C.
Dusny
,
O.
Frick
, and
A.
Schmid
, “
Single-cell analysis in biotechnology, systems biology, and biocatalysis
,”
Annu. Rev. Chem. Biomol. Eng.
3
,
129
155
(
2012
).
5.
“Method of the year 2013
,”
Nat. Methods
11,
1
(
2013
).
6.
P.
Dalerba
,
T.
Kalisky
,
D.
Sahoo
,
P. S.
Rajendran
, and
S. R.
Quake
, “
Single-cell dissection of transcriptional heterogeneity in human colon tumors
,”
Nat. Biotechnol.
29
,
1120
1127
(
2011
).
7.
Y.
Chen
,
P.
Li
,
P.-H.
Huang
,
Y.
Xie
,
J.
Mai
,
L.
Wang
,
N.-T.
Nguyen
, and
T. J.
Huang
, “
Rare cell isolation and analysis in microfluidics
,”
Lab Chip
14
,
626
(
2014
).
8.
P.-X.
Li
,
Z.-C.
Ma
,
Y.-N.
Zhou
,
D. J.
Collins
, and
Y.
Ai
, “
Detachable acoustophoretic system for fluorescence-activated sorting at the single-droplet level
,”
Anal. Chem.
91
,
15
(
2019
).
9.
H. M.
Davey
and
D. B.
Kell
, “
Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses
,”
Microbiol. Rev.
60
,
641
696
(
1996
).
10.
C. D.
Jennings
and
K. A.
Foon
, “
Recent advances in flow cytometry: Application to the diagnosis of hematologic malignancy
,”
Blood
90
,
2863
2892
(
1997
).
11.
Y.-L.
Qin
,
L.
Wu
,
J.-G.
Wang
,
R.
Han
,
J.-Y.
Shen
,
J.-S.
Wang
,
S.-H.
Xu
,
A. L.
Paguirigan
,
J. L.
Smith
,
J. P.
Radich
, and
D. T.
Chiu
, “
A fluorescence-activated single-droplet dispenser for high accuracy single-droplet and single-cell sorting and dispensing
,”
Anal. Chem.
91
,
6815
6819
(
2019
).
12.
S. M.
Prakadan
,
A. K.
Shalek
, and
D. A.
Weitz
, “
Scaling by shrinking: Empowering single-cell ‘omics’ with microfluidic devices
,”
Nat. Rev. Genet.
18
,
345
361
(
2017
).
13.
Y.
Zheng
,
J.
Nguyen
,
Y.
Wei
, and
Y.
Sun
, “
Recent advances in microfluidic techniques for single-cell biophysical characterization
,”
Lab Chip
13
,
2464
2483
(
2013
).
14.
I.
You
,
S. M.
Kang
,
S.
Lee
,
Y. O.
Cho
,
J. B.
Kim
,
S. B.
Lee
,
Y. S.
Nam
, and
H.
Lee
, “
A self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture, on-demand compartmentalization, and downstream nucleic acid analysis
,”
Angew. Chem. Int. Ed.
51
,
6126
6130
(
2012
).
15.
D.
Huh
,
J. H.
Bahng
,
Y.
Ling
,
H. H.
Wei
, and
S.
Takayama
, “
Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification
,”
Anal. Chem.
79
,
1369
1376
(
2007
).
16.
O.
Strohmeier
,
M.
Keller
,
F.
Schwemmer
,
S.
Zehnle
,
D.
Mark
,
F.
Stetten
,
R.
Zengerle
, and
N.
Paust
, “
Centrifugal microfluidic platforms: Advanced unit operations and applications
,”
Chem. Soc. Rev.
44
,
6187
6229
(
2015
).
17.
Y.-L.
Qin
,
L.
Wu
,
J.-G.
Wang
,
R.
Han
,
J.-Y.
Shen
,
J.-S.
Wang
,
S.-H.
Xu
,
A. L.
Paguirigan
,
J. L.
Smith
,
J. P.
Radich
, and
D. T.
Chiu
, “
A self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture, on-demand compartmentalization, and downstream nucleic acid analysis
,”
Angew. Chem. Int. Ed.
57
,
11378
11383
(
2018
).
18.
R. K.
Anand
,
E. S.
Johnson
, and
D. T.
Chiu
, “
Negative dielectrophoretic capture and repulsion of single cells at a bipolar electrode: The impact of faradaic ion enrichment and depletion
,”
J. Am. Chem. Soc.
137
,
776
783
(
2015
).
19.
R.
Kampmann
,
S.
Sinzinger
, and
J. G.
Korvink
, “
Optical tweezers for trapping in a microfluidic environment
,”
Appl. Opt.
57
,
5733
5742
(
2018
).
20.
A.
Barani
,
H.
Paktinat
,
M.
Janmaleki
,
A.
Mohammadi
,
P.
Mosaddegh
,
A.
Fadaei-Tehrani
, and
A.
Sanati-Nezhad
, “
Microfluidic integrated acoustic waving for manipulation of cells and molecules
,”
Biosens. Bioelectron.
85
,
714
725
(
2016
).
21.
T.
Moragues
,
D.
Arguijo
,
T.
Beneyton
et al., “
Droplet-based microfluidics
,”
Nat. Rev. Methods Primers
3
(
1
),
32
(
2023
).
22.
T.
Boland
,
T.
Xu
,
B.
Damon
, and
X.
Cui
, “
Application of inkjet printing to tissue engineering
,”
Biotechnol. J.
1
,
910
917
(
2006
).
23.
A.
Yusof
,
H.
Keegan
,
C. D.
Spillane
,
O. M.
Sheils
,
C. M.
Martin
,
J. J.
O’Leary
,
R.
Zengerle
, and
P.
Koltay
, “
Inkjet-like printing of single-cells
,”
Lab Chip
11
,
2447
(
2011
).
24.
A. R.
Liberski
,
J. T.
Delaney
, and
U. S.
Schubert
, “
One cellone well’: A new approach to inkjet printing single cell microarrays
,”
ACS. Comb. Sci.
13
,
190
195
(
2011
).
25.
R. E.
Saunders
,
J. E.
Gough
, and
B.
Derby
, “
Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing
,”
Biomaterials
29
,
193
203
(
2008
).
26.
S.
Yamaguchi
,
A.
Ueno
, and
Y.
Akiyama
, “
Cell patterning through inkjet printing of one cell per droplet
,”
Biofabrication
4
,
045005
(
2012
).
27.
K.
Zub
,
S.
Hoeppener
, and
U. S.
Schubert
, “
Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications
,”
Adv. Mater.
34
,
2105015
(
2022
).
28.
L.
Nan
,
H.
Zhang
,
D. A.
Weitz
, and
H. C.
Shum
, “
Development and future of droplet microfluidics
,”
Lab Chip
24
,
1135
(
2024
).
29.
M. M.
Alam
and
M. T.
Islam
, “
Machine learning approach of automatic identification and counting of blood cells
,”
Healthcare Technol. Lett.
6
,
103
108
(
2019
).
30.
H.
Raji
,
M.
Tayyab
,
J.
Sui
,
S. R.
Mahmoodi
, and
M.
Javanmard
, “
Biosensors and machine learning for enhanced detection, stratification, and classification of cells: A review
,”
Biomed. Microdevices
24
,
26
(
2022
).
31.
E.
Moen
,
D.
Bannon
,
T.
Kudo
et al., “
Deep learning for cellular image analysis
,”
Nat. Methods
16
,
1233
1246
(
2019
).
32.
P.
Calvert
, “
Inkjet printing for materials and devices
,”
Chem. Mater.
13
,
3299
3305
(
2001
).
33.
S.
Wang
,
X.
Yang
,
F.
Wu
,
L.
Min
,
X.
Chen
, and
X.
Hou
, “
Inner surface design of functional microchannels for microscale flow control
,”
Small
16
,
1905318
(
2020
).
34.
Q.
Zhou
,
K.
Wang
,
P.
Huang
,
Q.-S.
Wang
,
W.-Z.
Jin
, and
D.-M.
Liu
, “
High throughput single-cell printing based on thermal bubble technology
,”
Micronanoelectronic. Technol.
60
,
1671
4776
(
2023
).
35.
Y.
Shen
,
Y.
Yuan
,
T.
Tang
,
N.
Ota
,
N.
Tanaka
,
Y.
Hosokawa
,
Y.
Yalikun
, and
Y.
Tanaka
, “
Continuous 3D particles manipulation based on cooling thermal convection
,”
Sens. Actuators, B
358
,
131511
(
2022
).
36.
Z. E.
Jeroish
,
K. S.
Bhuvaneshwari,
,
F.
Samsuri
, and
V.
Narayanamurthy
, “
Microheater: Material, design, fabrication, temperature control, and applications—A role in COVID-19
,”
Biomed. Microdevices
24
,
3
(
2022
).
37.
H.
Qu
, “
CMOS MEMS fabrication technologies and devices
,”
Micromachines
7
,
14
(
2016
).
38.
J. A.
Barron
,
D. B.
Krizman
, and
B. R.
Ringeisen
, “
Laser printing of single cells: Statistical analysis, cell viability, and stress
,”
Ann. Biomed. Eng.
33
,
121
130
(
2005
).
39.
N. R.
Schiele
,
D. T.
Corr
, and
Y.
Huang
, “
Laser-based direct-write techniques for cell printing
,”
Biofabrication
2
,
032001
(
2010
).
40.
N. S. A.
Gross
and
J.
Schöndube
, “
Single-cell printer: Automated, on demand, and label free
,”
J. Lab. Autom.
18
(
6
),
504
518
(
2013
).
41.
Z.
Diao
,
X.
Wang
,
J.
Zhang
,
A.
Ge
,
T.
Xu
,
L.
Kan
,
Y.
Li
,
Y.
Ji
,
X.
Jing
,
J.
Xu
, and
B.
Ma
, “
Optical-based microbubble for on-demand droplet release from static droplet array (SDA) for dispensing one droplet into one tube
,”
Biosens. Bioelectron.
240
,
115639
(
2023
).
42.
Z.
Gao
and
Y.
Li
, “
Enhancing single-cell biology through advanced AI-powered microfluidics
,”
Biomicrofluidics
17
(
5
),
051301
(
2023
).
You do not currently have access to this content.