The transformative potential of microfluidics in the development of mRNA vaccines is explored in this review, highlighting its pivotal role in enhancing easy-to-use functionality, efficacy, and production efficiency. Moreover, we examine the innovative applications of microfluidics in biomedical research, including its contribution to the rapid and cost-effective synthesis of lipid nanoparticles for mRNA delivery and delve into the advantages of mRNA vaccines, such as targeted delivery and controlled expression. Furthermore, it outlines the future prospects of microfluidic devices, their cutting-edge examples in both research and industry, and the potential to revolutionize vaccine formulation and production. The integration of microfluidics with mRNA vaccine development represents a significant advancement in public health and disease prevention strategies.

1.
C.
Lopes
,
J.
Cristóvão
,
V.
Silvério
,
P. R.
Lino
, and
P.
Fonte
, “
Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications
,”
Expert Opin. Drug Delivery
19
(
10
),
1381
1395
(
2022
).
2.
J.
Viola
,
D.
Rafael
,
E.
Wagner
,
R.
Besch
, and
M.
Ogris
, “
Gene therapy for advanced melanoma: Selective targeting and therapeutic nucleic acids
,”
J. Drug Delivery
2013
,
897348
(
2013
).
3.
F.
Jacob
and
J.
Monod
, “
Genetic regulatory mechanisms in the synthesis of proteins
,”
J. Mol. Biol.
3
(
3
),
318
356
(
1961
).
4.
S.
Brenner
,
F.
Jacob
, and
M.
Meselson
, “
An unstable intermediate carrying information from genes to ribosomes for protein synthesis
,”
Nature
190
,
576
581
(1961).
5.
P. A.
Sharp
, “
Split genes and RNA splicing (nobel lecture)
,”
Angew. Chem., Int. Ed. Engl.
33
(
12
),
1229
1240
(
1994
).
6.
J. A.
Wolff
,
R. W.
Malone
,
P.
Williams
,
W.
Chong
,
G.
Acsadi
,
A.
Jani
, and
P. L.
Felgner
, “
Direct gene transfer into mouse muscle in vivo
,”
Science
247
(
4949
),
1465
1468
(
1990
).
7.
K.
Karikó
,
M.
Buckstein
,
H.
Ni
, and
D.
Weissman
, “
Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA
,”
Immunity
23
(
2
),
165
175
(
2005
).
8.
S.
Rausch
,
C.
Schwentner
,
A.
Stenzl
, and
J.
Bedke
, “
mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer
,”
Hum. Vaccines Immunother.
10
(
11
),
3146
3152
(
2014
).
9.
M.
Gao
,
Q.
Zhang
,
X.-H.
Feng
, and
J.
Liu
, “
Synthetic modified messenger RNA for therapeutic applications
,”
Acta Biomater.
131
,
1
15
(
2021
).
10.
M. A.
Liu
, “
Immunologic basis of vaccine vectors
,”
Immunity
33
(
4
),
504
515
(
2010
).
11.
M.
Hilleman
, “
Recombinant vector vaccines in vaccinology
,”
Dev. Biol. Stand.
82
,
3
20
(
1994
).
12.
T.
Schlake
,
A.
Thess
,
M.
Fotin-Mleczek
, and
K.-J.
Kallen
, “
Developing mRNA-vaccine technologies
,”
RNA Biol.
9
(
11
),
1319
1330
(
2012
).
13.
M.
Liu
, “
Immunologic basis of vaccine vectors
,”
Immunity
33
,
504
515
(
2010
).
14.
F. P.
Polack
,
S. J.
Thomas
,
N.
Kitchin
,
J.
Absalon
,
A.
Gurtman
,
S.
Lockhart
,
J. L.
Pérez
,
G. P.
Marc
,
E. D.
Moreira
,
C.
Zerbini
,
R.
Bailey
,
K. A.
Swanson
,
S.
Roychoudhury
,
K.
Koury
,
P.
Li
,
W. V.
Kalina
,
D.
Cooper
,
R. W.
Frenck
,
L. L.
Hammitt
,
Ö.
Türeci
,
H.
Nell
,
A.
Schaefer
,
S.
Ünal
,
D. B.
Tresnan
,
S.
Mather
,
P. R.
Dormitzer
,
U.
Şahin
,
K. U.
Jansen
, and
W. C.
Gruber
, “
Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine
,”
N. Engl. J. Med.
383
(
27
),
2603
2615
(
2020
).
15.
H. M.
El Sahly
,
L. R.
Baden
,
B.
Essink
,
S.
Doblecki-Lewis
,
J. M.
Martin
,
E. J.
Anderson
,
T. B.
Campbell
,
J.
Clark
,
L. A.
Jackson
,
C. J.
Fichtenbaum
,
M.
Zervos
,
B.
Rankin
,
F.
Eder
,
G.
Feldman
,
C.
Kennelly
,
L.
Han-Conrad
,
M.
Levin
,
K. M.
Neuzil
,
L.
Corey
,
P.
Gilbert
,
H.
Janes
,
D.
Follmann
,
M.
Marovich
,
L.
Polakowski
,
J. R.
Mascola
,
J. E.
Ledgerwood
,
B. S.
Graham
,
A.
August
,
H.
Clouting
,
W.
Deng
,
S.
Han
,
B.
Leav
,
D.
Manzo
,
R.
Pajon
,
F.
Schödel
,
J. E.
Tomassini
,
H.
Zhou
, and
J.
Miller
, “
Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase
,”
N. Engl. J. Med.
385
(
19
),
1774
1785
(
2021
).
16.
S.
Pascolo
, “
Vaccination with messenger RNA
,” in
DNA Vaccines. Methods in Molecular Medicine
,
edited by W. M Saltzman, H. Shen, and J. L. Brandsma (Humana Press, 2006), Vol. 127
.
17.
J.
Probst
,
B.
Weide
,
B.
Scheel
,
B. J.
Pichler
,
I.
Hoerr
,
H.-G.
Rammensee
, and
S.
Pascolo
, “
Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent
,”
Gene Ther.
14
,
1175
1180
(
2007
).
18.
C.
Iavarone
,
D. T.
O’hagan
,
D.
Yu
,
N. F.
Delahaye
, and
J. B.
Ulmer
, “
Mechanism of action of mRNA-based vaccines
,”
Expert Rev. Vaccines
16
(
9
),
871
881
(
2017
).
19.
M.
Maeki
,
S.
Uno
,
A.
Niwa
,
Y.
Okada
, and
M.
Tokeshi
, “
Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery
,”
J. Controlled Release
344
,
80
96
(
2022
).
20.
S. S.
Rosa
,
D. M. F.
Prazeres
,
A. M.
Azevedo
, and
M. P. C.
Marques
, “
mRNA vaccines manufacturing: Challenges and bottlenecks
,”
Vaccine
39
(
16
),
2190
2200
(
2021
).
21.
H.
Andersson
and
A.
van den Berg
, “
Microfluidic devices for cellomics: A review
,”
Sens. Actuators, B
92
(
3
),
315
325
(
2003
).
22.
G. S.
Fiorini
and
D. T.
Chiu
, “
Disposable microfluidic devices: Fabrication, function, and application
,”
BioTechniques
38
(
3
),
429
446
(
2005
).
23.
A.-G.
Niculescu
,
C.
Chircov
,
A. C.
Bîrcă
, and
A. M.
Grumezescu
, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
(
4
),
2011
(
2021
).
24.
B. K.
Gale
,
A. R.
Jafek
,
C. J.
Lambert
,
B. L.
Goenner
,
H.
Moghimifam
,
U. C.
Nze
, and
S. K.
Kamarapu
, “
A review of current methods in microfluidic device fabrication and future commercialization prospects
,”
Inventions
3
(
3
),
60
(
2018
).
25.
M.
Dou
,
D. C.
Dominguez
,
X. J.
Li
,
J.
Sanchez
, and G. Scott, “
A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis
,”
Anal. Chem.
86
(15), 7978–7986 (
2014
).
26.
Y.
Yang
,
E.
Noviana
,
M. P.
Nguyen
,
B. J.
Geiss
,
D. S.
Dandy
, and
C. S.
Henry
, “
Based microfluidic devices: Emerging themes and applications
,”
Anal. Chem.
89
(
1
),
71
91
(
2017
).
27.
G. M.
Whitesides
, “
The origins and the future of microfluidics
,”
Nature
442
,
368
373
(
2006
).
28.
I. U.
Khan
,
C. A.
Serra
,
N.
Anton
, and
T. F.
Vandamme
, “
Production of nanoparticle drug delivery systems with microfluidics tools
,”
Expert Opin. Drug Delivery
12
(
4
),
547
562
(
2015
).
29.
N.
Zhang
,
H.
Tan
, and
E. S.
Yeung
, “
Analytical chemistry
,”
Anal. Chem.
71
(
6
),
1138
1145
(
1999
).
30.
R.
Barry
and
D.
Ivanov
, “
Microfluidics in biotechnology
,”
J. Nanobiotechnol.
2
,
2
(
2004
).
31.
J.
Clark
,
T.
Shevchuk
,
P. M.
Swiderski
,
R.
Dabur
,
L. E.
Crocitto
,
Y. I.
Buryanov
, and
S. S.
Smith
, “
Mobility-shift analysis with microfluidics chips
,”
BioTechniques
35
(
3
),
548
554
(
2003
).
32.
D.
Figeys
,
S. P.
Gygi
,
G.
McKinnon
, and
R.
Aebersold
, “
An integrated microfluidics-tandem mass spectrometry system for automated protein analysis
,”
Anal. Chem.
70
(
18
),
3728
3734
(
1998
).
33.
D.
Figeys
and
R.
Aebersold
, “
High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: Recent developments in technology and applications
,”
Electrophoresis
19
(
6
),
885
892
(
1998
).
34.
N.
Lion
,
J.-O.
Gellon
,
H.
Jensen
, and
H. H.
Girault
, “
On-chip protein sample desalting and preparation for direct coupling with electrospray ionization mass spectrometry
,”
J. Chromatogr., A
1003
(
1–2
),
11
19
(
2003
).
35.
M. I.
Hajam
and
M. M.
Khan
, “
Microfluidics: A concise review of the history, principles, design, applications, and future outlook
,”
Biomater. Sci.
12
, 218–251 (
2024
).
36.
L. L.
Cavalli-Sforza
, “
The human genome diversity project: Past, present and future
,”
Nat. Rev. Genet.
6
,
333
340
(
2005
).
37.
F. S.
Collins
,
M.
Morgan
, and
A.
Patrinos
, “
The human genome project: Lessons from large-scale biology
,”
Science
300
(
5617
),
286
290
(
2003
).
38.
A.
Gevaerd
,
E. Y.
Watanabe
,
C.
Belli
,
L. H.
Marcolino-Junior
, and
M. F.
Bergamini
, “
A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples
,”
Sens. Actuators, B
332
,
129532
(
2021
).
39.
V. M.
Smith
,
H.
Nguyen
,
J. W.
Rumsey
,
C. J.
Long
,
M. L.
Shuler
, and
J. J.
Hickman
, “
A functional human-on-a-chip autoimmune disease model of myasthenia gravis for development of therapeutics
,”
Front. Cell Dev. Biol.
9
,
745897
(
2021
).
40.
D. S.
Younger
,
A. P.
Younger
, and
S.
Guttmacher
, “
Childhood vaccination: Implications for global and domestic public health
,”
Neurol. Clin.
34
,
1035
1047
(
2016
).
41.
World Health Organization
, see http://www.who.int/mediacentre/factsheets/fs378/en for “Immunization Coverage” (
2017
).
42.
S. A.
Plotkin
, “
Vaccines: The fourth century
,”
Clin. Vaccine Immunol.
16
,
1709
1719
(
2009
).
43.
U.
Sahin
,
K.
Karikó
, and
Ö.
Türeci
, “
mRNA-based therapeutics — Developing a new class of drugs
,”
Nat. Rev. Drug Discovery
13
,
759
780
(
2014
).
44.
C. M. C.
Rodrigues
,
M. V.
Pinto
,
M.
Sadarangani
, and
S. A.
Plotkin
, “
Whither vaccines?
,”
J. Infect.
74
,
S2
S9
(
2017
).
45.
N.
Pardi
,
S.
Tuyishime
,
H.
Muramatsu
,
K.
Kariko
,
B. L.
Mui
,
Y. K.
Tam
,
T. D.
Madden
,
M. J.
Hope
, and
D.
Weissman
, “
Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes
,”
J. Controlled Release
217
,
345
351
(
2015
).
46.
S.
Tandrup Schmidt
,
C.
Foged
,
K.
Smith Korsholm
,
T.
Rades
, and
D.
Christensen
, “
Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators
,”
Pharmaceutics
8
(
1
),
7
(
2016
).
47.
B.
Petsch
,
M.
Schnee
,
A. B.
Vogel
,
E.
Lange
,
B.
Hoffmann
,
D.
Voss
,
T.
Schlake
,
A.
Thess
,
K.-J.
Kallen
,
L.
Stitz
, and
T.
Kramps
, “
Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza a virus infection
,”
Nat. Biotechnol.
30
,
1210
1216
(
2012
).
48.
K.
Karikó
,
H.
Muramatsu
,
F. A.
Welsh
,
J.
Ludwig
,
H.
Kato
,
S.
Akira
, and
D.
Weissman
, “
Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
,”
Mol. Ther.
16
(
11
),
1833
1840
(
2008
).
49.
V.
Gote
,
P. K.
Bolla
,
N.
Kommineni
,
A.
Butreddy
,
P. K.
Nukala
,
S. S.
Palakurthi
, and
W.
Khan
, “
A comprehensive review of mRNA vaccines
,”
Int. J. Mol. Sci.
24
(
3
),
2700
(
2023
).
50.
J.
Kim
,
Y.
Eygeris
,
M.
Gupta
, and
G.
Sahay
, “
Self-assembled mRNA vaccines
,”
Adv. Drug Delivery Rev.
170
,
83
112
(
2021
).
51.
R.
Firdessa-Fite
and
R. J.
Creusot
, “
Nanoparticles versus dendritic cells as vehicles to deliver mRNA encoding multiple epitopes for immunotherapy
,”
Mol. Ther. Methods Clin. Dev.
16
,
50
62
(
2020
).
52.
N.
Pardi
,
M. J.
Hogan
,
F. W.
Porter
, and
D.
Weissman
, “
mRNA vaccines—A new era in vaccinology
,”
Nat. Rev. Drug Discovery
17
(
4
),
261
279
(
2018
).
53.
S. H.
Kiaie
,
N.
Majidi Zolbanin
,
A.
Ahmadi
,
R.
Bagherifar
,
H.
Valizadeh
,
F.
Kashanchi
, and
R.
Jafari
, “
Recent advances in mRNA-LNP therapeutics: Immunological and pharmacological aspects
,”
J. Nanobiotechnol.
20
(
1
),
276
(
2022
).
54.
O. F.
Khan
,
J.
Couture-Senécal
,
Y. M. A.
Lau
,
A.-M.
Oproescu
,
J.
Pang
,
G.
Tilstra
, and
B. A.
Walz
, “
mRNA vaccines: Immunology and present and future potential
,” in
The COVID-19 Pandemic: Science, Technology, and the Future of Healthcare Delivery
(
Springer
,
2024
), pp.
79
112
.
55.
Y.
Zhu
,
J.
Ma
,
R.
Shen
,
J.
Lin
,
S.
Li
,
X.
Lu
,
J. L.
Stelzel
,
J.
Kong
,
L.
Cheng
,
I.
Vuong
,
Z.-C.
Yao
,
C.
Wei
,
N. M.
Korinetz
,
W. H.
Toh
,
J.
Choy
,
R. A.
Reynolds
,
M. J.
Shears
,
W. J.
Cho
,
N. K.
Livingston
,
G. P.
Howard
,
Y.
Hu
,
S. Y.
Tzeng
,
D. J.
Zack
,
J. J.
Green
,
L.
Zheng
,
J. C.
Doloff
,
J. P.
Schneck
,
S. K.
Reddy
,
S. C.
Murphy
, and
H.-Q.
Mao
, “
Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity
,”
Nat. Biomed. Eng.
8
(
5
),
544
560
(
2024
).
56.
Y.
Wu
,
H.
Zhang
,
L.
Meng
,
F.
Li
, and
C.
Yu
, “
Comparison of immune responses elicited by SARS-CoV-2 mRNA and recombinant protein vaccine candidates
,”
Front. Immunol.
13
,
906457
(
2022
).
57.
D. D.
Kang
,
H.
Li
, and
Y.
Dong
, “
Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics
,”
Adv. Drug Delivery Rev.
199
,
114961
(
2023
).
58.
M.
Tusup
,
L. E.
French
,
M.
De Matos
,
D.
Gatfield
,
T.
Kundig
, and
S.
Pascolo
, “
Design of in vitro transcribed mRNA vectors for research and therapy
,”
Chimia
73
,
391
394
(
2019
).
59.
R.
Lenk
,
W.
Kleindienst
,
G. T.
Szabó
,
M.
Baiersdörfer
,
G.
Boros
,
J. M.
Keller
,
A. J.
Mahiny
, and
I.
Vlatkovic
, “
Understanding the impact of in vitro transcription byproducts and contaminants
,”
Front. Mol. Biosci.
11
,
1426129
(
2024
).
60.
H.
Kwon
,
M.
Kim
,
Y.
Seo
,
Y. S.
Moon
,
H. J.
Lee
,
K.
Lee
, and
H.
Lee
, “
Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine
,”
Biomaterials
156
,
172
193
(
2018
).
61.
K.
Karikó
,
H.
Muramatsu
,
J.
Ludwig
, and
D.
Weissman
, “
Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA
,”
Nucleic Acids Res.
39
,
e142
(
2011
).
62.
S.
Kwon
,
M.
Kwon
,
S.
Im
,
K.
Lee
, and
H.
Lee
, “
mRNA vaccines: The most recent clinical applications of synthetic mRNA
,”
Arch. Pharmacal. Res.
45
(
4
),
245
262
(
2022
).
63.
Y.
Liang
,
L.
Huang
, and
T.
Liu
, “
Development and delivery systems of mRNA vaccines
,”
Front. Bioeng. Biotechnol.
9
,
718753
(
2021
).
64.
A.
Wadhwa
,
A.
Aljabbari
,
A.
Lokras
,
C.
Foged
, and
A.
Thakur
, “
Opportunities and challenges in the delivery of mRNA-based vaccines
,”
Pharmaceutics
12
(
2
),
102
(
2020
).
65.
R.
Maurer
,
R.
Stone
, and
J.
Gorski
, “
Cell-free synthesis of a large translation product of prolactin messenger RNA
,”
J. Biol. Chem.
251
(
9
),
2801
2807
(
1976
).
66.
A.
Brookwell
,
J. P.
Oza
, and
F.
Caschera
, “
Biotechnology applications of cell-free expression systems
,”
Life
11
(
12
),
1367
(
2021
).
67.
V.
Sharma
,
A.
Mottafegh
,
J.-U.
Joo
,
J.-H.
Kang
,
L.
Wang
, and
D.-P.
Kim
, “
Toward microfluidic continuous-flow and intelligent downstream processing of biopharmaceuticals
,”
Lab Chip
24
(
11
),
2861
2882
(
2024
).
68.
C. B.
Roces
,
G.
Lou
,
N.
Jain
,
S.
Abraham
,
A.
Thomas
,
G. W.
Halbert
, and
Y.
Perrie
, “
Manufacturing considerations for the development of lipid nanoparticles using microfluidics
,”
Pharmaceutics
12
(
11
),
1095
(
2020
).
69.
I.
MacLachlan
, “
Liposomal formulations for nucleic acid delivery
,”
Antisense Drug Technol.
2
,
237
270
(
2007
).
70.
G.
Prakash
,
A.
Shokr
,
N.
Willemen
,
S. M.
Bashir
,
S. R.
Shin
, and
S.
Hassan
, “
Microfluidic fabrication of lipid nanoparticles for the delivery of nucleic acids
,”
Adv. Drug Delivery Rev.
184
,
114197
(
2022
).
71.
S. M.
Saravanakumar
and
P.-V.
Cicek
, “
Microfluidic mixing: A physics-oriented review
,”
Micromachines
14
(10), 1827 (
2023
).
72.
K.
Karimi
,
A.
Fardoost
,
N.
Mhatre
,
J.
Rajan
,
D.
Boisvert
, and
M. A.
Javanmard
, “
Thorough review of emerging technologies in micro- and nanochannel fabrication: Limitations, applications, and comparison
,”
Micromachines
15
(
10
),
1274
(
2024
).
73.
S. J.
Shepherd
,
D.
Issadore
, and
M. J.
Mitchell
, “
Microfluidic formulation of nanoparticles for biomedical applications
,”
Biomaterials
274
,
120826
(
2021
).
74.
F.
Tian
,
L.
Cai
,
C.
Liu
, and
J.
Sun
, “
Microfluidic technologies for nanoparticle formation
,”
Lab Chip
22
(
3
),
512
529
(
2022
).
75.
S.
Naher
,
D.
Orpen
,
D.
Brabazon
, and
M. M.
Morshed
, “
An overview of microfluidic mixing application
,” in
Advanced Materials
(Research. Trans. Tech. Publications, Ltd.,
2009
), Vols.
83–86
, pp. 931–939.
76.
M.
Maeki
,
N.
Kimura
,
Y.
Sato
,
H.
Harashima
, and
M.
Tokeshi
, “
Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems
,”
Adv. Drug Delivery Rev.
128
,
84
100
(
2018
).
77.
A.
Dietzel
, “
A brief introduction to microfluidics
,” in
Microsystems for Pharmatechnology
, edited by A. Dietzel (Springer, Cham.,
2016
), pp.
1
25
.
78.
S.
Zhang
,
Y.
Fan
,
C.
Xue
,
Y.
Yang
,
X.
Li
,
X.
Chen
, and
Y.
Deng
, “
Mixing dynamics and synthesis performance of staggered herringbone micromixer for limit size lipid nanoparticles
,”
J. Beijing Inst. Technol.
31
(
3
),
293
301
(
2022
).
79.
Y.
Zhao
,
G.
Chen
, and
Q.
Yuan
, “
Liquid–liquid two-phase mass transfer in the T-junction microchannels
,”
AIChE J.
53
(
12
),
3042
3053
(
2007
).
80.
G.-B.
Lee
,
C.-I.
Hung
,
B.-J.
Ke
,
G.-R.
Huang
,
B.-H.
Hwei
, and
H.-F.
Lai
, “
Hydrodynamic focusing for a micromachined flow cytometer
,”
J. Fluids Eng.
123
(
3
),
672
679
(
2001
).
81.
I. V.
Zhigaltsev
,
N.
Belliveau
,
I.
Hafez
,
A. K. K.
Leung
,
J.
Huft
,
C.
Hansen
, and
P. R.
Cullis
, “
Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing
,”
Langmuir
28
(
7
),
3633
3640
(
2012
).
82.
M.
Maeki
,
T.
Saito
,
Y.
Sato
,
T.
Yasui
,
N.
Kaji
,
A.
Ishida
,
H.
Tani
,
Y.
Baba
,
H.
Harashima
, and
M.
Tokeshi
, “
A strategy for synthesis of lipid nanoparticles using microfluidic devices with a mixer structure
,”
RSC Adv.
5
(
57
),
46181
46185
(
2015
).
83.
T.
Lorenz
,
S.
Bojko
,
H.
Bunjes
, and
A.
Dietzel
, “
An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles
,”
Lab Chip
18
(
4
),
627
638
(
2018
).
84.
K.
Conlisk
and
G. M.
O’Connor
, “
Analysis of passive microfluidic mixers incorporating 2D and 3D baffle geometries fabricated using an excimer laser
,”
Microfluidics Nanofluidics
12
,
941
951
(
2012
).
85.
H.
Jang
,
M. R.
Haq
,
J.
Ju
,
Y.
Kim
,
S.-m.
Kim
, and
J.
Lim
, “
Fabrication of all glass bifurcation microfluidic chip for blood plasma separation
,”
Micromachines
8
(
3
),
67
(
2017
).
86.
M.
Maeki
,
Y.
Fujishima
,
Y.
Sato
,
T.
Yasui
,
N.
Kaji
,
A.
Ishida
,
H.
Tani
,
Y.
Baba
,
H.
Harashima
, and
M.
Tokeshi
, “
Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers
,”
PLoS One
12
(
11
),
e0187962
(
2017
).
87.
D.
Chen
,
K. T.
Love
,
Y.
Chen
,
A. A.
Eltoukhy
,
C.
Kastrup
,
G.
Sahay
,
A.
Jeon
,
Y.
Dong
,
K. A.
Whitehead
, and
D. G.
Anderson
, “
Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation
,”
J. Am. Chem. Soc.
134
(
16
),
6948
6951
(
2012
).
88.
M. D.
Buschmann
,
M. J.
Carrasco
,
S.
Alishetty
,
M.
Paige
,
M. G.
Alameh
, and
D.
Weissman
, “
Nanomaterial delivery systems for mRNA vaccines
,”
Vaccines
9
(
1
),
65
(
2021
).
89.
J. A.
Kulkarni
,
M. M.
Darjuan
,
J. E.
Mercer
,
S.
Chen
,
R.
Van Der Meel
,
J. L.
Thewalt
,
Y. Y. C.
Tam
, and
P. R.
Cullis
, “
On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA
,”
ACS Nano
12
(
5
),
4787
4795
(
2018
).
90.
W.-Z. S.
Lin
,
W. K. V.
Bostic
, and
N.
Malmstadt
, “
3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA
,”
Lab Chip
24
(
2
),
162
170
(
2024
).
91.
S. J.
Shepherd
,
C. C.
Warzecha
,
S.
Yadavali
,
R.
El-Mayta
,
M.-G.
Alameh
,
L.
Wang
,
D.
Weissman
,
J. M.
Wilson
,
D.
Issadore
, and
M. J.
Mitchell
, “
Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device
,”
Nano Lett.
21
(
13
),
5671
5680
(
2021
).
92.
S. J.
Shepherd
,
X.
Han
,
A. J.
Mukalel
,
R.
El-Mayta
,
A. S.
Thatte
,
J.
Wu
,
M. S.
Padilla
,
M.-G.
Alameh
,
N.
Srikumar
,
D.
Lee
,
D.
Weissman
,
D.
Issadore
, and
M. J.
Mitchell
, “
Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines
,”
Proc. Natl. Acad. Sci. U.S.A.
120
(
33
),
e2303567120
(
2023
).
93.
W.-Z. S.
Lin
,
W. K. V.
Bostic
, and
N.
Malmstadt
, “
3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA
,”
Lab Chip
24
,
162
170
(
2024
).
94.
R.
Palanki
,
E. L.
Han
,
A. M.
Murray
,
R.
Maganti
,
S.
Tang
,
K. L.
Swingle
,
D.
Kim
,
H.
Yamagata
,
H. C.
Safford
,
K.
Mrksich
,
W. H.
Peranteau
, and
M. J.
Mitchell
, “
Optimized microfluidic formulation and organic excipients for improved lipid nanoparticle mediated genome editing
,”
Lab Chip
24
,
3790
3801
(
2024
).
95.
MilliporeSigma
, see https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/drug-delivery/nanofabtx-a-ready-to-use-microfluidic-platform-for-mRNA-vaccine for “Nanofabtx: A Ready-to-Use Microfluidic Platform for mRNA Vaccine Formulation” (
2021
) (last accessed May 6, 2024).
96.
Fluigent
, see https://www.fluigent.com/resources-support/expertise/expertise-reviews/microfluidics-for-vaccines-research-and-development/ for “Advanced Microfluidic Control Systems for Precision Fluid Handling” (
2021
) (last accessed May 6, 2024).
97.
RedShiftBio—Apollo
, see https://www.redshiftbio.com/biomolecules/nucleic-acid for “Aurora TX: Microfluidic Modulation Spectroscopy for RNA and Protein Analysis” (
2021
) (last accessed May 6, 2024).
98.
Cytiva—NxGen Technology
, see https://www.precisionnanosystems.com/resources-and-community/knowledge-center/articles/detail/nxgen-technology-for-scaling-nanoparticle-production for “Nxgen Microfluidic Devices for Scalable Nanoparticle Production” (
2021
) (last accessed May 6, 2024).
99.
Microfluidics InteRNAtional Corporation
, see https://www.microfluidics-mpt.com/microfluidizers for “Microfluidizer® Technology for High Shear Fluid Processing” (
2021
) (last accessed May 6, 2024).
100.
Precigenome LLC
, see https://www.precigenome.com/lipid-nanoparticles-lnp/lipid-nanoparticle-synthesis-system-application for “Lipid Nanoparticle Synthesis System Application” (
2024
) (last accessed May 6, 2024).
You do not currently have access to this content.