The physics of the effects of electric field on the desiccation of colloidal droplets, comprising of dispersed negatively charged nanoparticles [2 μl, 1(w/w. %)], are studied in a standard electrowetting-on-a-dielectric configuration. The extent of contact line pinning during evaporation is found to be a function of the magnitude of the applied voltage and quantified in terms of the dimensionless electrowetting number (η). The pinned contact line led to higher particle compaction as evidenced by the characterization of dried colloidal film thicknesses. Crack formation and their dynamics have been analyzed in detail to elicit the interplay of forces near the contact line region and on the compaction front. These aspects of crack formation are elucidated in the light of magnitude and polarity of the applied electric field. It is found to influence the crack front initiation velocity, the geometry, the number of cracks, and an attempt is made to explain the same via first principle-based approaches. Therefore, this study indicates the possibility of using electrowetting as a technique to fine-tune the crack formation behavior in thin colloidal films.

1.
A. F.
Routh
, “
Drying of thin colloidal films
,”
Rep. Prog. Phys.
76
,
046603
(
2013
).
2.
R.
Iqbal
,
A. Q.
Shen
, and
A. K.
Sen
, “
Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates
,”
J. Colloid Interface Sci.
579
,
541
550
(
2020
).
3.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
829
(
1997
).
4.
W. P.
Lee
and
A. F.
Routh
, “
Why do drying films crack ?
,”
Langmuir
20
(
23
),
9885
9888
(
2004
).
5.
E. R.
Dufresne
,
D. J.
Stark
,
N. A.
Greenblatt
,
J. X.
Cheng
,
J. W.
Hutchinson
,
L.
Mahadevan
, and
D. A.
Weitz
, “
Dynamics of fracture in drying suspensions
,”
Langmuir
22
(
17
),
7144
7147
(
2006
).
6.
E. R.
Dufresne
,
E. I.
Corwin
,
N. A.
Greenblatt
,
J.
Ashmore
,
D. Y.
Wang
,
A. D.
Dinsmore
,
J. X.
Cheng
,
X. S.
Xie
,
J. W.
Hutchinson
, and
D. A.
Weitz
, “
Flow and fracture in drying nanoparticle suspensions
,”
Phys. Rev. Lett.
91
(
22
),
224501
(
2003
).
7.
R. C.
Chiu
,
T. J.
Garino
, and
M. J.
Cima
, “
Drying of granular ceramic films: I, effect of processing variables on cracking behavior
,”
J. Am. Ceram. Soc.
76
(
9
),
2257
2264
(
1993
).
8.
C. H.
Chon
,
S.
Paik
, Jr.
,
J. B.
Tipton
,
K. D.
Kihm
, and
R. V.
June
, “
Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets
,”
Langmuir
23
,
2953
2960
(
2007
).
9.
A.
Sarkar
and
M. S.
Tirumkudulu
, “
Consolidation of charged colloids during drying
,”
Langmuir
25
(
9
),
4945
4953
(
2009
).
10.
I.
Kim
and
K. D.
Kihm
, “
Hidden cavity formations by nanocrystalline self-assembly on various substrates with different hydrophobicities
,”
Langmuir
28
(
25
),
9195
9200
(
2012
).
11.
M. I.
Smith
and
J. S.
Sharp
, “
Effects of substrate constraint on crack pattern formation in thin films of colloidal polystyrene particles
,”
Langmuir
27
(
13
),
8009
8017
(
2011
).
12.
U. U.
Ghosh
,
M.
Chakraborty
,
A. B.
Bhandari
,
S.
Chakraborty
, and
S.
Dasgupta
, “
Effect of surface wettability on crack dynamics and morphology of colloidal films
,”
Langmuir
31
(
22
),
6001
6010
(
2015
).
13.
M. A.
Winnik
, “
Latex film formation
,”
Curr. Opin. Colloid Interface Sci.
2
(
2
),
192
199
(
1997
).
14.
W.
Wohlleben
,
F. W.
Bartels
,
S.
Altmann
, and
R. J.
Leyrer
, “
Mechano-optical octave-tunable elastic colloidal crystals made from core-shell polymer beads with self-assembly techniques
,”
Langmuir
23
(
6
),
2961
2969
(
2007
).
15.
J. A.
Lewis
, “
Colloidal processing of ceramics
,”
J. Am. Ceram. Soc.
83
,
2341
2359
(
2000
).
16.
J. H.
Prosser
,
T.
Brugarolas
,
S.
Lee
,
A. J.
Nolte
, and
D.
Lee
, “
Avoiding cracks in nanoparticle films
,”
Nano Lett.
12
,
5287
5291
(
2012
).
17.
D.
Mal
,
S.
Sinha
,
T. R.
Middya
, and
S.
Tarafdar
, “
Field induced radial crack patterns in drying laponite gel
,”
Physica A
384
(
2
),
182
186
(
2007
).
18.
T.
Khatun
,
M. D.
Choudhury
,
T.
Dutta
, and
S.
Tarafdar
, “
Electric-field-induced crack patterns: Experiments and simulation
,”
Phys. Rev. E
86
(
1
),
1
8
(
2012
).
19.
L.
Pauchard
,
F.
Elias
,
P.
Boltenhagen
,
A.
Cebers
, and
J. C.
Bacri
, “
When a crack is oriented by a magnetic field
,”
Phys. Rev. E
77
(
2
),
1
9
(
2008
).
20.
H.
Lama
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Desiccation cracks in dispersion of ellipsoids: Effect of aspect ratio and applied fields
,”
Phys. Rev. Mater.
2
(
8
),
1
8
(
2018
).
21.
D.
Orejon
,
K.
Sefiane
, and
M. E. R.
Shanahan
, “
Evaporation of nanofluid droplets with applied DC potential
,”
J. Colloid Interface Sci.
407
,
29
38
(
2013
).
22.
V.
Vancauwenberghe
,
P.
Di Marco
, and
D.
Brutin
, “
Wetting and evaporation of a sessile drop under an external electrical field: A review
,”
Colloids Surf. A
432
,
50
56
(
2013
).
23.
H. B.
Eral
,
D. M.
Augustine
,
M. H. G.
Duits
, and
F.
Mugele
, “
Suppressing the coffee stain effect: How to control colloidal self-assembly in evaporating drops using electrowetting
,”
Soft Matter
7
(
10
),
4954
(
2011
).
24.
D.
Mampallil
,
H. B.
Eral
,
D.
van den Ende
, and
F.
Mugele
, “
Control of evaporating complex fluids through electrowetting
,”
Soft Matter
8
(
c
),
10614
10617
(
2012
).
25.
T.
Khatun
,
T.
Dutta
, and
S.
Tarafdar
, “
Crack formation in laponite gel under AC fields
,”
Appl. Clay Sci.
86
,
125
128
(
2013
).
26.
D.
Mal
,
S.
Sinha
,
T. R.
Middya
, and
S.
Tarafdar
, “
Desiccation crack patterns in drying laponite gel formed in an electrostatic field
,”
Appl. Clay Sci.
39
(
1–2
),
106
111
(
2008
).
27.
T.
Khatun
,
T.
Dutta
, and
S.
Tarafdar
, “
Crack formation under an electric field in droplets of laponite gel : Memory effect and scaling relations
,”
Langmuir
29
,
15535
15542
(
2013
).
28.
M.
Mittal
and
E. M.
Furst
, “
Electric field-directed convective assembly of ellipsoidal colloidal particles to create optically and mechanically anisotropic thin films
,”
Adv. Funct. Mater.
19
(
20
),
3271
3278
(
2009
).
29.
M.
Emerse
,
H.
Lama
,
M. G.
Basavaraj
,
R.
Singh
, and
D. K.
Satapathy
, “
Morphologies of electric-field-driven cracks in dried dispersions of ellipsoids
,”
Phys. Rev. E
109
(
2
),
1
9
(
2024
).
30.
F.
Mugele
and
J.-C.
Baret
, “
Electrowetting: From basics to applications
,”
J. Phys.: Condens. Matter
17
(
28
),
R705
R774
(
2005
).
31.
S.
Aghdaei
,
N. G.
Green
,
T. B.
Jones
, and
H.
Morgan
, “
Droplet mixer based on electrowetting
,”
J. Phys.: Conf. Ser.
142
,
012071
(
2008
).
32.
A.
Hayes
and
B. J.
Feenstra
, “
Video-speed electronic paper based on electrowetting
,”
Phys. Rev. Lett.
425
,
383
385
(
2003
).
33.
J.
Zhang
,
M. K.
Borg
,
K.
Ritos
, and
J. M.
Reese
, “
Electrowetting controls the deposit patterns of evaporated salt water nanodroplets
,”
Langmuir
32
(
6
),
1542
1549
(
2016
).
34.
H. M.
Van Der Kooij
,
G. T.
Van De Kerkhof
, and
J.
Sprakel
, “
A mechanistic view of drying suspension droplets
,”
Soft Matter
12
(
11
),
2858
2867
(
2016
).
35.
P.
Mandal
,
R.
Dey
, and
S.
Chakraborty
, “
Electrokinetics with ‘paper-and-pencil’ devices
,”
Lab Chip
12
(
20
),
4026
4028
(
2012
).
36.
P.
Bourrianne
,
P.
Lilin
,
G.
Sintès
,
T.
Nîrca
,
G. H.
McKinley
, and
I.
Bischofberger
, “
Crack morphologies in drying suspension drops
,”
Soft Matter
17
(
39
),
8832
8837
(
2021
).
37.
H. M.
Van Der Kooij
,
M.
De Kool
,
J.
Van Der Gucht
, and
J.
Sprakel
, “
Coalescence, cracking, and crack healing in drying dispersion droplets
,”
Langmuir
31
(
15
),
4419
4428
(
2015
).
38.
ÁG
Marín
,
H.
Gelderblom
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Order-to-disorder transition in ring-shaped colloidal stains
,”
Phys. Rev. Lett.
107
(
8
),
1
4
(
2011
).
You do not currently have access to this content.