Inertial microfluidic devices have gained attention for point-of-need (PoN) sample preparation. Yet, devices capable of simultaneous particle-bacteria solution exchange and separation are low in throughput, hindering their applicability to PoN settings. This paper introduces a microfluidic centrifuge for high-throughput solution exchange and separation of microparticles, addressing the need for processing large sample volumes at elevated flow rates. The device integrates Dean flow recirculation and inertial focusing of microparticles within 24 curved microchannels assembled in a three-layer configuration via in-plane and out-of-plane parallelization. We studied solution exchange and particle migration using singleplex and duplex samples across devices with varying curve numbers (2-curve, 8-curve, and 24-curve). Processing 5 and 10 μm microparticles at flow rates up to 16.8 ml/min achieved a solution exchange efficiency of 96.69%. In singleplex solutions, 10 and 5 μm particles selectively migrated to inner and outer outlets, demonstrating separation efficiencies of 99.7% and 90.3%, respectively. With duplex samples, sample purity was measured to be 93.4% and 98.6% for 10 and 5 μm particles collected from the inner and the outer outlets, respectively. Application of our device in biological assays was shown by performing duplex experiments where 10 μm particles were isolated from Salmonella bacterial suspension with purity of 97.8% while increasing the state-of-the-art particle solution exchange and separation throughput by 16 folds. This parallelization enabled desirable combinations of high throughput, low-cost, and scalability, without compromising efficiency and purity, paving the way for sample preparation at the PoN in the future.

1.
Y.
Fang
,
S.
Zhu
,
W.
Cheng
,
Z.
Ni
, and
N.
Xiang
,
Lab Chip
22
,
3545
(
2022
).
2.
F.
Tian
,
S.
Zhang
,
C.
Liu
,
Z.
Han
,
Y.
Liu
,
J.
Deng
,
Y.
Li
,
X.
Wu
,
L.
Cai
,
L.
Qin
,
Q.
Chen
,
Y.
Yuan
,
Y.
Liu
,
Y.
Cong
,
B.
Ding
,
Z.
Jiang
, and
J.
Sun
, “
Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer
,”
Nat. Comm.
12
(1),
113
(
2021
).
3.
M.
Ignatiadis
,
G. W.
Sledge
, and
S. S.
Jeffrey
,
Nat. Rev. Clin. Oncol.
18
(
18
),
297
(
2021
).
4.
M.
Abbaszadegan
,
M. S.
Huber
,
C. P.
Gerba
, and
I. L.
Pepper
,
Appl. Environ. Microbiol.
59
,
1318
(
1993
).
5.
A.
Nikdoost
,
A.
Doostmohammadi
,
K.
Romanick
,
M.
Thomas
, and
P.
Rezai
,
Anal. Chim. Acta
1160
,
338449
(
2021
).
6.
A.
Zabihihesari
,
A.
Khalili
,
M. J.
Farshchi-Heydari
,
A.
Eilaghi
, and
P.
Rezai
,
New J. Chem.
47
,
9050
(
2023
).
7.
K.
Zhao
,
Y.
Wei
,
J.
Dong
,
P.
Zhao
,
Y.
Wang
,
X.
Pan
, and
J.
Wang
,
Environ. Pollut.
297
,
118773
(
2022
).
8.
P.
Bayat
and
P.
Rezai
,
Soft Matter
14
,
5356
(
2018
).
9.
D.
Yuan
,
Q.
Zhao
,
S.
Yan
,
S. Y.
Tang
,
Y.
Zhang
,
G.
Yun
,
N. T.
Nguyen
,
J.
Zhang
,
M.
Li
, and
W.
Li
,
Lab Chip
19
,
2811
(
2019
).
10.
F.
Wu
and
C.
Dekker
,
Chem. Soc. Rev.
45
,
268
(
2016
).
11.
D.
Abd-El-Haleem
,
Z. H.
Kheiralla
,
S.
Zaki
,
A. A.
Rushdy
, and
W.
Abd-El-Rahiem
,
J. Environ. Monit.
5
,
865
(
2003
).
12.
F.
Di Nardo
,
M.
Chiarello
,
S.
Cavalera
,
C.
Baggiani
, and
L.
Anfossi
,
Sensors
21
,
5185
(
2021
).
13.
Y.
Wang
,
X.
Zhang
,
L.
Shang
, and
Y.
Zhao
,
Sci. Bull.
66
,
9
(
2021
).
14.
T. B.
Billeskov
,
J. B.
Jensen
,
N.
Jessen
, and
J.
Farup
,
STAR Protoc.
4
,
102008
(
2023
).
15.
B.
Schmitz
,
A.
Radbruch
,
T.
Kümmel
,
C.
Wickenhauser
,
H.
Korb
,
M. L.
Hansmann
,
J.
Thiele
, and
R.
Fischer
,
Eur. J. Haematol.
52
,
267
(
1994
).
16.
J. D.
Adams
,
U.
Kim
, and
H. T.
Soh
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18165
(
2008
).
17.
M. A.
Witek
,
I. M.
Freed
, and
S. A.
Soper
,
Anal. Chem.
92
,
105
(
2020
).
18.
W. S.
Low
, and
W. A. B.
Wan Abas
, “
Benchtop technologies for circulating tumor cells separation based on biophysical properties
,”
BioMed Res. Int.
2015
, 239362 (
2015
).
19.
D. W.
Fawcett
,
B. L.
Vallee
, and
M. H.
Soule
,
Science
111
,
34
, (
1950
).
20.
M. E.
Warkiani
,
A. A. S.
Bhagat
,
B. L.
Khoo
,
J.
Han
, and
C. T.
Lim
,
ACS Nano
7
,
1882
(
2013
).
21.
W. G.
Pitt
,
M.
Alizadeh
,
G. A.
Husseini
,
D. S.
McClellan
,
C. M.
Buchanan
,
C. G.
Bledsoe
,
R. A.
Robison
,
R.
Blanco
,
B. L.
Roeder
,
M.
Melville
, and
A. K.
Hunter
,
Biotechnol. Prog.
32
,
823
(
2016
).
22.
P.
Rodriguez-Mateos
,
B.
Ngamsom
,
C. E.
Dyer
,
A.
Iles
, and
N.
Pamme
,
Electrophoresis
42
,
2246
(
2021
).
23.
C.
Liu
,
Q.
Feng
, and
J.
Sun
, “
Lipid nanovesicles by microfluidics: Manipulation, synthesis, and drug delivery
,”
Adv. Mater.
31
(45), 18 (
2019
).
24.
W.
Lee
,
P.
Tseng
, and
D.
Di Carlo
,
Microfluidic Cell Sorting and Separation Technology BT - Microtechnology for Cell Manipulation and Sorting
(Springer International Publishing, 2017), pp. 114.
25.
M. D.
Tarn
,
M. J.
Lopez-Martinez
, and
N.
Pamme
,
Anal. Bioanal. Chem.
406
,
139
(
2014
).
26.
B.
Ha
,
J.
Park
,
G.
Destgeer
,
J. H.
Jung
, and
H. J.
Sung
,
Anal. Chem.
88
,
4205
(
2016
).
27.
H.
Amini
,
E.
Sollier
,
W. M.
Weaver
, and
D.
Di Carlo
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
11593
(
2012
).
28.
J. S.
Dudani
,
D. R.
Gossett
,
H. T. K.
Tse
,
R. J.
Lamm
,
R. P.
Kulkarni
, and
D.
Di Carlo
,
Biomicrofluidics
9
,
014112
(
2015
).
29.
D. R.
Gossett
,
H. T. K.
Tse
,
J. S.
Dudani
,
K.
Goda
,
T. A.
Woods
,
S. W.
Graves
, and
D.
Di Carlo
,
Small
8
,
2757
(
2012
).
30.
E.
Sollier
,
D. E.
Go
,
J.
Che
,
D. R.
Gossett
,
S.
O’Byrne
,
W. M.
Weaver
,
N.
Kummer
,
M.
Rettig
,
J.
Goldman
,
N.
Nickols
,
S.
McCloskey
,
R. P.
Kulkarni
, and
D.
Di Carlo
,
Lab Chip
14
,
63
(
2014
).
31.
H. W.
Hou
,
R. P.
Bhattacharyya
,
D. T.
Hung
, and
J.
Han
,
Lab Chip
15
,
2297
(
2015
).
32.
R. D.
Sochol
,
S.
Li
,
L. P.
Lee
, and
L.
Lin
,
Lab Chip
12
,
4168
(
2012
).
33.
S.
Shen
,
C.
Ma
,
L.
Zhao
,
Y.
Wang
,
J. C.
Wang
,
J.
Xu
,
T.
Li
,
L.
Pang
, and
J.
Wang
,
Lab Chip
14
,
2525
(
2014
).
34.
R. D.
Sochol
,
M. E.
Dueck
,
S.
Li
,
L. P.
Lee
, and
L.
Lin
,
Lab Chip
12
,
5051
(
2012
).
35.
W.
Al-Faqheri
,
T. H. G.
Thio
,
M. A.
Qasaimeh
,
A.
Dietzel
,
M.
Madou
, and
A.
Al-Halhouli
,
Microfluid. Nanofluidics
21
,
1
(
2017
).
36.
A.
Esan
,
F.
Vanholsbeeck
,
S.
Swift
, and
C. M.
McGoverin
,
Biomicrofluidics
17
,
44104
(
2023
).
37.
A.
Al-Halhouli
,
W.
Al-Faqheri
,
B.
Alhamarneh
,
L.
Hecht
, and
A.
Dietzel
,
Micromachines
9
,
171
(
2018
).
38.
S.
Ramya
,
S. P.
Kumar
,
G. D.
Ram
, and
D.
Lingaraja
,
Microfluid. Nanofluidics
26
,
1
(
2022
).
39.
E.
Guzniczak
,
T.
Krüger
,
H.
Bridle
, and
M.
Jimenez
,
Biomicrofluidics
14
,
044113
(
2020
).
40.
L. F.
Ngum
,
Y.
Matsushita
,
S. F.
El-Mashtoly
,
A. M. R.
Fath El-Bab
, and
A. L.
Abdel-Mawgood
,
Bioresour. Bioprocess.
11
,
1
(
2024
).
41.
A.
Mehran
,
P.
Rostami
,
M. S.
Saidi
,
B.
Firoozabadi
, and
N.
Kashaninejad
,
Biosensors
11
,
406
(
2021
).
42.
H.
Jeon
,
T.
Kwon
,
J.
Yoon
, and
J.
Han
,
Lab Chip
22
,
272
(
2022
).
43.
S.
Zhu
,
D.
Wu
,
Y.
Han
,
C.
Wang
,
N.
Xiang
, and
Z.
Ni
,
Lab Chip
20
,
244
(
2020
).
44.
M. E.
Warkiani
,
A. K. P.
Tay
,
G.
Guan
, and
J.
Han
,
Sci. Rep.
5
,
1
(
2015
).
45.
M.
Rafeie
,
J.
Zhang
,
M.
Asadnia
,
W.
Li
, and
M. E.
Warkiani
,
Lab Chip
16
,
2791
(
2016
).
46.
J.
Zhang
,
S.
Yan
,
W.
Li
,
G.
Alici
, and
N. T.
Nguyen
,
RSC Adv.
4
,
33149
(
2014
).
47.
S.
Yadavali
,
D.
Lee
, and
D.
Issadore
, “
Robust microfabrication of highly parallelized three-dimensional microfluidics on silicon
,”
Sci. Rep.
9
(1), 110 (
2019
).
48.
G. M.
Garrity
,
Bergey’s Manual of Systematic Bacteriology
, edited by
D. J.
Brenner
,
N. R.
Krieg
, and
J. T.
Staley
(
Springer U.S.
,
2005
).
49.
J. M.
Ottino
and
S.
Wiggins
,
Philos. Trans. R. Soc. A
362
,
923
(
2004
).
51.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
(
2007
).
52.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N. T.
Nguyen
,
M.
Ebrahimi Warkiani
, and
W.
Li
,
Lab Chip
16
,
10
(
2016
).
53.
J. M.
Martel
and
M.
Toner
,
Phys. Fluids
24
,
32001
(
2012
).
54.
N. J.
Camden
,
J. C.
Edelman
,
P. M.
Edelman
,
K. M.
Knigge
, and
I. L.
Schwartz
,
J. Food Sci.
33
,
641
(
1968
).
55.
C. K.
Uejio
, “
Temperature influences on salmonella infections across the continental United States
,” in
Annals Amer. Assoc. Geograph.
107
(3), 751764 (
2017
).
57.
J. M.
Martel
and
M.
Toner
,
Sci. Rep.
3
,
3340
(
2013
).
58.
S.
Razavi Bazaz
,
A.
Mihandust
,
R.
Salomon
,
H. A. N.
Joushani
,
W.
Li
,
H. A.
Amiri
,
F.
Mirakhorli
,
S.
Zhand
,
J.
Shrestha
,
M.
Miansari
,
B.
Thierry
,
D.
Jin
, and
M.
Ebrahimi Warkiani
,
Lab Chip
22
,
4093
(
2022
).
59.
B. W.
Peterson
,
P. K.
Sharma
,
H. C.
van der Mei
, and
H. J.
Busscher
,
Appl. Environ. Microbiol.
78
,
120
(
2012
).
60.
D.
Rodoplu Solovchuk
,
I. H.
Boyaci
,
U.
Tamer
,
N.
Sahiner
, and
D.
Cetin
,
Microchem. J.
189
,
108479
(
2023
).
61.
B.
Ang
,
R.
Habibi
,
C.
Kett
,
W. H.
Chin
,
J. J.
Barr
,
K. L.
Tuck
,
A.
Neild
, and
V. J.
Cadarso
,
Sens. Actuators, B
374
,
132769
(
2023
).
62.
J. B.
Harmon
,
H. K.
Gray
,
C. C.
Young
, and
K. J.
Schwab
,
PLoS One
15
,
e0233239
(
2020
).
63.
J.
Su
,
X.
Chen
, and
G.
Hu
,
Phys. Fluids
30
,
32007
(
2018
).
64.
A.
Bányai
,
E.
Farkas
,
H.
Jankovics
,
I.
Székács
,
E. L.
Tóth
,
F.
Vonderviszt
,
R.
Horváth
,
M.
Varga
, and
P.
Fürjes
,
Sensors
23
,
800
(
2023
).
65.
L.
Wang
,
J.
Lu
,
S. A.
Marchenko
,
E. S.
Monuki
,
L. A.
Flanagan
, and
A. P.
Lee
,
Electrophoresis
30
,
782
(
2009
).
66.
S. I.
Han
,
D. A.
Sarkes
,
M. M.
Hurley
,
R.
Renberg
,
C.
Huang
,
Y.
Li
,
J. P.
Jahnke
,
J. J.
Sumner
,
D. N.
Stratis-Cullum
, and
A.
Han
,
ACS Appl. Mater. Interfaces
15
,
11391
(
2023
).
67.
S. C.
Hur
,
T. Z.
Brinckerhoff
,
C. M.
Walthers
,
J. C. Y.
Dunn
, and
D.
Di Carlo
, “
Label-free enrichment of adrenal cortical progenitor cells using inertial microfluidics
,”
PLoS One
7
(10), e46550 (
2012
).
68.
D. R.
Gossett
,
H. T. K.
Tse
,
J. S.
Dudani
,
K.
Goda
,
T. A.
Woods
,
S. W.
Graves
, and
D.
Di Carlo
,
Small
8
,
2757
(
2012
).
69.
J. S.
Dudani
,
D. E.
Go
,
D. R.
Gossett
,
A. P.
Tan
, and
D.
Di Carlo
,
Anal. Chem.
86
,
1502
(
2014
).
You do not currently have access to this content.