We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO3 piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.

1.
O.
Felfoul
et al, “
Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions
,”
Nat. Nanotechnol.
11
(
11
),
941
947
(
2016
).
2.
C.
Willyard
, “
Drug-resistant bacteria ranked
,”
Nature
543
(
7643
),
15
(
2017
).
3.
K.
Whang
et al, “
Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens
,”
Light Sci. Appl.
7
(
1
),
68
(
2018
).
4.
F.
O'Rourke
and
V. A.
Kempf
, “
Interaction of bacteria and stem cells in health and disease
,”
FEMS Microbiol. Rev.
43
(
2
),
162
180
(
2019
).
5.
M.
Shehadul Islam
,
A.
Aryasomayajula
, and
P. R.
Selvaganapathy
, “
A review on macroscale and microscale cell lysis methods
,”
Micromachines
8
(
3
),
83
(
2017
).
6.
L.
Brown
et al, “
Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi
,”
Nat. Rev. Microbiol.
13
(
10
),
620
630
(
2015
).
7.
D.
Svec
et al, “
Direct cell lysis for single-cell gene expression profiling
,”
Front. Oncol.
3
,
274
(
2013
).
8.
H.
Kido
et al, “
A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization
,”
Colloids Surf. B
58
(
1
),
44
51
(
2007
).
9.
R.
de Boer
et al, “
Improved detection of microbial DNA after bead-beating before DNA isolation
,”
J. Microbiol. Methods
80
(
2
),
209
211
(
2010
).
10.
P. E.
Vandeventer
et al, “
Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device
,”
J. Clin. Microbiol.
49
(
7
),
2533
2539
(
2011
).
11.
A.
Berasaluce
et al, “
Bead beating-based continuous flow cell lysis in a microfluidic device
,”
RSC Adv.
5
(
29
),
22350
22355
(
2015
).
12.
M. M.
Packard
et al, “
Performance evaluation of fast microfluidic thermal lysis of bacteria for diagnostic sample preparation
,”
Diagnostics
3
(
1
),
105
116
(
2013
).
13.
P.
Sethu
et al, “
Continuous flow microfluidic device for rapid erythrocyte lysis
,”
Anal. Chem.
76
(
21
),
6247
6253
(
2004
).
14.
H. H.
Lai
et al, “
Characterization and use of laser-based lysis for cell analysis on-chip
,”
J. R. Soc. Interface
5
,
S113
S121
(
2008
).
15.
J. R.
Buser
et al, “
A disposable chemical heater and dry enzyme preparation for lysis and extraction of DNA and RNA from microorganisms
,”
Anal. Methods
8
(
14
),
2880
2886
(
2016
).
16.
C.
Ke
et al, “
Single step cell lysis/PCR detection of Escherichia coli in an independently controllable silicon microreactor
,”
Sens. Actuators, B
120
(
2
),
538
544
(
2007
).
17.
Y.-B.
Kim
et al, “
Statistical optimization of the lysis agents for Gram-negative bacterial cells in a microfluidic device
,”
Biotechnol. Bioeng.
11
,
288
292
(
2006
).
18.
E. A.
Schilling
,
A. E.
Kamholz
, and
P.
Yager
, “
Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay
,”
Anal. Chem.
74
(
8
),
1798
1804
(
2002
).
19.
P. J.
Marc
,
C. E.
Sims
, and
N. L.
Allbritton
, “
Coaxial flow system for chemical cytometry
,”
Anal. Chem.
79
(
23
),
9054
9059
(
2007
).
20.
G.
Ocvirk
et al, “
Spl beta/-galactosidase assays of single-cell lysates on a microchip: A complementary method for enzymatic analysis of single cells
,”
Proc. IEEE
92
(
1
),
115
125
(
2004
).
21.
D. J.
Beebe
,
G. A.
Mensing
, and
G. M.
Walker
, “
Physics and applications of microfluidics in biology
,”
Annu. Rev. Biomed. Eng.
4
(
1
),
261
286
(
2002
).
22.
S.
Wang
et al, “
Electrochemical cell lysis of Gram-positive and Gram-negative bacteria: DNA extraction from environmental water samples
,”
Electrochim. Acta
338
,
135864
(
2020
).
23.
M.
Mahalanabis
et al, “
Cell lysis and DNA extraction of Gram-positive and Gram-negative bacteria from whole blood in a disposable microfluidic chip
,”
Lab Chip
9
(
19
),
2811
2817
(
2009
).
24.
G. E.
Evans
et al, “
Contamination of Qiagen DNA extraction kits with Legionella DNA
,”
J. Clin. Microbiol.
41
(
7
),
3452
(
2003
).
25.
S. C.
Ip
,
S.-W.
Lin
, and
K.-M.
Lai
, “
An evaluation of the performance of five extraction methods: Chelex® 100, QIAamp® DNA blood mini kit, QIAamp® DNA investigator kit, QIAsymphony® DNA investigator® kit and DNA IQ™
,”
Sci. Justice
55
(
3
),
200
208
(
2015
).
26.
G.
Destgeer
et al, “
Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW)
,”
Lab Chip
13
(
21
),
4210
4216
(
2013
).
27.
G.
Destgeer
and
H. J.
Sung
, “
Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves
,”
Lab Chip
15
(
13
),
2722
2738
(
2015
).
28.
J.
Friend
and
L. Y.
Yeo
, “
Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics
,”
Rev. Mod. Phys.
83
(
2
),
647
704
(
2011
).
29.
Z.
Tian
et al, “
Wave number–spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells
,”
Sci. Adv.
5
(
5
),
eaau6062
(
2019
).
30.
D. B.
Go
et al, “
Surface acoustic wave devices for chemical sensing and microfluidics: A review and perspective
,”
Anal. Methods
9
(
28
),
4112
4134
(
2017
).
31.
P.
Zhang
et al, “
Acoustic microfluidics
,”
Annu. Rev. Anal. Chem.
13
(
1
),
17
43
(
2020
).
32.
G.
Gharib
et al, “
Biomedical applications of microfluidic devices: A review
,”
Biosensors
12
(
11
),
1023
(
2022
).
33.
A.
Ozcelik
et al, “
Acoustic tweezers for the life sciences
,”
Nat. Methods
15
(
12
),
1021
1028
(
2018
).
34.
M.
Wu
et al, “
Isolation of exosomes from whole blood by integrating acoustics and microfluidics
,”
Proc. Natl. Acad. Sci. U.S.A.
114
(
40
),
10584
10589
(
2017
).
35.
H.
Bruus
et al, “
Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidics—Exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation
,”
Lab Chip
11
(
21
),
3579
3580
(
2011
).
36.
Y.
Gao
et al, “
Acoustic microfluidic separation techniques and bioapplications: A review
,”
Micromachines
11
(
10
),
921
(
2020
).
37.
G. P.
Gautam
et al, “
Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells
,”
Anal. Bioanal. Chem.
410
(
14
),
3385
3394
(
2018
).
38.
X.
Ding
et al, “
Surface acoustic wave microfluidics
,”
Lab Chip
13
(
18
),
3626
3649
(
2013
).
39.
L. Y.
Yeo
and
J. R.
Friend
, “
Ultrafast microfluidics using surface acoustic waves
,”
Biomicrofluidics
3
(
1
), 012002 (
2009
).
40.
L. Y.
Yeo
and
J. R.
Friend
, “
Surface acoustic wave microfluidics
,”
Annu. Rev. Fluid Mech.
46
(
1
),
379
406
(
2014
).
41.
D.
Luong
,
T.
and N
, and
T.
Nguyen
, “
Surface acoustic wave driven microfluidics—A review
,”
Micro Nanosyst.
2
(
3
),
217
225
(
2010
).
42.
Y.
Yang
,
C.
Dejous
, and
H.
Hallil
, “
Trends and applications of surface and bulk acoustic wave devices: A review
,”
Micromachines
14
(
1
),
43
(
2022
).
43.
X.
Liu
et al, “
Surface acoustic wave based microfluidic devices for biological applications
,”
Sens. Diagn.
2
(
3
),
507
528
(
2023
).
44.
D.
Taller
et al, “
On-chip surface acoustic wave lysis and ion-exchange nanomembrane detection of exosomal RNA for pancreatic cancer study and diagnosis
,”
Lab Chip
15
(
7
),
1656
1666
(
2015
).
45.
H.
Lu
et al, “
Rapid additive-free bacteria lysis using traveling surface acoustic waves in microfluidic channels
,”
Lab Chip
19
(
24
),
4064
4070
(
2019
).
46.
M.
Wiklund
,
R.
Green
, and
M.
Ohlin
, “
Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices
,”
Lab Chip
12
(
14
),
2438
2451
(
2012
).
47.
W. T.
Godbey
, “
Cell growth
,” in
Biotechnology and Its Applications
, 2nd ed., edited by
W. T.
Godbey
(
Academic Press
,
2022
), Chap. 5, pp.
117
150
.
48.
E. R.
Sanders
, “
Aseptic laboratory techniques: Plating methods
,”
J. Visualized Exp.
63
,
e3064
(
2012
).
49.
W. P.
Chen
and
T. T.
Kuo
, “
A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA
,”
Nucleic Acids Res.
21
(
9
),
2260
(
1993
).
50.
R.
Ma
et al, “
FEM simulation of a high-performance 128° Y–X LiNbO3/SiO2/Si functional substrate for surface acoustic wave gyroscopes
,”
Micromachines
13
(
2
),
202
(
2022
).
51.
M. S.
Namnabat
,
M.
Moghimi Zand
, and
E.
Houshfar
, “
3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics
,”
Sci. Rep.
11
(
1
),
13326
(
2021
).
52.
E.
Preciado
et al, “
Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3
,”
Nat. Commun.
6
(
1
),
8593
(
2015
).
53.
S.
Deshpande
,
S.
Bhand
, and
G.
Bacher
, “
Investigation of the effect of metallization ratio and side shift on the interdigitated electrodes performance for biochemical sensing
,”
J. Appl. Electrochem.
51
,
893
904
(
2021
).
54.
M.
Jalali
et al, “
Fabrication and characterization of a scalable surface textured with pico-liter oil drops for mechanistic studies of bacteria-oil interactions
,”
Sci. Rep.
8
(
1
),
7612
(
2018
).
55.
R. M.
Hackett
, “
Stress measures
,” in
Hyperelasticity Primer
, edited by
R. M.
Hackett
(
Springer International Publishing
,
Cham
,
2018
), pp.
29
48
.
56.
S.
Agarwalla
and
S.
Duraiswamy
, “
Micro-piezo actuator for cell lysis
,” in
Microactuators, Microsensors and Micromechanisms
(
Springer International Publishing
,
Cham
,
2023
).
57.
S.
Duraiswamy
et al, “
A multiplex Taqman PCR assay for MRSA detection from whole blood
,”
PLoS One
18
(
11
),
e0294782
(
2023
).
You do not currently have access to this content.