Immunosensors are crucial for various applications, with capture efficiency and detection time as key performance parameters. Sessile droplets on functionalized substrates have demonstrated potential as micro-reactors for antibody–antigen binding, reducing detection time and analyte volume due to the presence of convective currents. Tuning the surface charges by adjusting buffer pH can modulate antigen capture efficiency. While the impact of pH has been studied on antibody–antigen binding in flow and non-flow systems, the use of sessile droplets and the specific impact of buffer pH on the capture efficiency of surface-functionalized antibodies remains understudied. Understanding how pH affects capture and deposition patterns is vital for optimizing immunosensor design. Additionally, the mechanisms governing internal flow within the droplet and dominant driving forces require further investigation. We investigated the effect of varying buffer pH on prostate-specific antigen (PSA) capture by anti-PSA functionalized polydimethylsiloxane substrates. Capture efficiency was measured using the Brown–Anson model applied to cyclic voltammetry, validated with electrochemical impedance spectroscopy. pH significantly influenced PSA capture by surface-immobilized anti-PSA IgG. The extended Derjaguin–Landau–Verwey–Overbeek theory explained the interplay between pH and internal flow. Micro-particle image velocimetry (PIV) confirmed internal flow, primarily driven by Marangoni flow from solute concentration gradients. Controlling buffer pH in biosensors offers higher capture efficiency and desired deposition patterns. These insights advance immunosensor design and hold potential for biomedical and diagnostic applications.

1.
T. S.
Wong
,
T. H.
Chen
,
X.
Shen
, and
C. M.
Ho
,
Anal. Chem.
83
,
1871
(
2011
).
2.
J. R.
Trantum
,
M. L.
Baglia
,
Z. E.
Eagleton
,
R. L.
Mernaugh
, and
F. R.
Haselton
,
Lab Chip
14
,
315
(
2014
).
3.
A.
Chandramohan
,
M.
Chakraborty
,
J. A.
Weibel
, and
S. V.
Garimella
,
ACS Omega
4
,
22385
(
2019
).
4.
J. T.
Wen
,
C. M.
Ho
, and
P. B.
Lillehoj
,
Langmuir
29
,
8440
(
2013
).
5.
J. R.
Trantum
,
D. W.
Wright
, and
F. R.
Haselton
,
Langmuir
28
,
2187
(
2012
).
6.
V. S.
Rathaur
,
S.
Kumar
,
P. K.
Panigrahi
, and
S.
Panda
,
Langmuir
36
,
8826
(
2020
).
7.
V. S.
Rathaur
and
S.
Panda
,
Biomicrofluidics
18
,
024108
(
2024
).
8.
V. S.
Rathaur
and
S.
Panda
,
Chem. Eng. J. Adv.
14
,
100492
(
2023
).
9.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
,
Phys. Rev. E
62
,
756
(
2000
).
10.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
,
Nature
389
,
827
(
1997
).
11.
K. H.
Kang
,
H. C.
Lim
,
H. W.
Lee
, and
S. J.
Lee
,
Phys. Fluids
25
,
042001
(
2013
).
12.
R.
Savino
,
D.
Paterna
, and
N.
Favaloro
,
J. Thermophys. Heat Transfer
16
,
562
(
2002
).
13.
H.
Hu
and
R. G.
Larson
,
J. Phys. Chem. B
110
,
7090
(
2006
).
14.
M.
Majumder
,
C. S.
Rendall
,
J. A.
Eukel
,
J. Y. L.
Wang
,
N.
Behabtu
,
C. L.
Pint
,
T. Y.
Liu
,
A. W.
Orbaek
,
F.
Mirri
,
J.
Nam
,
A. R.
Barron
,
R. H.
Hauge
,
H. K.
Schmidt
, and
M.
Pasquali
,
J. Phys. Chem. B
116
,
6536
(
2012
).
15.
Y. Y.
Tarasevich
,
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys.
71
,
027301
(
2005
).
16.
Y.
Song
,
Y.
Shen
,
J.
Chen
,
Y.
Song
,
C.
Gong
, and
L.
Wang
,
Electrochim. Acta
211
,
297
(
2016
).
17.
P.
Lv
,
L.
Min
,
R.
Yuan
,
Y.
Chai
, and
S.
Chen
,
Microchim. Acta
171
,
297
(
2010
).
18.
D.
Feng
,
X.
Lu
,
X.
Dong
,
Y.
Ling
, and
Y.
Zhang
,
Microchim. Acta
180
,
767
(
2013
).
19.
D.
Rath
and
S.
Panda
,
Chem. Eng. J.
260
,
657
(
2015
).
20.
D.
Rath
,
S.
Kumar
, and
S.
Panda
,
Appl. Biochem. Biotechnol.
187
,
1272
(
2019
).
21.
V.
Dugas
,
J.
Broutin
, and
E.
Souteyrand
,
Langmuir
21
,
9130
(
2005
).
22.
R.
Blossey
and
A.
Bosio
,
Langmuir
18
,
2952
(
2002
).
23.
L. H.
Mujawar
,
J. G. M.
Kuerten
,
D. P.
Siregar
,
A.
van Amerongen
, and
W.
Norde
,
RSC Adv.
4
,
19380
(
2014
).
24.
S.
Keskin
and
M.
Çulha
,
Analyst
137
,
2651
(
2012
).
25.
A. P.
Sommer
,
M.
Ben-Moshe
, and
S.
Magdassi
,
J. Phys. Chem. B
108
,
8
(
2004
).
26.
J.
Park
and
J.
Moon
,
Langmuir
22
,
3506
(
2006
).
27.
J. A.
Lim
,
W. H.
Lee
,
H. S.
Lee
,
J. H.
Lee
,
Y. D.
Park
, and
K.
Cho
,
Adv. Funct. Mater.
18
,
229
(
2008
).
28.
G.
Gillen
,
M.
Najarro
,
S.
Wight
,
M.
Walker
,
J.
Verkouteren
,
E.
Windsor
,
T.
Barr
,
M.
Staymates
, and
A.
Urbas
,
Sensors
15
,
29618
(
2015
).
29.
K. N.
Al-Milaji
,
V.
Radhakrishnan
,
P.
Kamerkar
, and
H.
Zhao
,
J. Colloid Interface Sci.
529
,
234
(
2018
).
30.
E. A.
Roth
,
T.
Xu
,
M.
Das
,
C.
Gregory
,
J. J.
Hickman
, and
T.
Boland
,
Biomaterials
25
,
3707
(
2004
).
31.
S.
Suzuki
and
Y.
Teramoto
,
Biomacromolecules
18
,
1993
(
2017
).
32.
R.
Bhardwaj
,
X.
Fang
,
P.
Somasundaran
, and
D.
Attinger
,
Langmuir
26
,
7833
(
2010
).
33.
L.
Konermann
,
ELS
(
Wiley
,
2012
).
34.
M. L.
van Poll
,
F.
Zhou
,
M.
Ramstedt
,
L.
Hu
, and
W. T. S.
Huck
,
Angew. Chem., Int. Ed.
46
,
6634
(
2007
).
35.
H.
Imran
,
P. N.
Manikandan
,
D.
Prabhu
,
V.
Dharuman
,
J.
Jeyakanthan
, and
J. H.
Hahn
,
Sens. Bio-Sens. Res.
23
,
100261
(
2019
).
36.
S.
Verma
and
S.
Panda
,
Microfluid. Nanofluidics
24
,
9
(
2020
).
37.
A. P.
Brown
and
F. C.
Anson
,
Anal. Chem.
49
,
1589
(
1977
).
38.
E. J. W.
Verwey
,
J. Phys. Colloid Chem.
51
,
631
(
1947
).
39.
L.
Derjaguin
and
B.
Landau
,
Acta Physicochim
14
,
633
662
(
1941
).
40.
C. J.
van Oss
,
R. J.
Good
, and
M. K.
Chaudhury
,
J. Colloid Interface Sci.
111
,
378
(
1986
).
41.
42.
43.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Elsevier
,
2011
).
44.
S.
Bhattacharjee
and
M.
Elimelech
,
J. Colloid Interface Sci.
193
,
273
(
1997
).
45.
C. J.
van Oss
, in
Interface Sci. Technol.
(
Elsevier
,
2008
), pp.
31
48
.
46.
R.
Hogg
,
T. W.
Healy
, and
D. W.
Fuerstenau
,
Trans. Faraday Soc.
62
,
1638
(
1966
).
47.
C. J.
van Oss
,
Interfacial Forces in Aqueous Media
(
CRC Press
,
2006
).
48.
S.
Wang
,
J.
Zhang
,
O.
Gharbi
,
V.
Vivier
,
M.
Gao
, and
M. E.
Orazem
,
Nat. Rev. Methods Primers
1
,
41
(
2021
).
49.
S.
Patil
,
A.
Sandberg
,
E.
Heckert
,
W.
Self
, and
S.
Seal
,
Biomaterials
28
,
4600
(
2007
).
50.
S.
Salgın
,
U.
Salgın
, and
N.
Soyer
,
Int. J. Electrochem. Sci.
8
,
4073
(
2013
).
52.
L. K.
Malla
,
R.
Bhardwaj
, and
A.
Neild
,
Colloids Surf., A
584
,
124009
(
2020
).
53.
W.
Sempels
,
R.
De Dier
,
H.
Mizuno
,
J.
Hofkens
, and
J.
Vermant
,
Nat. Commun.
4
,
1757
(
2013
).
54.
J.
Shi
,
L.
Yang
, and
C. D.
Bain
,
ACS Appl. Mater. Interfaces
11
,
14275
(
2019
).
55.
O. D.
Velev
and
E. W.
Kaler
,
Langmuir
15
,
3693
(
1999
).
56.
C.
Pichot
,
T.
Delair
, and
A.
Elaïssari
,
Polymeric Dispersions: Principles and Applications
(
Springer Netherlands
,
Dordrecht
,
1995
), pp.
515
539
.
You do not currently have access to this content.