Filters with high throughput, minimal dead volume, and greater sensitivity to particle size are needed, which traditional benchtop filtration cannot provide. Leveraging microfabrication techniques developed by the electronics and optics industries, the filters presented here feature a unique serpentine “NanoRidge” structure, offering a continuous filtration gap spanning over three meters on a compact 4 × 14.5 mm2 footprint. This design provides more precise size filtration cut-offs and consistent flow paths compared to traditional membrane filtration systems. Despite challenges associated with glass substrate deformation impacting uniform filter gap sizes, the study provides valuable insights into the development of NanoRidge filters (NRFs) for enhancing filtration efficiency in preparatory techniques and sample analysis. This study describes the fabrication and testing of these new filter types and directly compares the performance to traditional membrane filters using the metrics of particle size cut-off (the smallest difference in particle size which can be filtered vs passed) and particle loss. The NanoRidge filters were characterized using imaging (during fabrication, post-fabrication and use, fluorescent particles captured and small molecule dye), pressure and flow measurements, and a series of particle sizes “filter or pass” studies. Particle capacity (100–250 nm) ranged from 5 × 108 to 7 × 109 in 1 ml samples at a flow rate of 100 μl/min with backpressure in the range of 1–3 Bar. The optimized fabrication procedure for the 150 nm NRF yielded a small particle recovery of 95% while also achieving a large particle filtration of 73%. High filtration efficiency was also proven in the final 60 and 80 nm NRF fabrication procedures at 96% and 91%, respectively.

1.
J.-J.
Lin
,
J. D.
Meyer
,
J. F.
Carpenter
, and
M. C.
Manning
, “
Stability of human serum albumin during bioprocessing: Denaturation and aggregation during processing of albumin paste
,”
Pharm. Res.
17
,
391
396
(
2000
).
2.
Y. F.
Maa
and
C. C.
Hsu
, “
Membrane fouling in sterile filtration of recombinant human growth hormone
,”
Biotechnol. Bioeng.
50
(
3
),
319
328
(
1996
).
3.
E. Y.
Chi
,
J.
Weickmann
,
J. F.
Carpenter
,
M. C.
Manning
, and
T. W.
Randolph
, “
Heterogeneous nucleation-controlled particulate formation of recombinant human platelet-activating factor acetylhydrolase in pharmaceutical formulation
,”
J. Pharm. Sci.
94
(
2
),
256
274
(
2005
).
4.
A. M.
Shiller
, “
Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations
,”
Environ. Sci. Technol.
37
(
17
),
3953
3957
(
2003
).
5.
L.
Liu
,
T. W.
Randolph
, and
J. F.
Carpenter
, “
Particles shed from syringe filters and their effects on agitation-induced protein aggregation
,”
J. Pharm. Sci.
101
(
8
),
2952
2959
(
2012
).
6.
Y.
Wang
,
F.
Hammes
,
M.
Düggelin
, and
T.
Egli
, “
Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters
,”
Environ. Sci. Technol.
42
(
17
),
6749
6754
(
2008
).
7.
K. H.
Oshima
,
T. T.
Evans-Strickfaden
,
A. K.
Highsmith
, and
E. W.
Ades
, “
The use of a microporous polyvinylidene fluoride (PVDF) membrane filter to separate contaminating viral particles from biologically important proteins
,”
Biologicals
24
(
2
),
137
145
(
1996
).
8.
K. J.
Edgar
,
C. M.
Buchanan
,
J. S.
Debenham
,
P. A.
Rundquist
,
B. D.
Seiler
,
M. C.
Shelton
, and
D.
Tindall
, “
Advances in cellulose ester performance and application
,”
Prog. Polym. Sci.
26
(
9
),
1605
1688
(
2001
).
9.
A.
Hata
,
K.
Matsumori
,
M.
Kitajima
, and
H.
Katayama
, “
Concentration of enteric viruses in large volumes of water using a cartridge-type mixed cellulose ester membrane
,”
Food Environ. Virol.
7
,
7
13
(
2015
).
10.
H.
Bennett
,
H.
O'Dell
,
G.
Norton
,
G.
Shin
,
F.-C.
Hsu
, and
J.
Meschke
, “
Evaluation of a novel electropositive filter for the concentration of viruses from diverse water matrices
,”
Water Sci. Technol.
61
(
2
),
317
322
(
2010
).
11.
X.
Fan
,
C.
Jia
,
J.
Yang
,
G.
Li
,
H.
Mao
,
Q.
Jin
, and
J.
Zhao
, “
A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells
,”
Biosens. Bioelectron.
71
,
380
386
(
2015
).
12.
L. S.
Lim
,
M.
Hu
,
M. C.
Huang
,
W. C.
Cheong
,
A. T. L.
Gan
,
X. L.
Looi
,
S. M.
Leong
,
E. S.-C.
Koay
, and
M.-H.
Li
, “
Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells
,”
Lab Chip
12
,
4388
4396
(
2012
).
13.
S.
Zheng
,
H. K.
Lin
,
B.
Lu
,
A.
Williams
,
R.
Datar
,
R. J.
Cote
, and
Y.-C.
Tai
, “
3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood
,”
Biomed. Microdevices
13
,
203
213
(
2011
).
14.
I.
Doh
,
H.-I.
Yoo
,
Y.-H.
Cho
,
J.
Lee
,
H.
Kwan Kim
, and
J.
Kim
, “
Viable capture and release of cancer cells in human whole blood
,”
Appl. Phys. Lett.
101
,
043701
(
2012
).
15.
P.
Lv
,
Z.
Tang
,
X.
Liang
,
M.
Guo
, and
R. P. S.
Han
, “
Spatially gradated segregation and recovery of circulating tumor cells from peripheral blood of cancer patients
,”
Biomicrofluidics
7
,
34109
(
2013
).
16.
X.
Chen
,
D. F.
Cui
,
C. C.
Liu
, and
H.
Li
, “
Microfluidic chip for blood cell separation and collection based on crossflow filtration
,”
Sens. Actuators, B
130
,
216
221
(
2008
).
17.
J. S.
Kuo
,
Y.
Zhao
,
P. G.
Schiro
,
L.
Ng
,
D. S. W.
Lim
,
J. P.
Shelby
, and
D. T.
Chiu
, “
Deformability considerations in filtration of biological cells
,”
Lab Chip
10
,
837
842
(
2010
).
18.
Y.
Yoon
,
S.
Kim
,
J.
Lee
,
J.
Choi
,
R.-K.
Kim
,
S.-J.
Lee
,
O.
Sul
, and
S.-B.
Lee
, “
Clogging-free microfluidics for continuous size-based separation of microparticles
,”
Sci. Rep.
6
(
1
),
26531
(
2016
).
19.
Y.
Cheng
,
X.
Ye
,
Z.
Ma
,
S.
Xie
, and
W.
Wang
, “
High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood
,”
Biomicrofluidics
10
,
14118
(
2016
).
20.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
(
13
),
2369
2376
(
2012
).
21.
S.-B.
Huang
,
M.-H.
Wu
, and
G.-B.
Lee
, “
A tunable micro filter modulated by pneumatic pressure for cell separation
,”
Sens. Actuators, B
142
,
389
399
(
2009
).
22.
W.
Beattie
,
X.
Qin
,
L.
Wang
, and
H.
Ma
, “
Clog-free cell filtration using resettable cell traps
,”
Lab Chip
14
,
2657
2665
(
2014
).
23.
W.
Liu
,
L.
Li
,
J.-C.
Wang
,
Q.
Tu
,
L.
Ren
,
Y.
Wang
, and
J.
Wang
, “
Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device
,”
Lab Chip
12
(
9
),
1702
1709
(
2012
).
24.
G.
Wallis
and
D. I.
Pomerantz
, “
Field assisted glass-metal sealing
,”
J. Appl. Phys.
40
(
10
),
3946
3949
(
1969
).
25.
K. M.
Knowles
and
A. T. J.
van Helvoort
, “
Anodic bonding
,”
Int. Mater. Rev.
51
(
5
),
271
311
(
2005
).
You do not currently have access to this content.