Porous polydimethylsiloxane (PDMS) membrane is a crucial element in organs-on-chips fabrication, supplying a unique substrate that can be used for the generation of tissue–tissue interfaces, separate co-culture, biomimetic stretch application, etc. However, the existing methods of through-hole PDMS membrane production are largely limited by labor-consuming processes and/or expensive equipment. Here, we propose an accessible and low-cost strategy to fabricate through-hole PDMS membranes with good controllability, which is performed via combining wet-etching and spin-coating processes. The porous membrane is obtained by spin-coating OS-20 diluted PDMS on an etched glass template with a columnar array structure. The pore size and thickness of the PDMS membrane can be adjusted flexibly via optimizing the template structure and spinning speed. In particular, compared to the traditional vertical through-hole structure of porous membranes, the membranes prepared by this method feature a trumpet-shaped structure, which allows for the generation of some unique bionic structures on organs-on-chips. When the trumpet-shape faces upward, the endothelium spreads at the bottom of the porous membrane, and intestinal cells form a villous structure, achieving the same effect as traditional methods. Conversely, when the trumpet-shape faces downward, intestinal cells spontaneously form a crypt-like structure, which is challenging to achieve with other methods. The proposed approach is simple, flexible with good reproducibility, and low-cost, which provides a new way to facilitate the building of multifunctional organ-on-chip systems and accelerate their translational applications.

1.
S.
Ahadian
,
R.
Civitarese
,
D.
Bannerman
,
M. H.
Mohammadi
,
R.
Lu
,
E.
Wang
,
L.
Davenport-Huyer
,
B.
Lai
,
B.
Zhang
,
Y.
Zhao
,
S.
Mandla
,
A.
Korolj
, and
M.
Radisic
, “
Organ-on-a-chip platforms: A convergence of advanced materials, cells, and microscale technologies
,”
Adv. Healthcare Mater.
7
(
2
), 1700506 (
2018
).
2.
F.
Zheng
,
F.
Fu
,
Y.
Cheng
,
C.
Wang
,
Y.
Zhao
, and
Z.
Gu
, “
Organ-on-a-chip systems: Microengineering to biomimic living systems
,”
Small
12
(
17
),
2253
2282
(
2016
).
3.
D.
Bavli
,
S.
Prill
,
E.
Ezra
,
G.
Levy
,
M.
Cohen
,
M.
Vinken
,
J.
Vanfleteren
,
M.
Jaeger
, and
Y.
Nahmias
, “
Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
16
),
E2231
40
(
2016
).
4.
A.
Agarwal
,
J. A.
Goss
,
A.
Cho
,
M. L.
McCain
, and
K. K.
Parker
, “
Microfluidic heart on a chip for higher throughput pharmacological studies
,”
Lab Chip
13
(
18
),
3599
3608
(
2013
).
5.
T.
Osaki
,
V.
Sivathanu
, and
R. D.
Kamm
, “
Vascularized microfluidic organ-chips for drug screening, disease models and tissue engineering
,”
Curr. Opin. Biotechnol.
52
,
116
123
(
2018
).
6.
J.
Tien
, “
Microfluidic approaches for engineering vasculature
,”
Curr. Opin. Chem. Eng.
3
,
36
41
(
2014
).
7.
F.
Yu
,
N. D.
Selva Kumar
,
D.
Choudhury
,
L. C.
Foo
, and
S. H.
Ng
, “
Microfluidic platforms for modeling biological barriers in the circulatory system
,”
Drug Discovery Today
23
(
4
),
815
829
(
2018
).
8.
T.
Pasman
,
D.
Grijpma
,
D.
Stamatialis
, and
A.
Poot
, “
Flat and microstructured polymeric membranes in organs-on-chips
,”
J. R. Soc., Interface
15
(
144
),
20180351
(
2018
).
9.
L.-J.
Chen
,
S.
Ito
,
H.
Kai
,
K.
Nagamine
,
N.
Nagai
,
M.
Nishizawa
,
T.
Abe
, and
H.
Kaji
, “
Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis
,”
Sci. Rep.
7
(
1
),
3538
(
2017
).
10.
M.
Wufuer
,
G.
Lee
,
W.
Hur
,
B.
Jeon
,
B. J.
Kim
,
T. H.
Choi
, and
S.
Lee
, “
Skin-on-a-chip model simulating inflammation, edema and drug-based treatment
,”
Sci. Rep.
6
,
37471
(
2016
).
11.
P.
Shah
,
J. V.
Fritz
,
E.
Glaab
,
M. S.
Desai
,
K.
Greenhalgh
,
A.
Frachet
,
M.
Niegowska
,
M.
Estes
,
C.
Jäger
,
C.
Seguin-Devaux
, and
F.
Zenhausern
, “
A microfluidics-based in vitromodel of the gastrointestinal human–microbe interface
,”
Nat. Commun.
7
,
11535
(
2016
).
12.
Y.
Du
,
N.
Li
,
H.
Yang
,
C.
Luo
,
Y.
Gong
,
C.
Tong
,
Y.
Gao
,
S.
, and
M.
Long
, “
Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip
,”
Lab Chip
17
(
5
),
782
794
(
2017
).
13.
T. Y.
Kim
,
J. W.
Choi
,
K.
Park
,
S.
Kim
,
J. F.
Kim
,
T. E.
Park
, and
J.
Seo
, “
Lubricant-coated organ-on-a-chip for enhanced precision in preclinical drug testing
,”
Small
2024
, 2402431.
14.
S.
Li
,
J.
Zhang
,
J.
He
,
W.
Liu
,
Y.
Wang
,
Z.
Huang
,
H.
Pang
, and
Y.
Chen
, “
Functional PDMS elastomers: Bulk composites, surface engineering, and precision fabrication
,”
Adv. Sci.
10
(
34
),
e2304506
(
2023
).
15.
H. J.
Kim
,
D.
Huh
,
G.
Hamilton
, and
D. E.
Ingber
, “
Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow
,”
Lab Chip
12
(
12
),
2165
2174
(
2012
).
16.
N.
Campillo
,
I.
Jorba
,
L.
Schaedel
,
B.
Casals
,
D.
Gozal
,
R.
Farré
,
I.
Almendros
, and
D.
Navajas
, “
A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea
,”
Front. Physiol.
7
,
319
(
2016
).
17.
H. J.
Kim
,
H.
Li
,
J. J.
Collins
, and
D. E.
Ingber
, “
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
1
),
E7
E15
(
2016
).
18.
D.
Huh
,
B. D.
Matthews
,
A.
Mammoto
,
M.
Montoya-Zavala
,
H. Y.
Hsin
, and
D. E.
Ingber
, “
Reconstituting organ-level lung functions on a chip
,”
Science
328
(
5986
),
1662
1668
(
2010
).
19.
A.
Herland
,
B. M.
Maoz
,
D.
Das
,
M. R.
Somayaji
,
R.
Prantil-Baun
,
R.
Novak
,
M.
Cronce
,
T.
Huffstater
,
S. S. F.
Jeanty
,
M.
Ingram
,
A.
Chalkiadaki
,
D.
Benson Chou
,
S.
Marquez
,
A.
Delahanty
,
S.
Jalili-Firoozinezhad
,
Y.
Milton
,
A.
Sontheimer-Phelps
,
B.
Swenor
,
O.
Levy
,
K. K.
Parker
,
A.
Przekwas
, and
D. E.
Ingber
, “
Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips
,”
Nat. Biomed. Eng.
4
, 421–436 (
2020
).
20.
Y.
Kim
,
K.
Suh
, and
H. H.
Lee
, “
Fabrication of three-dimensional microstructures by soft molding
,”
Appl. Phys. Lett.
79
(
14
),
2285
2287
(
2001
).
21.
E.
Kim
,
Y.
Xia
, and
G. M.
Whitesides
, “
Micromolding in capillaries: Applications in materials science
,”
J. Am. Chem. Soc.
118
(
24
),
5722
5731
(
1996
).
22.
D.
Tahk
,
S. M.
Paik
,
J.
Lim
,
S.
Bang
,
S.
Oh
,
H.
Ryu
, and
N. L.
Jeon
, “
Rapid large area fabrication of multiscale through-hole membranes
,”
Lab Chip
17
(
10
),
1817
1825
(
2017
).
23.
A. H.
McMillan
,
E. K.
Thomee
,
A.
Dellaquila
,
H.
Nassman
,
T.
Segura
, and
S. C.
Lesher-Perez
, “
Rapid fabrication of membrane-integrated thermoplastic elastomer microfluidic devices
,”
Micromachines (Basel)
11
(
8
), 731 (
2020
).
24.
L.
Bakhchova
,
L.
Jonušauskas
,
D.
Andrijec
,
M.
Kurachkina
,
T.
Baravykas
,
A.
Eremin
, and
U.
Steinmann
, “
Femtosecond laser-based integration of nano-membranes into organ-on-a-chip systems
,”
Materials
13
(
14
), 3076 (
2020
).
25.
W. F.
Quiros-Solano
,
N.
Gaio
,
O. M. J. A.
Stassen
,
Y. B.
Arik
,
C.
Silvestri
,
N. C. A.
Van Engeland
,
A.
Van der Meer
,
R.
Passier
,
C. M.
Sahlgren
,
C. V. C.
Bouten
,
A.
van den Berg
,
R.
Dekker
, and
P. M.
Sarro
, “
Microfabricated tuneable and transferable porous PDMS membranes for organs-on-chips
,”
Sci. Rep.
8
, 13524 (
2018
).
26.
M.
Habibi
,
S.
Foroughi
,
V.
Karamzadeh
, and
M.
Packirisamy
, “
Direct sound printing
,”
Nat. Commun.
13
(
1
),
1800
(
2022
).
27.
A. T.
Woolley
and
R. A.
Mathies
, “
Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips
,”
Proc. Natl. Acad. Sci. U.S.A.
91
(
24
),
11348
11352
(
1994
).
28.
Y.
Li
,
K.
Zhou
,
X.
Zhao
, and
Q.
Kong
, “
Fabrication of a micro through-hole array by gas-blowing a PDMS-treated polyamide screen for a flexible drag-reducing skin-like device
,”
J. Micromech. Microeng.
27
(
1)
, 015001 (
2017
).
29.
J.
Li
,
H.
Tong
,
Y.
Pu
,
Y.
Li
, and
S.
Namb
, “
Rapid fabricating process of flexible PDMS-film with array micro round holes by blowing organic net framework
,”
J. Micromech. Microeng.
30
(
5)
, 055010 (
2020
).
30.
H. J.
Kim
and
D. E.
Ingber
, “
Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation
,”
Integr. Biol.
5
(
9
),
1130
1140
(
2013
).
31.
H.
Gehart
and
H.
Clevers
, “
Tales from the crypt: New insights into intestinal stem cells
,”
Nat. Rev. Gastroenterol. Hepatol.
16
(
1
),
19
34
(
2019
).
32.
H.
Clevers
, “
The intestinal crypt, a prototype stem cell compartment
,”
Cell
154
(
2
),
274
284
(
2013
).
33.
N.
Barker
,
J. H.
van Es
,
J.
Kuipers
,
P.
Kujala
,
M.
van den Born
,
M.
Cozijnsen
,
A.
Haegebarth
,
J.
Korving
,
H.
Begthel
,
P. J.
Peters
, and
H.
Clevers
, “
Identification of stem cells in small intestine and colon by marker gene Lgr5
,”
Nature
449
(
7165
),
1003
1007
(
2007
).
34.
Y.
Wang
,
D. B.
Gunasekara
,
M. I.
Reed
,
M.
DiSalvo
,
S. J.
Bultman
,
C. E.
Sims
,
S. T.
Magness
, and
N. L.
Allbritton
, “
A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium
,”
Biomaterials
128
,
44
55
(
2017
).
35.
Y.
Wang
,
R.
Kim
,
D. B.
Gunasekara
,
M. I.
Reed
,
M.
DiSalvo
,
D. L.
Nguyen
,
S. J.
Bultman
,
C. E.
Sims
,
S. T.
Magness
, and
N. L.
Allbritton
, “
Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer
,”
Cell. Mol. Gastroenterol. Hepatol.
5
(
2
),
113
130
(
2018
).
36.
L.
Wang
,
S. K.
Murthy
,
G. A.
Barabino
, and
R. L.
Carrier
, “
Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes
,”
Biomaterials
31
(
29
),
7586
7598
(
2010
).
37.
H. F.
Farin
,
I.
Jordens
,
M. H.
Mosa
,
O.
Basak
,
J.
Korving
,
D. V.
Tauriello
,
K.
de Punder
,
S.
Angers
,
P. J.
Peters
,
M. M.
Maurice
, and
H.
Clevers
, “
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche
,”
Nature
530
(
7590
),
340
343
(
2016
).
38.
G. E.
Kaiko
,
S. H.
Ryu
,
O. I.
Koues
,
P. L.
Collins
,
L.
Solnica-Krezel
,
E. J.
Pearce
,
E. L.
Pearce
,
E. M.
Oltz
, and
T. S.
Stappenbeck
, “
The colonic crypt protects stem cells from microbiota-derived metabolites
,”
Cell
165
(
7
),
1708
1720
(
2016
).
39.
J.
Beumer
,
B.
Artegiani
,
Y.
Post
,
F.
Reimann
,
F.
Gribble
,
T. N.
Nguyen
,
H.
Zeng
,
M.
Van den Born
,
J. H.
Van Es
, and
H.
Clevers
, “
Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient
,”
Nat. Cell Biol.
20
(
8
),
909
(
2018
).
You do not currently have access to this content.