The scarcity of blood for transfusion purposes has been widely acknowledged. Surgical therapeutic processes, war zones, and post-disaster treatments demand a huge amount of blood. Modern-day laboratories also require blood for bioengineering experimentation. Therefore, an artificially devised solution capable of mimicking the blood functions from biological and engineering relevance would be a noteworthy discovery of contemporary science. The experience drawn from discarded century-old blood substitutes has led us to technologically more advanced present-day solutions, which are better at carrying out the physiological functions of blood. Aiming at safety, stability, non-toxicity, and compatibility in terms of immuno-response, a remarkable number of substitutes are being tried to mimic the physiological properties and functions of red blood cells, platelets, plasma, and white blood cells. Despite significant efforts and time devoted, for transfusion, no product so far has been able to replace natural blood. This article puts together the important developments in blood substitutes that have evolved over the years, including substitutes for clinical as well as engineering requirements. It also points out the recent endeavors of synthesizing blood cells through modern synthetic routes. It has been highlighted that none of the blood substitutes have achieved the required efficacy so that they can be used in vivo. Finally, the emerging trends and future research needs have been stressed upon.

1.
J. E.
Squires
, “
Artificial blood
,”
Science
295
,
1002
1005
(
2002
).
2.
W. R.
Amberson
, “
Blood substitutes
,”
Biol. Rev.
12
(
1
),
48
86
(
1937
).
3.
W. K.
Hae
and
A. G.
Greenburg
, “
Artificial oxygen carriers as red blood cell substitutes: A selected review and current status
,”
Artif. Organs
,
28
,
813
828
(
2004
).
4.
J. S.
Jahr
,
S. B.
Nesargi
,
K.
Lewis
, and
C.
Johnson
, “
Blood substitutes and oxygen therapeutics: An overview and current status
,”
Am. J. Ther.
9
(
5
),
437
443
(
2002
).
5.
C. L.
Conley
and
R. S.
Schwartz
, “
Blood
,”
Encyclopedia Britannica
(
2023
), https://www.britannica.com/science/blood-biochemistry, accessed 15 September 2023.
6.
E.
Sugawara
and
H.
Nikaido
, “
Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli
,”
Antimicrob. Agents Chemother.
58
(
12
),
7250
7257
(
2014
).
7.
K. B.
Chandran
,
S. E.
Rittgers
, and
A. P.
Yoganathan
,
Biofluid Mechanics: The Human Circulation
, 2nd ed. (
CRC Press
,
2012
).
8.
D. F.
Wallace
, “
The regulation of iron absorption and homeostasis
,”
Clin. Biochem. Rev.
37
(
2
),
51
62
(
2016
).
9.
V.
Kannojiya
,
A. K.
Das
, and
P. K.
Das
, “
Simulation of blood as fluid: A review from rheological aspects
,”
IEEE Rev. Biomed. Eng.
14
,
327
341
(
2021
).
10.
E. M.
Cherry
and
J. K.
Eaton
, “
Shear thinning effects on blood flow in straight and curved tubes
,”
Phys. Fluids
25
(
7
),
073104
(
2013
).
11.
Y. I.
Cho
and
K. R.
Kensey
, “
Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows
,”
Biorheology
28
(
3–4
),
241
262
(
1991
).
12.
W. A.
Hyman
, “
Rheology and hemodynamics
,”
Biorheology
8
(
2
),
103
104
(
1971
).
13.
S.
Uttam
,
P. M.
Khan
,
M. I.
Alam
, and
S.
Roy
, “
Behavior of wall shear stress near carotid artery bifurcation at elevated pulse rates
,”
J. Flow Visualization Image Process.
27
(
3
),
249
267
(
2020
).
14.
G. B.
Thurston
, “
Viscoelasticity of human blood
,”
Biophys. J.
12
(
9
),
1205
1217
(
1972
).
15.
W. F.
Boron
and
E. L.
Boulpaep
,
Medical Physiology
, 3rd ed. (
Elsevier
,
2017
).
16.
C.
Jimenez
,
B.
Melin
,
N.
Koulmann
,
A. M.
Allevard
,
J. C.
Launay
, and
G.
Savourey
, “
Plasma volume changes during and after acute variations of body hydration level in humans
,”
Eur. J. Appl. Physiol. Occup. Physiol.
80
(
1
),
1
8
(
1999
).
17.
E.
Nader
,
S.
Skinner
,
M.
Romana
,
R.
Fort
,
N.
Lemonne
,
N.
Guillot
,
A.
Gauthier
,
S.
Antoine-Jonville
,
C.
Renoux
,
M.-D.
Hardy-Dessources
,
E.
Stauffer
,
P.
Joly
,
Y.
Bertrand
, and
P.
Connes
, “
Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise
,”
Front. Physiol.
10
,
1
14
(
2019
).
18.
M.
Diez-Silva
,
M.
Dao
,
J.
Han
,
C.-T.
Lim
, and
S.
Suresh
, “
Shape and biomechanical characteristics of human red blood cells in health and disease
,”
MRS Bull.
35
(
5
),
382
388
(
2010
).
19.
C. G.
Caro
,
T. J.
Pedley
,
R. C.
Schroter
,
W. A.
Seed
, and
K. H.
Parker
,
The Mechanics of the Circulation
(
Cambridge University Press
,
Cambridge
,
2011
).
20.
D. A.
Burton
,
K.
Stokes
, and
G. M.
Hall
, “
Physiological effects of exercise
,”
Contin. Educ. Anaesth. Crit. Care Pain
4
(
6
),
185
188
(
2004
).
21.
S.
Peters
, “
Excretory system
,” in
Encyclopedia of Animal Cognition and Behavior
(
Springer International Publishing
,
Cham
,
2017
), pp.
1
6
.
22.
S.
Laha
,
I.
Ghosh
, and
P. K.
Das
, “
Nexus between human thermoregulation and cardiovascular functions—A preliminary simulation for a moderate variation of temperature
,”
J. Therm. Sci. Eng. Appl.
14
(
12)
,
121010
(
2022
).
23.
J.
González-Alonso
, “
Human thermoregulation and the cardiovascular system
,”
Exp. Physiol.
97
(
3
),
340
346
(
2012
).
24.
A. P.
Gagge
and
R. R.
Gonzalez
, “
Mechanisms of heat exchange: Biophysics and physiology
,” in
Comprehensive Physiology
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2011
).
25.
C. A. J.
Janeway
,
P.
Travers
,
M.
Walport
, and
M. J.
Shlomchik
,
Immunobiology
, 5th ed. (
Garland Science
,
New York
,
2001
).
26.
InformedHealth
,
What Does Blood Do?
(
NCBI Bookshelf
,
2006
).
27.
B.
Furie
and
B. C.
Furie
, “
Mechanisms of thrombus formation
,”
N. Engl. J. Med.
359
(
9
),
938
949
(
2008
).
28.
E. C.
Löwenberg
,
J. C. M.
Meijers
, and
M.
Levi
, “
Platelet-vessel wall interaction in health and disease
,”
Neth. J. Med.
68
(
6
),
242
251
(
2010
).
29.
E. S.
Babushkina
,
N. M.
Bessonov
,
F. I.
Ataullakhanov
, and
M. A.
Panteleev
, “
Continuous modeling of arterial platelet thrombus formation using a spatial adsorption equation
,”
PLoS One
10
(
10
),
e0141068
(
2015
).
30.
J. L.
Carson
,
S.
Hill
,
P.
Carless
,
P.
Hebert
, and
D.
Henry
, “
Transfusion triggers: A systematic review of the literature
,”
Transfus. Med. Rev.
16
(
3
),
187
199
(
2002
).
31.
D. W.
Greening
,
K. M.
Glenister
,
R. L.
Sparrow
, and
R. J.
Simpson
, “
International blood collection and storage : Clinical use of blood products
,”
J. Proteomics
73
(
3
),
386
395
(
2010
).
32.
J. R.
Hess
, “
An update on solutions for red cell storage
,”
Vox Sang.
91
(
1
),
13
19
(
2006
).
33.
L. T.
Goodnough
,
M. E.
Brecher
,
M. H.
Kanter
, and
J. P.
Aubuchon
, “
Transfusion medicine
,”
N. Engl. J. Med.
340
(
6
),
438
447
(
1999
).
34.
B.
Whitaker
,
S.
Rajbhandary
,
S.
Kleinman
,
A.
Harris
, and
N.
Kamani
, “
Trends in United States blood collection and transfusion: Results from the 2013 AABB blood collection, utilization, and patient blood management survey
,”
Transfusion
56
(
9
),
2173
2183
(
2016
).
35.
P. J.
Arcot
,
K.
Kumar
,
T.
Mukhopadhyay
, and
A.
Subramanian
, “
Potential challenges faced by blood bank services during COVID-19 pandemic and their mitigative measures: The Indian scenario
,”
Transfus. Apheresis Sci.
59
(
5
),
102877
(
2020
).
36.
K.
Karmakar
and
P. K.
Ray
, “
Impact of the COVID-19 pandemic on blood transfusion service: A case study from Kolkata, India
,”
Asia Pac. J. Health Manage.
18
, 1–11 (
2023
).
37.
J. B.
Holcomb
,
N. R.
McMullin
,
L.
Pearse
,
J.
Caruso
,
C. E.
Wade
,
L.
Oetjen-Gerdes
,
H. R.
Champion
,
M.
Lawnick
,
W.
Farr
,
S.
Rodriguez
, and
F. K.
Butler
, “
Causes of death in U.S. Special operations forces in the global war on terrorism: 2001–2004
,”
Ann. Surg.
245
(
6
),
986
991
(
2007
).
38.
L. H.
Blackbourne
,
D. G.
Baer
,
B. J.
Eastridge
,
B.
Kheirabadi
,
J. F.
Kragh
,
A. P.
Cap
,
M. A.
Dubick
,
J. J.
Morrison
,
M. J.
Midwinter
,
F. K.
Butler
,
R. S.
Kotwal
, and
J. B.
Holcomb
, “
Military medical revolution: Prehospital combat casualty care
,”
J. Trauma Acute Care Surg.
73
(
6 SUPPL. 5
),
S372
S377
(
2012
).
39.
M. J.
Cohen
,
M.
Kutcher
,
B.
Redick
,
M.
Nelson
,
M.
Call
,
M.
Knudson
,
M. A.
Schreiber
,
E. M.
Bulger
,
P.
Muskat
,
L. H.
Alarcon
,
J. G.
Myers
,
M. H.
Rahbar
,
K. J.
Brasel
,
H. A.
Phelan
,
D. J.
Del Junco
,
E. E.
Fox
,
C. E.
Wade
,
J. B.
Holcomb
,
B. A.
Cotton
, and
N.
Matijevic
, “
Clinical and mechanistic drivers of acute traumatic coagulopathy
,”
J. Trauma Acute Care Surg.
75
,
1
20
(
2013
).
40.
E. R.
Smith
,
G.
Shapiro
, and
B.
Sarani
, “
The profile of wounding in civilian public mass shooting fatalities
,”
J. Trauma Acute Care Surg.
81
,
86
92
(
2016
).
41.
W. C.
Dorlac
,
M. E.
DeBakey
,
J. B.
Holcomb
,
S. P.
Fagan
,
K. L.
Kwong
,
G. R.
Dorlac
,
M. A.
Schreiber
,
D. E.
Persse
,
F. A.
Moore
, and
K. L.
Mattox
, “
Mortality from isolated civilian penetrating extremity injury
,”
J. Trauma: Inj., Infect., Crit. Care
59
(
1
),
217
222
(
2005
).
42.
S. E.
van Oostendorp
,
E. C. T. H.
Tan
, and
L. M. G.
Geeraedts
, “
Prehospital control of life-threatening truncal and junctional haemorrhage is the ultimate challenge in optimizing trauma care; a review of treatment options and their applicability in the civilian trauma setting
,”
Scand. J. Trauma Resusc. Emerg. Med.
24
(
1
),
110
(
2016
).
43.
T. M. S.
Chang
, “
Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules
,”
WIREs Nanomed. Nanobiotechnol.
2
(
4
),
418
430
(
2010
).
44.
K.
Duan
,
B.
Liu
,
C.
Li
,
H.
Zhang
,
T.
Yu
,
J.
Qu
,
M.
Zhou
,
L.
Chen
,
S.
Meng
,
Y.
Hu
,
C.
Peng
,
M.
Yuan
,
J.
Huang
,
Z.
Wang
,
J.
Yu
,
X.
Gao
,
D.
Wang
,
X.
Yu
,
L.
Li
,
J.
Zhang
,
X.
Wu
,
B.
Li
,
Y.
Xu
,
W.
Chen
,
Y.
Peng
,
Y.
Hu
,
L.
Lin
,
X.
Liu
,
S.
Huang
,
Z.
Zhou
,
L.
Zhang
,
Y.
Wang
,
Z.
Zhang
,
K.
Deng
,
Z.
Xia
,
Q.
Gong
,
W.
Zhang
,
X.
Zheng
,
Y.
Liu
,
H.
Yang
,
D.
Zhou
,
D.
Yu
,
J.
Hou
,
Z.
Shi
,
S.
Chen
,
Z.
Chen
,
X.
Zhang
, and
X.
Yang
, “
Effectiveness of convalescent plasma therapy in severe COVID-19 patients
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
17
),
9490
9496
(
2020
).
45.
S. T. H.
Liu
,
H. M.
Lin
,
I.
Baine
,
A.
Wajnberg
,
J. P.
Gumprecht
,
F.
Rahman
,
D.
Rodriguez
,
P.
Tandon
,
A.
Bassily-Marcus
,
J.
Bander
,
C.
Sanky
,
A.
Dupper
,
A.
Zheng
,
F. T.
Nguyen
,
F.
Amanat
,
D.
Stadlbauer
,
D. R.
Altman
,
B. K.
Chen
,
F.
Krammer
,
D. R.
Mendu
,
A.
Firpo-Betancourt
,
M. A.
Levin
,
E.
Bagiella
,
A.
Casadevall
,
C.
Cordon-Cardo
,
J. S.
Jhang
,
S. A.
Arinsburg
,
D. L.
Reich
,
J. A.
Aberg
, and
N. M.
Bouvier
, “
Convalescent plasma treatment of severe COVID-19: A propensity score–matched control study
,”
Nat. Med.
26
(
11
),
1708
1713
(
2020
).
46.
C.
Shen
,
Z.
Wang
,
F.
Zhao
,
Y.
Yang
,
J.
Li
,
J.
Yuan
,
F.
Wang
,
D.
Li
,
M.
Yang
,
L.
Xing
,
J.
Wei
,
H.
Xiao
,
Y.
Yang
,
J.
Qu
,
L.
Qing
,
L.
Chen
,
Z.
Xu
,
L.
Peng
,
Y.
Li
,
H.
Zheng
,
F.
Chen
,
K.
Huang
,
Y.
Jiang
,
D.
Liu
,
Z.
Zhang
,
Y.
Liu
, and
L.
Liu
, “
Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma
,”
J. Am. Med. Assoc.
323
(
16
),
1582
1589
(
2020
).
47.
Mayo Clinic
, “Convalescent plasma therapy” (2023), https://www.mayoclinic.org/tests-procedures/convalescent-plasma-therapy/about/pac-20486440, accessed 30 August 2023.
48.
F.
Khan
,
K.
Singh
, and
M. T.
Friedman
, “
Artificial blood: The history and current perspectives of blood substitutes
,”
Discoveries
8
(
1
),
e104
(
2020
).
49.
S.
Moradi
,
A.
Jahanian-Najafabadi
, and
M. H.
Roudkenar
, “
Artificial blood substitutes: First steps on the long route to clinical utility
,”
Clin. Med. Insights Blood Disord.
9
,
33
41
(
2016
).
50.
R.
Haldar
,
D.
Gupta
,
S.
Chitranshi
,
M. K.
Singh
, and
S.
Sachan
, “
Artificial blood: A futuristic dimension of modern day transfusion sciences
,”
Cardiovasc. Hematol. Agents Med. Chem.
17
(
1
),
11
16
(
2019
).
51.
A.
Mozzarelli
and
S.
Bettati
,
Chemistry and Biochemistry of Oxygen Therapeutics: From Transfusion to Artificial Blood
(
John Wiley & Sons, Ltd
,
2011
).
52.
J. G.
Riess
, “
Oxygen carriers (‘blood substitutes’)—Raison d’Etre, chemistry, and some physiology
,”
Chem. Rev.
101
(
9
),
2797
2920
(
2001
).
53.
A.
Sen Gupta
, “
Bio-inspired nanomedicine strategies for artificial blood components
,”
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
9
(
6
), e1464 (
2017
).
54.
A.
Sen Gupta
, “
Hemoglobin-based oxygen carriers: Current state-of-the-art and novel molecules
,”
Shock
52
(
1S
),
70
83
(
2019
).
55.
P.
Buehler
,
F.
D’Agnillo
, and
D.
Schaer
, “
Hemoglobin-based oxygen carriers: From mechanisms of toxicity and clearance to rational drug design
,”
Trends Mol. Med.
16
(
10
),
447
457
(
2010
).
56.
J. G.
Riess
, “
Fluorocarbon-based in vivo oxygen transport and delivery systems
,”
Vox Sang.
61
(
4
),
225
239
(
1991
).
57.
K.
Waxman
, “
Perfluorocarbons as blood substitutes
,”
Ann. Emerg. Med.
15
(
12
),
1423
1424
(
1986
).
58.
P.
Zhou
,
M.
Ouchari
,
Y.
Xue
, and
Q.
Yin
, “
In vitro generation of red blood cells from stem cell and targeted therapy
,”
Cell Transplant.
29
, 1–5 (
2020
).
59.
L.
Shaffer
, “
Making and storing blood to save lives
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
14
),
7542
7545
(
2020
).
60.
T. M. S.
Chang
,
L.
Bülow
,
J.
Jahr
,
H.
Sakai
, and
C.
Yang
,
Nanobiotherapeutic Based Blood Substitutes
, Regenerative Medicine, Artificial Cells and Nanomedicine series (
World Scientific
,
2022
), Vol. 6.
61.
X.
Xu
,
J.
Qu
,
K.
Suzuki
,
M.
Li
,
W.
Zhang
,
G. H.
Liu
, and
J. C. I.
Belmonte
, “
Reprogramming based gene therapy for inherited red blood cell disorders
,”
Cell Res.
22
(
6
),
941
944
(
2012
).
62.
M. R.
Najjari
,
J. A.
Hinke
,
K. V.
Bulusu
, and
M. W.
Plesniak
, “
On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments
,”
Exp. Fluids
57
(
6
),
96
(
2016
).
63.
M. Y.
Yousif
,
D. W.
Holdsworth
, and
T. L.
Poepping
, “
A blood-mimicking fluid for particle image velocimetry with silicone vascular models
,”
Exp. Fluids
50
(
3
),
769
774
(
2011
).
64.
J.
Waeterschoot
,
W.
Gosselé
,
Š
Lemež
, and
X.
Casadevall i Solvas
, “
Artificial cells for in vivo biomedical applications through red blood cell biomimicry
,”
Nat. Commun.
15
(
1
),
2504
(
2024
).
65.
C.
Li
,
Y.
Qi
,
Y.
Zhang
,
Y.
Chen
,
J.
Feng
, and
X.
Zhang
, “
Artificial engineering of immune cells for improved immunotherapy
,”
Adv. Nanobiomed. Res.
1
(
6
), 2000081 (
2021
).
66.
D. Y.
Li
,
Z. H.
Zhou
,
Y. L.
Yu
, and
N. N.
Deng
, “
Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells
,”
Chem. Eng. Sci.
264
,
118186
(
2022
).
67.
H.
Soga
,
S.
Fujii
,
T.
Yomo
,
Y.
Kato
,
H.
Watanabe
, and
T.
Matsuura
, “
In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume
,”
ACS Synth. Biol.
3
(
6
),
372
379
(
2014
).
68.
H. W.
Kim
and
A. G.
Greenburg
, “
Toward 21st century blood component replacement therapeutics: Artificial oxygen carriers, platelet substitutes, recombinant clotting factors, and others
,”
Artif. Cells, Blood Substitutes, Biotechnol.
34
(
6
),
537
550
(
2006
).
69.
E.
Tsuchida
,
T.
Komatsu
,
K.
Hamamatsu
,
Y.
Matsukawa
,
A.
Tajima
,
A.
Yoshizu
,
Y.
Izumi
, and
K.
Kobayashi
, “
Exchange transfusion with albumin-heme as an artificial O2-infusion into anesthetized rats: Physiological responses, O2-delivery, and reduction of the oxidized hemin sites by red blood cells
,”
Bioconjugate Chem.
11
(
1
),
46
50
(
2000
).
70.
J.
Goldstein
, “
Conversion of ABO blood groups
,”
Transfus. Med. Rev.
3
(
3
),
206
212
(
1989
).
71.
J.
Creteur
and
J.-L.
Vincent
, “
Hemoglobin solutions
,”
Crit. Care Med.
31
(
Suppl.
),
S698
S707
(
2003
).
72.
C. J.
Lavie
,
R. J.
Thomas
,
R. W.
Squires
,
T. G.
Allison
, and
R. V.
Milani
, “
Exercise training and cardiac rehabilitation in primary and secondary prevention of coronary heart disease
,”
Mayo Clin. Proc.
84
(
4
),
373
383
(
2009
).
73.
H.
Bunn
and
J.
Jandl
, “
The renal handling of hemoglobin
,”
J. Exp. Med.
81
,
147
152
(
1968
).
74.
A.
Pape
and
O.
Habler
, “
Alternatives to allogeneic blood transfusions
,”
Best Pract. Res. Clin. Anaesthesiol.
21
(
2
),
221
239
(
2007
).
75.
J. S.
Jahr
,
A.
Sadighi Akha
, and
R. J.
Holtby
, “
Crosslinked, polymerized, and PEG-conjugated hemoglobin-based oxygen carriers: Clinical safety and efficacy of recent and current products
,”
Curr. Drug Discov. Technol.
9
(
3
),
158
165
(
2012
).
76.
J.
Zhang
,
Y.
Wang
,
G. X.
You
,
Q.
Wang
,
S.
Zhang
,
W. L.
Yu
,
T.
Hu
,
L.
Zhao
, and
H.
Zhou
, “
Conjugation with 20 kDa dextran decreases the autoxidation rate of bovine hemoglobin
,”
Artif. Cells Nanomed. Biotechnol.
46
(
7
),
1436
1443
(
2018
).
77.
V.
Nadithe
and
Y. H.
Bae
, “
Synthesis and characterization of hemoglobin conjugates with antioxidant enzymes via poly(ethylene glycol) cross-linker (Hb-SOD-CAT) for protection from free radical stress
,”
Int. J. Biol. Macromol.
47
(
5
),
603
613
(
2010
).
78.
A. I.
Alayash
, “
Hemoglobin-based blood substitutes and the treatment of sickle cell disease: More harm than help?
,”
Biomolecules
7
(
4
),
2
(
2017
).
79.
A. I.
Alayash
, “
Oxygen therapeutics: Can we tame haemoglobin?
,”
Nat. Rev. Drug Discov.
3
,
152
159
(
2004
).
80.
T. J.
Reid
, “
Hb-based oxygen carriers: Are we there yet?
,”
Transfusion
43
,
280
287
(
2003
).
81.
R.
Krishna Veni
,
P.
Brindha Devi
, and
S.
Ivo Romauld
, “
A review on artificial blood: A source we need
,”
Asian J. Pharm. Clin. Res.
10
(
9
),
38
43
(
2017
).
82.
J.
Simoni
,
G.
Simoni
,
J. F.
Moeller
,
M.
Feola
, and
D. E.
Wesson
, “
Artificial oxygen carrier with pharmacologic actions of adenosine-5′-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions
,”
Artif. Organs
38
(
8
),
684
690
(
2014
).
83.
D.
Nelson
,
M.
Azari
,
R.
Brown
,
K.
Burhop
,
S.
Bush
,
J.
Catarello
,
H.
Chuang
,
C.
Downing
,
T.
Estep
,
A.
Loewen
,
K.
McClure
,
A.
McDaniel
,
E.
Michalek
,
N.
Mozier
,
K.
Rohn
,
J.
Spicuzza
,
P.
Zieske
, and
G.
Zimmerman
, “
Preparation and characterization of diaspirin cross-linked hemoglobin solutions for preclinical studies
,”
Biomater., Artif. Cells, Immobilization Biotechnol.
20
(
4
),
423
427
(
1992
).
84.
E. P.
Sloan
,
M.
Koenigsberg
,
W. B.
Weir
,
J. M.
Clark
,
R.
O’Connor
,
M.
Olinger
, and
R.
Cydulka
, “
Emergency resuscitation of patients enrolled in the US diaspirin cross-linked hemoglobin (DCLHb) clinical efficacy trial
,”
Prehosp. Disaster Med.
30
(
1
),
54
61
(
2015
).
85.
R. M.
Winslow
, “
MP4, a new nonvasoactive polyethylene glycol–hemoglobin conjugate
,”
Artif. Organs
28
(
9
),
800
806
(
2004
).
86.
K. D.
Vandegriff
,
A.
Malavalli
,
J.
Wooldridge
,
J.
Lohman
, and
R. M.
Winslow
, “
MP4, a new nonvasoactive PEG-Hb conjugate
,”
Transfusion
43
(
4
),
509
516
(
2003
).
87.
Y.
Iwashita
, “
Relationship between chemical properties and biological properties of pyridoxalated hemoglobin-polyoxyethylene
,”
Biomater. Artif. Cells Immobilization Biotechnol.
20
(
2–4
),
299
307
(
1992
).
88.
G. T.
Kinasewitz
,
C. T.
Privalle
,
A.
Imm
,
J. S.
Steingrub
,
J. T.
Malcynski
,
R. A.
Balk
, and
J.
DeAngelo
, “
Multicenter, randomized, placebo-controlled study of the nitric oxide scavenger pyridoxalated hemoglobin polyoxyethylene in distributive shock*
,”
Crit. Care Med.
36
(
7
),
1999
2007
(
2008
).
89.
X.
Lu
,
G.
Ma
, and
Z.
Su
, “
Hemoglobin-based blood substitutes—Preparation technologies and challenges
,”
Compr. Biotechnol.
5
,
713
727
(
2011
).
90.
S. A.
Gould
,
E. E.
Moore
,
D. B.
Hoyt
,
J. M.
Burch
,
J. B.
Haenel
,
J.
Garcia
,
R.
DeWoskin
, and
G. S.
Moss
, “
The first randomized trial of human polymerized hemoglobin as a blood substitute in acute trauma and emergent surgery
,”
J. Am. Coll. Surg.
187
(
2
),
113
120
(
1998
).
91.
S. A.
Gould
,
E. E.
Moore
,
D. B.
Hoyt
,
P. M.
Ness
,
E. J.
Norris
,
J. L.
Carson
,
G. A.
Hides
,
I. H. G.
Freeman
,
R.
DeWoskin
, and
G. S.
Moss
, “
The life-sustaining capacity of human polymerized hemoglobin when red cells might be unavailable
,”
J. Am. Coll. Surg.
195
(
4
),
445
452
(
2002
).
92.
J. H.
Levy
,
L. T.
Goodnough
,
P. E.
Greilich
,
G. V. S.
Parr
,
R. W.
Stewart
,
I.
Gratz
,
J.
Wahr
,
J.
Williams
,
M. E.
Comunale
,
D.
Doblar
,
G.
Silvay
,
M.
Cohen
,
J. S.
Jahr
, and
G. J.
Vlahakes
, “
Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: Results of a randomized, double-blind trial
,”
J. Thorac. Cardiovasc. Surg.
124
(
1
),
35
42
(
2002
).
93.
J.
Sprung
,
J. D.
Kindscher
,
J. A.
Wahr
,
J. H.
Levy
,
T. G.
Monk
,
M. W.
Moritz
, and
P. J.
O’Hara
, “
The use of bovine hemoglobin glutamer-250 (Hemopure®) in surgical patients: Results of a multicenter, randomized, single-blinded trial
,”
Anesth. Analg.
94
(
4
),
799
808
(
2002
).
94.
T.
Henkel-Hanke
and
M.
Oleck
, “
Artificial oxygen carriers: A current review
,”
AANA J.
75
(
3
),
205
211
(
2007
).
95.
D.
Wicks
,
L. T.
Wong
,
R.
Sandhu
,
R. K.
Stewart
, and
G. P.
Biro
, “
The intravascular persistence and methemoglobin formation of Hemolink (hemoglobin raffimer) in dogs
,”
Artif. Cells Blood Substit. Immobil. Biotechnol.
31
(
1
),
1
17
(
2003
).
96.
R. A.
Boykins
,
P. W.
Buehler
,
Y.
Jia
,
R.
Venable
, and
A. I.
Alayash
, “
O-raffinose crosslinked hemoglobin lacks site-specific chemistry in the central cavity: Structural and functional consequences of β93Cys modification
,”
Proteins: Struct., Funct., Bioinf.
59
(
4
),
840
855
(
2005
).
97.
F. J.
Lou Carmichael
,
A. C. Y.
Ali
,
J. A.
Campbell
,
S. F.
Langlois
,
G. P.
Biro
,
A. R.
Willan
,
C. H.
Pierce
, and
A.
Gerson Greenburg
, “
A phase I study of oxidized raffinose cross-linked human hemoglobin
,”
Crit. Care Med.
28
(
7
),
2283
2292
(
2000
).
98.
S. E.
Hill
,
L. I.
Gottschalk
, and
K.
Grichnik
, “
Safety and preliminary efficacy of hemoglobin raffimer for patients undergoing coronary artery bypass surgery
,”
J. Cardiothorac. Vasc. Anesth.
16
(
6
),
695
702
(
2002
).
99.
R. B.
Weiskopf
, “
Hemoglobin-based oxygen carriers: Disclosed history and the way ahead: The relativity of safety
,”
Anesth. Analg.
119
(
4
),
758
760
(
2014
).
100.
A. I.
Alayash
, “
Setbacks in blood substitutes research and development: A biochemical perspective
,”
Clin. Lab. Med.
30
,
381
389
(
2010
).
101.
T.
Kure
and
H.
Sakai
, “
Preparation of artificial Red blood cells (hemoglobin vesicles) using the rotation-revolution mixer for high encapsulation efficiency
,”
ACS Biomater. Sci. Eng.
7
(
6
),
2835
2844
(
2021
).
102.
A.
Alissandratos
, “
In vitro multi-enzymatic cascades using recombinant lysates of E. coli: An emerging biocatalysis platform
,”
Biophys. Rev.
12
(
1
),
175
182
(
2020
).
103.
E. P.
Sloan
,
M.
Koenigsberg
,
J. M.
Clark
,
W. B.
Weir
, and
N.
Philbin
, “
Shock index and prediction of traumatic hemorrhagic shock 28-day mortality: Data from the DCLHb resuscitation clinical trials
,”
West. J. Emerg. Med.
15
(
7
),
795
802
(
2014
).
104.
N. B.
Charbe
,
F.
Castillo
,
M. M.
Tambuwala
,
P.
Prasher
,
D. K.
Chellappan
,
A.
Carreño
,
S.
Satija
,
S. K.
Singh
,
M.
Gulati
,
K.
Dua
,
J. V.
González-Aramundiz
, and
F. C.
Zacconi
, “
A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers
,”
Blood Rev.
54
, 1–23 (
2022
).
105.
J.
Clark
,
L.
C
, and
F.
Gollan
, “
Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure
,”
Science
152
(
3730
),
1755
1756
(
1966
).
106.
J.
Jägers
,
A.
Wrobeln
, and
K. B.
Ferenz
, “
Perfluorocarbon-based oxygen carriers: From physics to physiology
,”
Pflugers Arch.
473
(
2
),
139
150
(
2021
).
107.
A.
Wrobeln
,
J.
Laudien
,
C.
Groß-Heitfeld
,
J.
Linders
,
C.
Mayer
,
B.
Wilde
,
T.
Knoll
,
D.
Naglav
,
M.
Kirsch
, and
K. B.
Ferenz
, “
Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility
,”
Eur. J. Pharm. Biopharm.
115
,
52
64
(
2017
).
108.
A.
Wrobeln
,
K. D.
Schlüter
,
J.
Linders
,
M.
Zähres
,
C.
Mayer
,
M.
Kirsch
, and
K. B.
Ferenz
, “
Functionality of albumin-derived perfluorocarbon-based artificial oxygen carriers in the Langendorff-heart
,”
Artif. Cells, Nanomed. Biotechnol.
45
(
4
),
723
730
(
2017
).
109.
H. A.
Sloviter
and
T.
Kamimoto
, “
Erythrocyte substitute for perfusion of brain
,”
Nature
216
(
5114
),
458
460
(
1967
).
110.
V.
Agarwal
, “
Organo-fluorine compounds as artificial blood substitute
,”
Def. Sci. J.
30
(
1
),
51
54
(
2014
).
111.
J. G.
Riess
and
M. L.
Blanc
, “
Solubility and transport phenomena in perfluorochemicals relevant to blood substitution and other biomedical applications
,”
Pure Appl. Chem.
54
(
12
),
2383
2406
(
1982
).
112.
R. N.
Pittman
,
Regulation of Tissue Oxygenation
(
Morgan & Claypool Life Sciences
,
2011
).
113.
R. N.
O'Brien Brien
,
A. J.
Langlais
,
W. D.
Seufert
,
J. H.
Chasko
, and
N. J.
Parks
, “
Diffusion coefficients of respiratory gases in a perfluorocarbon liquid
,”
Science
217
(
4555
),
153
155
(
1982
).
114.
S. I.
Vorob’ev
, “
First- and second-generation perfluorocarbon emulsions
,”
Pharm. Chem. J.
43
(
4
),
209
218
(
2009
).
115.
I. P.
Torres Filho
,
J. R. P.
Pedro
,
S. V.
Narayanan
,
N. M.
Nguyen
,
S. D.
Roseff
, and
B. D.
Spiess
, “
Perfluorocarbon emulsion improves oxygen transport of normal and sickle cell human blood in vitro
,”
J. Biomed. Mater. Res. Part A
102
(
7
),
2105
2115
(
2013
).
116.
S. E.
Bachert
,
P.
Dogra
, and
L. I.
Boral
, “
Alternatives to transfusion
,”
Am. J. Clin. Pathol.
153
(
3
),
287
293
(
2020
).
117.
Z. J.
Yang
,
C. D.
Price
,
G.
Bosco
,
M.
Tucci
,
N. S.
El-Badri
,
D.
Mangar
, and
E. M.
Camporesi
, “
The effect of isovolemic hemodilution with Oxycyte®, a perfluorocarbon emulsion, on cerebral blood flow in rats
,”
PLoS One
3
(
4
),
2
6
(
2008
).
118.
D.
Bezinover
,
S.
Ramamoorthy
,
T.
Uemura
,
Z.
Kadry
,
P. M.
McQuillan
,
B.
Mets
,
O.
Falcucci
,
S.
Rannels
,
V.
Ruiz-Velasco
,
B.
Spiess
,
J.
Liang
,
H.
Mani
,
X.
Lou
, and
P. K.
Janicki
, “
Use of a third-generation perfluorocarbon for preservation of rat DCD liver grafts
,”
J. Surg. Res.
175
(
1
),
131
137
(
2012
).
119.
J.
Woitzik
,
N.
Weinzierl
, and
L.
Schilling
, “
Early administration of a second-generation perfluorochemical decreases ischemic brain damage in a model of permanent middle cerebral artery occlusion in the rat
,”
Neurol. Res.
27
,
509
515
(
2005
).
120.
C. S.
Cohn
and
M. M.
Cushing
, “
Oxygen therapeutics: Perfluorocarbons and blood substitute safety
,”
Crit. Care Clin.
25
(
2
),
399
414
(
2009
).
121.
F.
Arnaud
,
K.
Sanders
,
D.
Sieckmann
, and
P.
Moon-Massat
, “
In vitro alteration of hematological parameters and blood viscosity by the perfluorocarbon: Oxycyte
,”
Int. J. Hematol.
103
(
5
),
584
591
(
2016
).
122.
I.
Tek
,
O.
Arslan
,
M.
Arat
,
E.
Ayyıldız
,
M.
Tol
,
M.
Oral
, and
O.
Ilhan
, “
Effects of replacement fluids used for therapeutic plasma exchange on plasma viscosity and plasma oncotic pressure
,”
Transfus. Apheresis Sci.
31
(
2
),
89
93
(
2004
).
123.
P. F.
Leblond
,
G.
Rock
, and
C. A.
Herbert
, “
The use of plasma as a replacement fluid in plasma exchange
,”
Transfusion
38
(
9
),
834
838
(
1998
).
124.
A. F.
Palmer
and
M.
Intaglietta
, “
Blood substitutes
,”
Annu. Rev. Biomed. Eng.
16
,
77
101
(
2014
).
125.
R.
McCahon
and
J.
Hardman
, “
Pharmacology of plasma expanders
,”
Anaesth. Intensive Care Med.
18
(
8
),
418
420
(
2017
).
126.
S. S.
Bobati
and
K. R.
Naik
, “
Therapeutic plasma exchange—An emerging treatment modality in patients with neurologic and non-neurologic diseases
,”
J. Clin. Diagn. Res.
11
(
8
),
EC35
EC37
(
2017
).
127.
R. E.
Scharf
, “
Drugs that affect platelet function
,”
Semin. Thromb. Hemost.
38
(
8
),
865
883
(
2012
).
128.
M.
Wagner
,
G.
Uzun
,
T.
Bakchoul
, and
K.
Althaus
, “
Diagnosis of platelet function disorders: A challenge for laboratories
,”
Hämostaseologie
42
(
1
),
036
045
(
2022
).
129.
N. F.
Luc
,
N.
Rohner
,
A.
Girish
,
U. D.
Singh Sekhon
,
M. D.
Neal
, and
A. S.
Gupta
, “
Bioinspired artificial platelets: Past, present and future
,”
Platelets
33
(
1
),
35
47
(
2022
).
130.
W. F.
Wolkers
,
N. J.
Walker
,
F.
Tablin
, and
J. H.
Crowe
, “
Human platelets loaded with trehalose survive freeze-drying
,”
Cryobiology
42
(
2
),
79
87
(
2001
).
131.
M.
Levi
,
P.
Friederich
,
S.
Middleton
,
P. G. D.
Groot
,
Y. P.
Wu
,
R.
Harris
,
B. J.
Biemond
,
H. F.
Heijnen
,
J.
Levin
, and
J. W. T.
Cate
, “
Fibrinogen-coated albumin microcapsules reduce bleeding in severely thrombocytopenic rabbits cell biology of blood view project
,”
Nat. Med.
5
, 107–111 (
1999
).
132.
M. A.
Blajchman
, “
Novel platelet products, substitutes and alternatives
,”
Transfus. Clin. Biol.
8
(
3
),
267
271
(
2001
).
133.
K.
Rahman
and
M. F.
Alam
, “
Artificial white blood cells—WBC substitute
,” in
Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood
(
Elsevier
,
2022
), pp.
451
461
.
134.
InformedHealth.org
, “How does the immune system work?” (2023), https://www.ncbi.nlm.nih.gov/books/NBK279364/, accessed 15 August 2023.
135.
M. S.
Abesekara
and
Y.
Chau
, “
Recent advances in surface modification of micro- and nano-scale biomaterials with biological membranes and biomolecules
,”
Front. Bioeng. Biotechnol.
10
,
1
29
(
2022
).
136.
C.
Yu
,
D.
Qian
,
X.
Huang
,
F.
Han
,
N.
Bao
, and
H.
Gu
, “
Construction of biconcave hemoglobin-based microcapsules and electrochemical evaluation for its ability of oxygen carry
,”
Sens. Actuators, B
256
,
217
225
(
2018
).
137.
J.
Kent
and
D.
Meacham
, “
‘Synthetic blood’: Entangling politics and biology
,”
Body Soc.
25
(
2
),
28
55
(
2019
).
138.
J. Y.
Lee
,
C. K.
Vyas
,
G. G.
Kim
,
P. S.
Choi
,
M. G.
Hur
,
S. D.
Yang
,
Y. B.
Kong
,
E. J.
Lee
, and
J. H.
Park
, “
Red blood cell membrane bioengineered Zr-89 labelled hollow mesoporous silica nanosphere for overcoming phagocytosis
,”
Sci. Rep.
9
(
1
),
7419
(
2019
).
139.
M. R.
Doran
,
I. A.
Aird
,
F.
Marturana
,
N.
Timmins
,
K.
Atkinson
, and
L. K.
Nielsen
, “
Bioreactor for blood product production
,”
Cell Transplant.
21
(
6
),
1235
1244
(
2012
).
140.
A.
Crane
,
Y. D.
Muller
,
J. S.
Bromberg
, and
R. P.
Meier
, “Living donor organ transplantation—gene therapy,” in Living Donor Organ Transplantation (Academic Press, 2024), pp. 1485–1499. https://doi.org/10.1016/B978-0-443-23571-9.00048-7
141.
S. W.
Wang
,
C.
Gao
,
Y. M.
Zheng
,
L.
Yi
,
J. C.
Lu
,
X. Y.
Huang
,
J.
Bin Cai
,
P. F.
Zhang
,
Y. H.
Cui
, and
A. W.
Ke
, “
Current applications and future perspective of CRISPR/Cas9 gene editing in cancer
,”
Mol. Cancer
21
(
1
),
57
(
2022
).
142.
P. M.
Khan
,
S. D.
Sharma
,
S.
Chakraborty
, and
S.
Roy
, “
Effect of heart rate on the hemodynamics in healthy and stenosed carotid arteries
,”
Phys. Fluids
35
(
6
),
61906
(
2023
).
143.
P.
Kumar
,
S.
Roy
, and
P. K.
Das
, “
A comparative assessment of the effects of single and multiple stenoses on hemodynamics of an idealised artery model
,” in
2023 IEEE 20th India Council International Conference (INDICON)
(IEEE,
2023
), pp.
1155
1160
.
144.
P.
Kumar
,
S.
Roy
, and
P. K.
Das
, “
Effect of stenosis severity on the hemodynamics of an idealized straight arterial tube
,” in
Fluid Mechanics and Fluid Power
, edited by
K. M.
Singh
,
S.
Dutta
,
S.
Subudhi
, and
N. K.
Singh
(
Springer Nature
,
Singapore
,
2024
), Vol.
4
, pp.
723
733
.
145.
P.
Kumar
,
S.
Roy
, and
P. K.
Das
, “
Stenosis severity and heart rate effects on left coronary artery hemodynamics and myocardial oxygen balance: A comprehensive assessment using pressure gradient
,”
Phys. Fluids
36
(
2
), 021903 (
2024
).
146.
S.
Laha
,
I.
Ghosh
, and
P. K.
Das
,
Development of a Cardiovascular Replicator for Simulating Congestive Heart Diseases
(
Springer
,
Singapore
,
2023
), pp.
297
302
.
147.
P. K.
Ray
,
A. K.
Das
, and
P. K.
Das
, “
Numerical assessment of hemodynamic perspectives of a left ventricular assist device and subsequent proposal for improvisation
,”
Comput. Biol. Med.
151
,
106309
(
2022
).
148.
P. K.
Ray
,
A. K.
Das
, and
P. K.
Das
, “
Effect of internal thrombus formation on the performance of the pump of an LVAD
,” in
2023 IEEE 20th India Council International Conference, INDICON 2023
(IEEE,
2023
), pp.
1024
1029
.
149.
P. M.
Khan
,
S. D.
Sharma
,
S.
Chakraborty
, and
S.
Roy
, “
Effect of hematocrit levels on the flow structures and stress levels in the healthy and diseased carotid arteries
,”
Phys. Fluids
36
,
011907
(
2023
).
150.
P. M.
Khan
,
A.
Raj
,
M. I.
Alam
,
S.
Chakraborty
, and
S.
Roy
, “
Prediction of vortex structures in pulsatile flow through S-bend arterial geometry with different stenosis levels
,”
Biocybern. Biomed. Eng.
43
(
1
),
298
312
(
2023
).
151.
A. M.
Walker
,
C. R.
Johnston
, and
D. E.
Rival
, “
On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis
,”
Ann. Biomed. Eng.
42
(
1
),
97
109
(
2014
).
152.
S. C.
Ling
,
H. B.
Atabek
,
D. L.
Fry
,
D. J.
Patel
, and
J. S.
Janicki
, “
Application of heated-film velocity and shear probes to hemodynamic studies
,”
Circ. Res.
23
(
6
),
789
801
(
1968
).
153.
P.
Geoghegan
,
N.
Buchmann
,
C.
Spence
,
S.
Moore
, and
M.
Jermy
, “
Fabrication of rigid and flexible refractive-indexmatched flow phantoms for flow visualisation and optical flow measurements
,”
Exp. Fluids
52
,
1331
1347
(
2012
).
154.
Z.
Keshavarz-Motamed
,
J.
Garcia
,
E.
Gaillard
,
N.
Maftoon
,
G. D.
Labbio
,
G.
Cloutier
, and
L.
Kadem
, “
Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry
,”
Exp. Fluids
55
(
3
), 1696 (
2014
).
155.
T.
Nguyen
,
Y.
Biadillah
,
R.
Mongrain
,
J.
Brunette
,
J.
Tardif
, and
O.
Bertrand
, “
A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models
,”
J. Biomech. Eng.
126
(
4
),
529
535
(
2004
).
156.
N.
Buchmann
and
M.
Jermy
, “
Particle image velocimetry measurements of blood flow in a modeled carotid artery bifurcation BT
,” in
16th Australasian Fluid Mechanics Conference
(School of Engineering, The University of Queensland,
2007
), pp.
60
67
.
157.
J.
Vétel
,
A.
Garon
, and
P. D.
Pelletier
, “
Lagrangian coherent structures in the human carotid artery bifurcation
,”
Exp. Fluids
46
,
1067
1079
(
2009
).
158.
S.
Burgmann
,
S.
Große
,
W.
Schröder
,
J.
Roggenkamp
,
S.
Jansen
,
F.
Gräf
, and
M.
Büsen
, “
A refractive index-matched facility for fluid-structure interaction studies of pulsatile and oscillating flow in elastic vessels of adjustable compliance
,”
Exp. Fluids
47
,
865
881
(
2009
).
159.
J. T.
Baldwin
,
S.
Deutsch
,
D. B.
Geselowitz
, and
J. M.
Tarbell
, “
LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle
,”
J. Biomech. Eng.
116
(
2
),
190
200
(
1994
).
160.
Q.-H.
Hu
,
J.-Y.
Li
,
M.-Y.
Zhang
, and
X.-R.
Zhu
, “
An experimental study of Newtonian and non-Newtonian flow dynamics in an axial blood pump model
,”
Artif. Organs
36
(
4
),
429
433
(
2012
).
161.
F. J. H.
Gijsen
,
E.
Allanic
,
F. N.
Van De Vosse
, and
J. D.
Janssen
, “
The influence of the non-Newtonian properties of blood on the flow in large arteries: Unsteady flow in a 90°curved tube
,”
J. Biomech.
32
(
7
),
705
713
(
1999
).
162.
K. A.
Mann
,
G.
Rosenberg
,
K. A.
Mann
,
S.
Deutsch
,
J. M.
Tarbell
,
D. B.
Geselowitz
,
G.
Rosenberg
, and
W. S.
Pierce
, “
An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device
,”
J. Biomech. Eng.
109
, 139–147 (
1987
).
163.
F. J. H.
Gijsen
,
F. N.
van de Vosse
, and
J. D.
Janssen
, “
The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model
,”
J. Biomech.
32
(
6
),
601
608
(
1999
).
164.
S.
Al-Roubaie
,
E. D.
Jahnsen
,
M.
Mohammed
,
C.
Henderson-Toth
, and
E. A. V.
Jones
, “
Rheology of embryonic avian blood
,”
Am. J. Physiol.-Heart Circ. Physiol.
301
(
6
),
H2473
H2481
(
2011
).
165.
K. A.
Brookshier
and
J. M.
Tarbell
, “
Evaluation of a transparent blood analog fluid: Aqueous xanthan gum/glycerin
,”
Biorheology
30
(
2
),
107
116
(
1993
).
166.
D. E.
Mann
and
J. M.
Tarbell
, “
Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models
,”
Biorheology
27
(
5
),
711
733
(
1990
).
167.
J. A.
Long
,
A.
Ündar
,
K. B.
Manning
, and
S.
Deutsch
, “
Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump
,”
ASAIO J.
51
,
563
566
(
2005
).
168.
P. C.
Sousa
,
F. T.
Pinho
,
M. S. N.
Oliveira
, and
M. A.
Alves
, “
Extensional flow of blood analog solutions in microfluidic devices
,”
Biomicrofluidics
5
(
1
), 014108 (
2011
).
169.
M.
Intaglietta
,
D. R.
Richardson
, and
W. R.
Tompkins
, “
Blood pressure, flow, and elastic properties in microvessels of cat omentum
,”
Am. J. Physiol.
221
(
3
),
922
928
(
1971
).
170.
G.
Vlastos
,
D.
Lerche
,
B.
Koch
,
O.
Samba
, and
M.
Pohl
, “
The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions
,”
Rheol. Acta
36
(
2
),
160
172
(
1997
).
171.
P. A. L.
Gaehtgens
, “
Pulsatile pressure and flow in the mesenteric vascular bed of the cat
,”
Pflügers Arch.
316
(
2
),
140
151
(
1970
).
172.
T.
Sood
,
S.
Roy
, and
M.
Pathak
, “
Effect of pulse rate variation on blood flow through axisymmetric and asymmetric stenotic artery models
,”
Math. Biosci.
298
,
1
18
(
2018
).
You do not currently have access to this content.