Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.

1.
L.
Li
,
J.
He
,
Z.
Gan
, and
P.
Yang
, “
Occurrence and fate of antibiotics and heavy metals in sewage treatment plants and risk assessment of reclaimed water in Chengdu, China
,”
Chemosphere
272
,
129730
(
2021
).
2.
C. I. L.
Justino
,
A. C.
Duarte
, and
T. A. P.
Rocha-Santos
, “
Recent progress in biosensors for environmental monitoring: A review
,”
Sensors
17
,
2918
(
2017
).
3.
M.
Yew
,
Y.
Ren
,
K. S.
Koh
,
C.
Sun
, and
C.
Snape
, “
A review of state-of-the-art microfluidic technologies for environmental applications: Detection and remediation
,”
Global Challenges
3
,
1800060
(
2018
).
4.
G.
Maduraiveeran
and
W.
Jin
, “
Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications
,”
Trends Environ. Anal. Chem.
13
,
10
23
(
2017
).
5.
S.
Gavrilaș
,
C.Ș.
Ursachi
,
S.
Perța-Crișan
, and
F.-D.
Munteanu
, “
Recent trends in biosensors for environmental quality monitoring
,”
Sensors
22
,
1513
(
2022
).
6.
S. S.
Shetty
,
S.
Sonkusare
,
P. B.
Naik
, and
H.
Madhyastha
, “
Environmental pollutants and their effects on human health
,”
Heliyon
9
(
9
),
e19496
(
2023
).
7.
G.
Luka
,
A.
Ahmadi
,
H.
Najjaran
,
E.
Alocilja
,
M.
DeRosa
,
K.
Wolthers
,
A.
Malki
,
H.
Aziz
,
A.
Althani
, and
M.
Hoorfar
, “
Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications
,”
Sensors
15
(
12
),
30011
30031
(
2015
).
8.
W.
Wu
,
S.
Qu
,
W.
Nel
, and
J.
Ji
, “
Tracing and quantifying the sources of heavy metals in the upper and middle reaches of the pearl river basin: New insights from Sr-Nd-Pb multi-isotopic systems
,”
Chemosphere
288
,
132630
(
2022
).
9.
C. M.
Murzyn
,
D. J.
Allen
,
A. N.
Baca
,
M. L.
Ching
, and
R. T.
Marinis
, “
Tunable infrared laser absorption spectroscopy of aluminum monoxide A2Πi − X2Σ+
,”
J. Quant. Spectrosc. Radiat. Transfer
279
,
108029
(
2022
).
10.
Y.
Cao
,
B.
Zhang
,
Z.
Zhu
,
X.
Xin
,
H.
Wu
, and
B.
Chen
, “
Microfluidic based whole-cell biosensors for simultaneously on-site monitoring of multiple environmental contaminants
,”
Front. Bioeng. Biotechnol.
9
,
622108
(
2021
).
11.
T. N. D.
Trinh
,
K. T. L.
Trinh
, and
N. Y.
Lee
, “
Microfluidic advances in food safety control
,”
Food Res. Int.
176
,
113799
(
2024
).
12.
N.
Yogarajah
and
S. S. H.
Tsai
, “
Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics
,”
Environ. Sci.: Water Res. Technol.
1
,
426
(
2015
).
13.
N.
Gao
and
X. J.
Li
, in
Microfluidic Devices for Biomedical Applications
, edited by
X.
Li
and
Y.
Zhou
(
Woodhead Publishing Limited
,
Cambridge
,
2013
), Chap. 5.
14.
C. W.
Huang
,
C.
Lin
,
M. K.
Nguyen
,
A.
Hussain
,
X. T.
Bui
, and
H. H.
Ngo
, “
A review of biosensor for environmental monitoring: Principle, application, and corresponding achievement of sustainable development goals
,”
Bioengineered
14
(
1
),
58
80
(
2023
).
15.
R. B.
González-González
,
E. A.
Flores-Contreras
,
E.
Gonzalez-Gonzalez
,
N. E.
Torres Castillo
,
R.
Parra-Saldivar
, and
H. M.
Iqbal
, “
Biosensor constructs for the monitoring of persistent emerging pollutants in environmental matrices
,”
Ind. Eng. Chem. Res.
62
(
11
),
4503
4520
(
2023
).
16.
V.
Naresh
and
N.
Lee
, “
A review on biosensors and recent development of nanostructured materials-enabled biosensors
,”
Sensors
21
,
1109
(
2021
).
17.
H. H.
Nguyen
,
S. H.
Lee
,
U. J.
Lee
,
C. D.
Fermin
, and
M.
Kim
, “
Immobilized enzymes in biosensor applications
,”
Materials
12
,
121
(
2019
).
18.
H. A.
Hussein
,
A.
Kandeil
,
M.
Gomaa
, and
R. Y.
Hassan
, “
Double-antibody-based nano-biosensing system for the onsite monitoring of SARS-CoV-2 variants
,”
Microsyst. Nanoeng.
9
,
105
(
2023
).
19.
S.
Sharma
,
H.
Byrne
, and
R. J.
O’Kennedy
, “
Antibodies and antibody-derived analytical biosensors
,”
Essays Biochem.
60
,
9
18
(
2016
).
20.
Q.
Shi
,
H.
Tao
,
Y.
Wu
,
J.
Chen
, and
X.
Wang
, “
An ultrasensitive label-free electrochemical aptasensing platform for thiamethoxam detection based on ZIF-67 derived Co-N doped porous carbon
,”
Bioelectrochemistry
149
,
108317
(
2023
).
21.
E. M.
McConnell
,
K.
Nguyen
, and
Y.
Li
, “
Aptamer-based biosensors for environmental monitoring
,”
Front. Chem.
8
,
434
(
2020
).
22.
Y.
Wu
,
T.
Jiang
,
Z.
Wu
, and
R.
Yu
, “
Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag+ ion
,”
Talanta
185
,
30
36
(
2018
).
23.
R. V.
Nair
,
P. R.
Chandran
,
A. P.
Mohamed
, and
S.
Pillai
, “
Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate
,”
Anal. Chim. Acta
1181
,
338893
(
2021
).
24.
H.
Yoo
,
H.
Jo
, and
S. S.
Oh
, “
Detection and beyond: Challenges and advances in aptamer-based biosensors
,”
Mater. Adv.
1
,
2663
2687
(
2020
).
25.
Y.
Zhao
,
K.
Yavari
, and
J.
Liu
, “
Critical evaluation of aptamer binding for biosensor designs
,”
Trends Anal. Chem.
146
,
116480
(
2022
).
26.
S.
Díaz-Amaya
,
L. K.
Lin
,
A. J.
Deering
, and
L. A.
Stanciu
, “
Aptamer-based SERS biosensor for whole cell analytical detection of E. Coli O157:H7
,”
Anal. Chim. Acta
1081
,
146
156
(
2019
).
27.
J.
Bae
,
J.-W.
Lim
, and
T.
Kim
, “
Reusable and storable whole-cell microbial biosensors with a microchemostat platform for in situ on-demand heavy metal detection
,”
Sens. Actuators, B
264
,
372
381
(
2018
).
28.
M.
Tucci
,
M.
Grattieri
,
A.
Schievano
,
P.
Cristiani
, and
S. D.
Minteer
, “
Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis
,”
Electrochim. Acta
302
,
102
108
(
2019
).
29.
Q.
Gui
,
T.
Lawson
,
S.
Shan
,
L.
Yan
, and
Y.
Liu
, “
The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics
,”
Sensors
17
,
1623
(
2017
).
30.
S.
Naik
and
S. E.
Jujjavarapu
, “
Self-powered and reusable microbial fuel cell biosensor for toxicity detection in heavy metal polluted water
,”
J. Environ. Chem. Eng.
9
,
105318
(
2021
).
31.
Y.
Liu
,
M.
Guo
,
R.
Du
,
J.
Chi
,
X.
He
,
Z.
Xie
,
K.
Huang
,
Y.
Luo
, and
W.
Xu
, “
A gas reporting whole-cell microbial biosensor system for rapid on-site detection of mercury contamination in soils
,”
Biosens. Bioelectron.
170
,
112660
(
2020
).
32.
X.
Liu
,
H.
Cheng
,
Y.
Zhao
,
Y.
Wang
, and
F.
Li
, “
Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide
,”
Biosens. Bioelectron.
199
,
113906
(
2022
).
33.
W.
Thavarajah
,
M. S.
Verosloff
,
J. K.
Jung
,
K. K.
Alam
,
J. D.
Miller
,
M. C.
Jewett
,
S. L.
Young
, and
J. B.
Lucks
, “
A primer on emerging field-deployable synthetic biology tools for global water quality monitoring
,”
npj Clean Water
3
,
18
(
2020
).
34.
R.
Roy
,
S.
Ray
,
A.
Chowdhury
, and
R.
Anand
, “
Tunable multiplexed whole-cell biosensors as environmental diagnostics for ppb-level detection of aromatic pollutants
,”
ACS Sens.
6
,
1933
1939
(
2021
).
35.
Y.
Cui
,
B.
Lai
, and
X.
Tang
, “
Microbial fuel cell-based biosensors
,”
Biosensors
9
,
92
(
2019
).
36.
S. T.
Tsai
,
W. J.
Cheng
,
Q. X.
Zhang
, and
Y. C.
Yeh
, “
Gold-specific biosensor for monitoring wastewater using genetically engineered Cupriavidus metallidurans CH34
,”
ACS Synth. Biol.
10
,
3576
3582
(
2021
).
37.
A.
Adekunle
,
V.
Raghavan
, and
B.
Tartakovsky
, “
A comparison of microbial fuel cell and microbial electrolysis cell biosensors for real-time environmental monitoring
,”
Bioelectrochemistry
126
,
105
112
(
2019
).
38.
C.
Corbella
,
M.
Hartl
,
M.
Fernandez-gatell
, and
J.
Puigagut
, “
MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands
,”
Sci. Total Environ.
660
,
218
226
(
2019
).
39.
M. I.
Gaviria-Arroyave
,
J. B.
Cano
, and
A.
Peñuela Gustavo
, “
Nanomaterial-based fluorescent biosensors for monitoring environmental pollutants: A critical review
,”
Talanta Open
2
,
100006
(
2020
).
40.
A.
Aasi
,
S. M.
Aghaei
,
S. E.
Bajgani
, and
B.
Panchapakesan
, “
Computational study on sensing properties of pd-decorated phosphorene for detecting acetone, ethanol, methanol, and toluene—A density functional theory investigation
,”
Adv. Theory Simul.
4
,
2100256
(
2021
).
41.
S. K.
Srivastava
,
A.
Shalabney
,
I.
Khalaila
,
C.
Grüner
,
B.
Rauschenbach
, and
I.
Abdulhalim
, “
SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin
,”
Small
10
,
3579
3587
(
2014
).
42.
S. K.
Srivastava
,
H. B.
Hamo
,
A.
Kushmaro
,
R. S.
Marks
,
C.
Gruner
,
B.
Rauschenbach
, and
I.
Abdulhalim
, “
Highly sensitive detection of E-coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films
,”
Analyst
140
,
3201
3209
(
2015
).
43.
R. A.
Mahmud
,
R. H.
Sagor
, and
M. Z. M.
Khan
, “
Surface plasmon refractive index biosensors: A review of optical fiber, multilayer 2D material and gratings, and MIM configurations
,”
Opt. Laser Technol.
159
,
108939
(
2023
).
44.
G. I.
Janith
,
H. S.
Herath
,
N.
Hendeniya
,
D.
Attygalle
,
D. A. S.
Amarasinghe
,
V.
Logeeshan
,
P. M. T. B.
Wickramasinghe
, and
Y. S.
Wijayasinghe
, “
Advances in surface plasmon resonance biosensors for medical diagnostics: An overview of recent developments and techniques
,”
J. Pharm. Biomed. Anal. Open
2
,
100019
(
2023
).
45.
W.
Ning
,
S.
Hu
,
C.
Zhou
,
J.
Luo
,
Y.
Li
,
C.
Zhang
,
Z.
Luo
, and
Y.
Li
, “
An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of helicobacter pylori
,”
Anal. Chim. Acta
1278
,
341733
(
2023
).
46.
H.
Khateb
,
G.
Klös
,
R. L.
Meyer
, and
D. S.
Sutherland
, “
Development of a label-free LSPR-apta sensor for staphylococcus aureus detection
,”
ACS Appl. Bio Mater.
3
,
3066
3077
(
2020
).
47.
S.
Jaric
,
A.
Bajaj
,
V.
Vukic
,
I.
Gadjanski
,
I.
Abdulhalim
, and
I.
Bobrinetskiy
, “
Label-free direct detection of cylindrospermopsin via graphene-enhanced surface plasmon resonance aptasensor
,”
Toxins
15
,
326
(
2023
).
48.
S. A.
Jaywant
and
K. M.
Arif
, “
A comprehensive review of microfluidic water quality monitoring sensors
,”
Sensors
19
,
4781
(
2019
).
49.
P.
Mesquita
,
L.
Gong
, and
Y.
Lin
, “
Low-cost microfluidics: Towards affordable environmental monitoring and assessment
,”
Front. Lab Chip Technol.
1
,
1074009
(
2022
).
50.
K.
Liu
and
Z. H.
Fan
, “
Thermoplastic microfluidic devices and their applications in protein and DNA analysis
,”
Analyst
136
,
1288
1297
(
2011
).
51.
M. K.
Raj
and
S.
Chakraborty
, “
PDMS microfluidics: A mini review
,”
J. Appl. Polym. Sci.
137
,
48958
(
2020
).
52.
J. T.
Connelly
,
J. P.
Rolland
, and
G. M.
Whitesides
, “
A ‘paper machine’ for molecular diagnostics
,”
Anal. Chem.
87
,
7595
7601
(
2015
).
53.
K.
Brindhadevi
,
D.
Barceló
,
N. T. L.
Chi
, and
E. R.
Rene
, “
E-waste management, treatment options and the impact of heavy metal extraction from e-waste on human health: Scenario in Vietnam and other countries
,”
Environ. Res.
217
,
114926
(
2023
).
54.
Y.
Li
,
Z.
Ye
,
Y.
Yu
,
Y.
Li
,
J.
Jiang
,
L.
Wang
,
G.
Wang
,
H.
Zhang
,
N.
Li
,
X.
Xie
,
X.
Cheng
,
K.
Liu
, and
M.
Liu
, “
A combined method for human health risk area identification of heavy metals in urban environments
,”
J. Hazard. Mater.
449
,
131067
(
2023
).
55.
C. C.
Wang
,
Q. C.
Zhang
,
S. G.
Kang
,
M. Y.
Li
,
M. Y.
Zhang
,
W. M.
Xu
,
P.
Xiang
, and
L. Q.
Ma
, “
Heavy metal (loid) s in agricultural soil from main grain production regions of China: Bioaccessibility and health risks to humans
,”
Sci. Total Environ.
858
,
159819
(
2023
).
56.
W.
Zhang
,
G.
Liu
,
J.
Bi
,
K.
Bao
, and
P.
Wang
, “
In-situ and ultrasensitive detection of mercury (II) ions (Hg2+) using the localized surface plasmon resonance (LSPR) nanosensor and the microfluidic chip
,”
Sens. Actuators, A
349
,
114074
(
2023
).
57.
N.
Praoboon
,
T.
Tangkuaram
,
V.
Kruefu
,
P.
Pookmanee
,
S.
Phaisansuthichol
,
S.
Kuimalee
,
N.
Laorodphan
, and
S.
Satienperakul
, “
Fabrication of a simple 3D-printed microfluidic device with embedded electrochemiluminescence detection for rapid determination of sibutramine in dietary supplements
,”
Microchim. Acta
190
(
4
),
145
(
2023
).
58.
P.
Aryal
,
E.
Brack
,
T.
Alexander
, and
C. S.
Henry
, “
Capillary flow-driven microfluidics combined with a paper device for fast user-friendly detection of heavy metals in water
,”
Anal. Chem.
95
(
13
),
5820
5827
(
2023
).
59.
M.
Yuan
,
C.
Li
,
Y.
Zheng
,
H.
Cao
,
T.
Ye
,
X.
Wu
,
L.
Hao
,
F.
Yin
,
J.
Yu
, and
F.
Xu
, “
A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals
,”
Talanta
266
,
125112
(
2024
).
60.
M.
Pérez-Rodríguez
and
M.
del Pilar Cañizares-Macías
, “
A prototype microfluidic paper-based chromatic device for simultaneous determination of copper (II) and zinc (II) in urine
,”
Talanta Open
7
,
100178
(
2023
).
61.
L.
Wang
,
B.
Li
,
J.
Wang
,
J.
Qi
,
J.
Li
,
J.
Ma
, and
L.
Chen
, “
A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies
,”
J. Hazard. Mater.
428
,
128165
(
2022
).
62.
M.
Yuan
,
C.
Li
,
M.
Wang
,
H.
Cao
,
T.
Ye
,
L.
Hao
,
X.
Wu
,
F.
Yin
,
J.
Yu
, and
F.
Xu
, “
Low-cost, portable, on-site fluorescent detection of As (III) by a paper-based microfluidic device based on aptamer and smartphone imaging
,”
Microchim. Acta
190
(
3
),
109
(
2023
).
63.
Y.
Gu
,
L.
Jiao
,
F.
Cao
,
X.
Liu
,
Y.
Zhou
,
C.
Yang
,
Z.
Gao
,
M.
Zhang
,
P.
Lin
,
Y.
Han
, and
D.
Dong
, “
A real-time detection method of Hg2+ in drinking water via portable biosensor: Using a smartphone as a low-cost micro-spectrometer to read the colorimetric signals
,”
Biosensors
12
(
11
),
1017
(
2022
).
64.
S.
Mathur
,
D.
Singh
, and
R.
Ranjan
, “
Genetic circuits in microbial biosensors for heavy metal detection in soil and water
,”
Biochem. Biophys. Res. Commun.
652
,
131
137
(
2023
).
65.
Z.
Ma
,
C.
Meliana
,
H. S. H.
Munawaroh
,
C.
Karaman
,
H.
Karimi-Maleh
,
S. S.
Low
, and
P. L.
Show
, “
Recent advances in the analytical strategies of microbial biosensor for detection of pollutants
,”
Chemosphere
306
,
135515
(
2022
).
66.
Y.
Zhang
,
C.
Zhao
,
H.
Bi
,
X.
Zhang
,
B.
Xue
,
C.
Li
,
S.
Wang
,
X.
Yang
,
Z.
Qiu
,
J.
Wang
, and
Z.
Shen
, “
A cell-free paper-based biosensor dependent on allosteric transcription factors (aTFs) for on-site detection of harmful metals Hg2+ and Pb2+ in water
,”
J. Hazard. Mater.
438
,
129499
(
2022
).
67.
J.
Wang
,
X.
Yang
,
M.
Cui
,
Y.
Liu
,
X.
Li
,
L.
Zhang
, and
G.
Zhan
, “
A high-sensitive and durable electrochemical sensor based on Geobacter-dominated biofilms for heavy metal toxicity detection
,”
Biosens. Bioelectron.
206
,
114146
(
2022
).
68.
O.
Bandeliuk
,
A.
Assaf
,
M.
Bittel
,
M. J.
Durand
, and
G.
Thouand
, “
Development and automation of a bacterial biosensor to the targeting of the pollutants toxic effects by portable Raman spectrometer
,”
Sensors
22
(
12
),
4352
(
2022
).
69.
R. C.
Nnachi
,
N.
Sui
,
B.
Ke
,
Z.
Luo
,
N.
Bhalla
,
D.
He
, and
Z.
Yang
, “
Biosensors for rapid detection of bacterial pathogens in water, food and environment
,”
Environ. Int.
166
,
107357
(
2022
).
70.
Y. S.
Liu
,
Y.
Deng
,
C. K.
Chen
,
B. L.
Khoo
, and
S. L.
Chua
, “
Rapid detection of microorganisms in a fish infection microfluidics platform
,”
J. Hazard. Mater.
431
,
128572
(
2022
).
71.
G.
Xing
,
W.
Zhang
,
N.
Li
,
Q.
Pu
, and
J. M.
Lin
, “
Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria
,”
Chin. Chem. Lett.
33
(
4
),
1743
1751
(
2022
).
72.
W.
Li
,
X.
Ma
,
Y. C.
Yong
,
G.
Liu
, and
Z.
Yang
, “
Review of paper-based microfluidic analytical devices for in-field testing of pathogens
,”
Anal. Chim. Acta
1278
,
341614
(
2023
).
73.
J.
Jin
,
L.
Duan
,
J.
Fu
,
F.
Chai
,
Q.
Zhou
,
Y.
Wang
,
X.
Shao
,
L.
Wang
,
M.
Yan
,
X.
Su
,
Y.
Zhang
,
J.
Pan
, and
J.
Chen
, “
A real-time LAMP-based dual-sample microfluidic chip for rapid and simultaneous detection of multiple waterborne pathogenic bacteria from coastal waters
,”
Anal. Methods
13
(
24
),
2710
2721
(
2021
).
74.
L. F.
Alonzo
,
T. C.
Hinkley
,
A.
Miller
,
R.
Calderon
,
S.
Garing
,
J.
Williford
,
N.
Culte-Reinig
,
E.
Spencer
,
M.
Friend
,
D.
Madan
,
V. T. T.
Dinh
,
D.
Bell
,
B. H.
Weigl
,
S. R.
Nugen
,
K. P.
Nichols
, and
A. L. M.
Le Ny
, “
A microfluidic device and instrument prototypes for the detection of Escherichia coli in water samples using a phage-based bioluminescence assay
,”
Lab Chip
22
(
11
),
2155
2164
(
2022
).
75.
N. B.
Messaoud
,
M. B.
Dos Santos
,
A.
Vieira
,
A.
Garrido-Maestu
,
B.
Espiña
, and
R. B.
Queirós
, “
A novel portable label-free electrochemical immunosensor for ultrasensitive detection of Aeromonas salmonicida in aquaculture seawater
,”
Anal. Bioanal. Chem.
414
(
22
),
6591
6600
(
2022
).
76.
L.
Patinglag
,
L. M.
Melling
,
K. A.
Whitehead
,
D.
Sawtell
,
A.
Iles
, and
K. J.
Shaw
, “
Non-thermal plasma-based inactivation of bacteria in water using a microfluidic reactor
,”
Water Res.
201
,
117321
(
2021
).
77.
H.
Xiong
,
X.
Ye
,
Y.
Li
,
J.
Qi
,
X.
Fang
, and
J.
Kong
, “
Efficient microfluidic-based air sampling/monitoring platform for detection of aerosol SARS-CoV-2 on-site
,”
Anal. Chem.
93
(
9
),
4270
4276
(
2021
).
78.
X.
Jiang
,
W.
Jing
,
X.
Sun
,
Q.
Liu
,
C.
Yang
,
S.
Liu
,
K.
Qin
, and
G.
Sui
, “
High-throughput microfluidic device for LAMP analysis of airborne bacteria
,”
ACS Sens.
1
(
7
),
958
962
(
2016
).
79.
H. N.
Gowda
,
H.
Kido
,
X.
Wu
,
O.
Shoval
,
A.
Lee
,
A.
Lorenzana
,
M.
Madou
,
M.
Hoffmann
, and
S. C.
Jiang
, “
Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring
,”
Sci. Total Environ.
813
,
152556
(
2022
).
80.
S.
Kim
,
P.
Akarapipad
,
B. T.
Nguyen
,
L. E.
Breshears
,
K.
Sosnowski
,
J.
Baker
,
J. L.
Uhrlaub
,
J.
Nikolich-Zugich
, and
J. Y.
Yoon
, “
Direct capture and smartphone quantification of airborne SARS-CoV-2 on a paper microfluidic chip
,”
Biosens. Bioelectron.
200
,
113912
(
2022
).
81.
J.
Ma
,
G.
Jiang
,
Q.
Ma
,
H.
Wang
,
M.
Du
,
C.
Wang
,
X.
Xie
,
T.
Li
, and
S.
Chen
, “
Rapid detection of airborne protein from mycobacterium tuberculosis using a biosensor detection system
,”
Analyst
147
(
4
),
614
624
(
2022
).
82.
S. A.
Muhsin
,
M.
Al-Amidie
,
Z.
Shen
,
Z.
Mlaji
,
J.
Liu
,
A.
Abdullah
,
M.
El-Dweik
,
S.
Zhang
, and
M.
Almasri
, “
A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens
,”
Biosens. Bioelectron.
203
,
113993
(
2022
).
83.
R.
Siavash Moakhar
,
R.
Mahimkar
,
A.
Khorrami Jahromi
,
S. S.
Mahshid
,
C.
del Real Mata
,
Y.
Lu
,
F. V.
Camargo
,
B.
Dixon
,
J.
Gilleard
,
A. J. D.
Silva
,
M.
Ndao
, and
S.
Mahshid
, “
Aptamer-based electrochemical microfluidic biosensor for the detection of cryptosporidium parvum
,”
ACS Sens.
8
(
6
),
2149
2158
(
2023
).
84.
M.
Gagliardi
,
M.
Agostini
,
F.
Lunardelli
,
L.
Lamanna
,
A.
Miranda
,
A.
Bazzichi
,
A. G.
Luminare
,
F.
Cervelli
,
F.
Gamnineri
,
M.
Totaro
,
M.
Lai
,
G.
Maisetta
,
G.
Batoni
,
M.
Pistello
, and
M.
Cecchini
, “
Surface acoustic wave-based lab-on-a-chip for the fast detection of legionella pneumophila in water
,”
Sens. Actuators, B
379
,
133299
(
2023
).
85.
M.
Nehra
,
N.
Dilbaghi
,
R.
Kumar
, and
S.
Kumar
, “
Trends in point-of-care optical biosensors for antibiotics detection in aqueous media
,”
Mater. Lett.
308
,
131235
(
2022
).
86.
B.
Singh
,
A.
Bhat
,
L.
Dutta
,
K. R.
Pati
,
Y.
Korpan
, and
I.
Dahiya
, “
Electrochemical biosensors for the detection of antibiotics in milk: Recent trends and future perspectives
,”
Biosensors
13
(
9
),
867
(
2023
).
87.
T.
Mathai
,
T.
Pal
,
N.
Prakash
, and
S.
Mukherji
, “
Portable biosensor for the detection of enrofloxacin and ciprofloxacin antibiotic residues in food, body fluids, environmental and wastewater samples
,”
Biosens. Bioelectron.
237
,
115478
(
2023
).
88.
J.
Chen
,
G.
Shi
, and
C.
Yan
, “
Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer
,”
Sci. Total Environ.
872
,
162279
(
2023
).
89.
R.
Umapathi
,
S. M.
Ghoreishian
,
S.
Sonwal
,
G. M.
Rani
, and
Y. S.
Huh
, “
Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables
,”
Coord. Chem. Rev.
453
,
214305
(
2022
).
90.
Y. Qin, G. Ye, H. Liang, M. Li, and J. Zhao
.
“An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO2 nanosheets,”
Spectrochim. Acta. A Mol. Biomol. Spectrosc.
269
, 120759 (
2022
).
91.
C. Zhang, L. Wang, Z. Tu, X. Sun, Q. He, Z. Lei, C. Xu, Y. Liu, X. Zhang, J. Yang, X. Liu, and Y. Xu
,
“Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay,”
Biosens. Bioelectron.
55
, 216–219 (
2014
).
92.
H.
Maanaki
,
T.
Xu
,
G.
Chen
,
X.
Du
, and
J.
Wang
, “
Development of integrated smartphone/resistive biosensor for on-site rapid environmental monitoring of organophosphate pesticides in food and water
,”
Biosens. Bioelectron.: X
15
,
100402
(
2023
).
93.
H.
Wu
,
J.
Chen
,
Y.
Yang
,
W.
Yu
,
Y.
Chen
,
P.
Lin
, and
K.
Liang
, “
Smartphone-coupled three-layered paper-based microfluidic chips demonstrating stereoscopic capillary-driven fluid transport towards colorimetric detection of pesticides
,”
Anal. Bioanal. Chem.
414
(
5
),
1759
1772
(
2022
).
94.
S. K.
Samanta
,
O. V.
Singh
, and
R. K.
Jain
, “
Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation
,”
Trends Biotechnol.
20
(
6
),
243
248
(
2002
).
95.
L.
Zheng
,
M.
Zhao
,
B.
Dai
,
Z.
Xue
,
Y.
Kang
,
S.
Liu
,
L.
Hou
,
S.
Zhuang
, and
D.
Zhang
, “
Integrated system for rapid enrichment and detection of airborne polycyclic aromatic hydrocarbons
,”
Sci. Total Environ.
864
,
161057
(
2023
).
96.
X.
Li
,
S. L.
Kaattari
,
M. A.
Vogelbein
,
G. G.
Vadas
, and
M. A.
Unger
, “
A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples
,”
Sens. Bio-sens. Res.
7
,
115
120
(
2016
).
97.
F. M.
Babolghani
and
E.
Mohammadi-Manesh
, “
Simulation and experimental study of FET biosensor to detect polycyclic aromatic hydrocarbons
,”
Appl. Surf. Sci.
488
,
662
670
(
2019
).
You do not currently have access to this content.