Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.

1.
C.
Théry
et al, “
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
,”
J. Extracell. Vesicles
7
,
1535750
(
2018
).
2.
P. D.
Stahl
and
G.
Raposo
, “
Extracellular vesicles exosomes and microvesicles, integrators of homeostasis
,”
Physiology
34
,
169
177
(
2019
).
3.
L.
Jiang
,
Y.
Gu
,
Y.
Du
, and
J.
Liu
, “
Exosomes: Diagnostic biomarkers and therapeutic delivery vehicles for cancer
,”
Mol. Pharm.
16
,
3333
3349
(
2019
).
4.
D.
Yu
et al, “
Exosomes as a new frontier of cancer liquid biopsy
,”
Mol. Cancer
21
,
56
(
2022
).
5.
V. V.
Rangel-Ramírez
,
H. M.
González-Sánchez
, and
C.
Lucio-García
, “
Exosomes: From biology to immunotherapy in infectious diseases
,”
Infect. Dis.
55
,
79
107
(
2023
).
6.
S.
Sigdel
,
S.
Swenson
, and
J.
Wang
, “
Extracellular vesicles in neurodegenerative diseases: An update
,”
Int. J. Mol. Sci.
24
,
13161
(
2023
).
7.
A.
Ku
et al, “
Acoustic enrichment of extracellular vesicles from biological fluids
,”
Anal. Chem.
90
,
8011
8019
(
2018
).
8.
P.
Li
,
M.
Kaslan
,
S. H.
Lee
,
J.
Yao
, and
Z.
Gao
, “
Progress in exosome isolation techniques
,”
Theranostics
7
,
789
(
2017
).
9.
J.
Ko
,
E.
Carpenter
, and
D.
Issadore
, “
Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices
,”
Analyst
141
,
450
460
(
2016
).
10.
B. J.
Tauro
et al, “
Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes
,”
Methods
56
,
293
304
(
2012
).
11.
Z.
Zhao
,
Y.
Yang
,
Y.
Zeng
, and
M.
He
, “
A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis
,”
Lab Chip
16
,
489
496
(
2016
).
12.
W.
Zhao
et al, “
Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device
,”
Analyst
146
,
5962
5972
(
2021
).
13.
J. T.
Smith
et al, “
Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples
,”
Lab Chip
18
,
3913
3925
(
2018
).
14.
Y.
Gu
et al, “
Acoustofluidic centrifuge for nanoparticle enrichment and separation
,”
Sci. Adv.
7
,
eabc0467
(
2021
).
15.
B. Y.
Teoh
et al, “
Isolation of exosome from the culture medium of nasopharyngeal cancer (NPC) C666-1 cells using inertial based microfluidic channel
,”
Biomed. Microdevices
24
,
1
(
2022
).
16.
C.
Liu
et al, “
Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows
,”
ACS Nano
11
,
6968
6976
(
2017
).
17.
F.
Del Giudice
,
S.
Sathish
,
G.
D’Avino
, and
A. Q.
Shen
, “
‘From the edge to the center’: Viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel
,”
Anal. Chem.
89
,
13146
13159
(
2017
).
18.
J.
Nam
et al, “
High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection
,”
Lab Chip
16
,
2086
2092
(
2016
).
19.
G.
D’Avino
,
F.
Greco
, and
P. L.
Maffettone
, “
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices
,”
Annu. Rev. Fluid Mech.
49
,
341
360
(
2017
).
20.
J.
Nam
et al, “
Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid
,”
J. Chromatogr. A
1406
,
244
250
(
2015
).
21.
F.
Tian
,
C.
Liu
,
L.
Lin
,
Q.
Chen
, and
J.
Sun
, “
Microfluidic analysis of circulating tumor cells and tumor-derived extracellular vesicles
,”
Trends Anal. Chem.
117
,
128
145
(
2019
).
22.
Y.
Meng
et al, “
Direct isolation of small extracellular vesicles from human blood using viscoelastic microfluidics
,”
Sci. Adv.
9
,
eadi5296
(
2023
).
23.
S.
Hettiarachchi
et al, “
Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles
,”
Nanoscale
16
,
3560
3570
(
2024
).
24.
M.
Sharafeldin
,
S.
Yan
,
C.
Jiang
,
G. K.
Tofaris
, and
J. J.
Davis
, “
Alternating magnetic field-promoted nanoparticle mixing: The on-chip immunocapture of serum neuronal exosomes for Parkinson’s disease diagnostics
,”
Anal. Chem.
95
,
7906
7913
(
2023
).
25.
T.
Yasui
et al, “
Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics
,”
Biosens. Bioelectron.
194
,
113589
(
2021
).
26.
K.
Chattrairat
et al, “
All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model
,”
ACS Nano
17
,
2235
2244
(
2023
).
27.
BH.
Wunsch
et al, “
Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm
,”
Nat. Nanotechnol.
11
,
936
940
(
2016
).
28.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D. D.
Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
,
912
920
(
2011
).
29.
F.
Del Giudice
,
G.
D’Avino
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Effect of fluid rheology on particle migration in a square-shaped microchannel
,”
Microfluid. Nanofluidics
19
,
95
104
(
2015
).
30.
S.
Hassanpour Tamrin
,
A.
Sanati Nezhad
, and
A.
Sen
, “
Label-free isolation of exosomes using microfluidic technologies
,”
ACS Nano
15
,
17047
17079
(
2021
).
31.
Y.
Cheng
et al, “
Poly(ethylene oxide) concentration gradient-based microfluidic isolation of circulating tumor cells
,”
Anal. Chem.
95
,
3468
3475
(
2023
).
32.
F.
Tian
et al, “
Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles
,”
Lab Chip
17
,
3078
3085
(
2017
).
33.
F.
Tian
et al, “
Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics
,”
Lab Chip
18
,
3436
3445
(
2018
).
34.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
,”
Lab Chip
11
,
266
273
(
2011
).
35.
B. P.
Ho
and
L. G.
Leal
, “
Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid
,”
J. Fluid Mech.
76
,
783
799
(
1976
).
36.
D.
Yuan
et al, “
Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid
,”
Electrophoresis
37
,
2147
2155
(
2016
).
37.
K. W.
Seo
,
H. J.
Byeon
,
H. K.
Huh
, and
S. J.
Lee
, “
Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids
,”
RSC Adv.
4
,
3512
3520
(
2013
).
38.
W.
Xu
,
Z.
Hou
,
Z.
Liu
, and
Z.
Wu
, “
Viscosity-difference-induced asymmetric selective focusing for large stroke particle separation
,”
Microfluid. Nanofluidics
20
,
1
(
2016
).
39.
A.-S.
Neyroud
et al, “
Diversity of extracellular vesicles in human follicular fluid: Morphological analysis and quantification
,”
Int. J. Mol. Sci.
23
,
11676
(
2022
).
40.
D.
Bachurski
et al, “
Extracellular vesicle measurements with nanoparticle tracking analysis—An accuracy and repeatability comparison between NanoSight NS300 and ZetaView
,”
J. Extracell. Vesicles
8
,
1596016
(
2019
).
41.
A.
Kotrbová
et al, “
TEM ExosomeAnalyzer: A computer-assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images
,”
J. Extracell. Vesicles
8
,
1560808
(
2019
).
42.
H. G.
Lamparski
et al, “
Production and characterization of clinical grade exosomes derived from dendritic cells
,”
J. Immunol. Methods
270
,
211
226
(
2002
).
43.
L.
Shi
et al, “
Rapid and label-free isolation of small extracellular vesicles from biofluids utilizing a novel insulator based dielectrophoretic device
,”
Lab Chip
19
,
3726
3734
(
2019
).
44.
M.
Asghari
et al, “
Oscillatory viscoelastic microfluidics for efficient focusing and separation of nanoscale species
,”
ACS Nano
14
,
422
433
(
2020
).
45.
C.
Liu
,
G.
Hu
,
X.
Jiang
, and
J.
Sun
, “
Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers
,”
Lab Chip
15
,
1168
1177
(
2015
).
46.
C.
Théry
,
S.
Amigorena
,
G.
Raposo
, and
A.
Clayton
, “
Isolation and characterization of exosomes from cell culture supernatants and biological fluids
,”
Curr. Protoc. Cell Biol.
30
,
3.22.1
3.22.29
(
2006
).
You do not currently have access to this content.