In addition to the common blood and urine, fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body’s state. Wearable sweat sensors are crucial for understanding human physiological health; however, real-time in situ measurement of multiple biomarkers in sweat remains a significant challenge. Here, we propose a wearable microfluidic patch featuring an integrated microfluidic channel and evaporation pump for accelerated and continuous sweat collection, eliminating the need for additional sweat storage cavities that typically impede real-time detection. Capillary forces are harnessed to facilitate the rapid flow of sweat through the detection area, while an evaporation pump based on porous laser-induced graphene enhances sweat evaporation. The synergistic integration of these two components enables an uninterrupted flow of fresh sweat within the patch, ensuring real-time monitoring. The influence of channel size parameters on sweat flow velocity is analyzed, and the optimal width-to-height ratio for achieving the desired flow velocity is determined. By implementing a multi-channel parallel design with chamfering, liquid flow resistance is effectively reduced. Furthermore, the patch integrates sensor modules for sodium ion, chloride ion, glucose, and pH value measurements, ensuring excellent sealing and stability of the assembled system. This work presents a simplified approach to developing wearable sweat sensors that hold the potential for health monitoring and disease diagnosis.

1.
M.
Bariya
,
H. Y. Y.
Nyein
, and
A.
Javey
,
Nat. Electron.
1
(
3
),
160
171
(
2018
).
2.
V.
Gubala
,
L. F.
Harris
,
A. J.
Ricco
,
M. X.
Tan
, and
D. E.
Williams
,
Anal. Chem.
84
(
2
),
487
515
(
2012
).
3.
S.
Li
,
J.
Ma
,
X.
Zhao
,
P.
Zhu
,
M.
Xu
,
Y.
Niu
,
D.
Luo
, and
Q.
Xu
,
Chin. Chem. Lett.
33
(
4
),
1850
1854
(
2022
).
4.
S.
Sachdeva
,
R. W.
Davis
, and
A. K.
Saha
,
Front. Bioeng. Biotechnol.
8
,
2020
(
2021
).
5.
M.
Wang
,
Y.
Yang
,
J.
Min
,
Y.
Song
,
J.
Tu
,
D.
Mukasa
,
C.
Ye
,
C.
Xu
,
N.
Heflin
,
J. S.
McCune
,
T. K.
Hsiai
,
Z.
Li
, and
W.
Gao
,
Nat. Biomed. Eng.
6
(
11
),
1225
1235
(
2022
).
6.
M.
Chung
,
G.
Fortunato
, and
N.
Radacsi
,
J. R. Soc. Interface
16
(
159
),
20190217
(
2019
).
7.
M.
Deng
,
X.
Li
,
K.
Song
,
H.
Yang
,
W.
Wei
,
X.
Duan
,
X.
Ouyang
,
H.
Cheng
, and
X.
Wang
,
Adv. Sci.
11
(10),
2306023
(
2023
).
8.
J.
Zhu
,
S.
Liu
,
Z.
Hu
,
X.
Zhang
,
N.
Yi
,
K.
Tang
,
M. G.
Dexheimer
,
X.
Lian
,
Q.
Wang
,
J.
Yang
,
J.
Gray
, and
H.
Cheng
,
Biosens. Bioelectron.
193
,
113606
(
2021
).
9.
L.
Wei
,
Z.
Lv
,
Y.
He
,
L.
Cheng
,
Y.
Qiu
,
X.
Huang
,
C.
Ding
,
H.
Wu
, and
A.
Liu
,
Sens. Actuators B
379
,
133213
(
2023
).
10.
A. A.
al-Behadili
,
I. A.
Mocanu
,
T. M.
Petrescu
, and
T. A.
Elwi
,
Sensors
21
(
23
),
7865
(
2021
).
11.
B.
Peng
,
J.
Lu
,
A. S.
Balijepalli
,
T. C.
Major
,
B. E.
Cohan
, and
M. E.
Meyerhoff
,
Biosens. Bioelectron.
49
,
204
209
(
2013
).
12.
D. S.
Yang
,
R.
Ghaffari
, and
J. A.
Rogers
,
Science
379
(
6634
),
760
761
(
2023
).
13.
B.
Zhong
,
K.
Jiang
,
L.
Wang
, and
G.
Shen
,
Adv. Sci.
9
(
1
),
2103257
(
2022
).
14.
M. A.
Yokus
,
T.
Agcayazi
,
M.
Traenkle
,
A.
Bozkurt
, and
M. A.
Daniele
, paper presented at the 2020 IEEE SENSORS, 2020.
15.
Z.
Sonner
,
E.
Wilder
,
J.
Heikenfeld
,
G.
Kasting
,
F.
Beyette
,
D.
Swaile
,
F.
Sherman
,
J.
Joyce
,
J.
Hagen
,
N.
Kelley-Loughnane
, and
R.
Naik
,
Biomicrofluidics
9
(
3
),
031301
(
2015
).
16.
Y.
Zhang
,
Y.
Chen
,
J.
Huang
,
Y.
Liu
,
J.
Peng
,
S.
Chen
,
K.
Song
,
X.
Ouyang
,
H.
Cheng
, and
X.
Wang
,
Lab Chip
20
(
15
),
2635
2645
(
2020
).
17.
L.
Wei
,
G.
Fang
,
Z.
Kuang
,
L.
Cheng
,
H.
Wu
,
D.
Guo
, and
A.
Liu
,
Sens. Actuators B
353
, 131085 (
2022
).
18.
G.
Chen
,
J.
Li
,
N.
Li
,
C.
Guo
,
P.
Jin
,
L.
Chen
, and
Y.
Peng
,
Sens. Actuators B
383
,
133576
(
2023
).
19.
V. L.
Huynh
,
T. Q.
Trung
,
M.
Meeseepong
,
H.-B.
Lee
,
T. D.
Nguyen
, and
N.-E.
Lee
,
Adv. Funct. Mater.
30
(
46
),
2004684
(
2020
).
20.
T.
Ohashi
,
N.
Gerrett
,
S.
Shinkawa
,
T.
Sato
,
R.
Miyake
,
N.
Kondo
, and
S.
Mitsuzawa
,
Anal. Chem.
92
(
23
),
15534
15541
(
2020
).
21.
J.
Son
,
G. Y.
Bae
,
S.
Lee
,
G.
Lee
,
S. W.
Kim
,
D.
Kim
,
S.
Chung
, and
K.
Cho
,
Adv. Mater.
33
(
40
),
2102740
(
2021
).
22.
H.
Zhang
,
Y.
Qiu
,
S.
Yu
,
C.
Ding
,
J.
Hu
,
H.
Qi
,
Y.
Tian
,
Z.
Zhang
,
A.
Liu
, and
H.
Wu
,
Biomicrofluidics
16
(
4
),
044104
(
2022
).
23.
B.
Ma
,
J.
Chi
,
C.
Xu
,
Y.
Ni
,
C.
Zhao
, and
H.
Liu
,
Talanta
212
,
120786
(
2020
).
24.
Y.
He
,
L.
Wei
,
W.
Xu
,
H.
Wu
, and
A.
Liu
,
Biosensors
13
(
3
),
372
(
2023
).
25.
Z.
Zhang
,
S.
Lang
,
K.
Pearson
,
Y.
Farhan
,
Y.
Tao
, and
G.
Xiao
,
Micromachines
14
(
11
),
2059
(
2023
).
26.
C.
Nie
,
A. J. H.
Frijns
,
R.
Mandamparambil
, and
J. M. J.
den Toonder
,
Biomed. Microdevices
17
(
2
),
47
(
2015
).
27.
A. J.
Bandodkar
,
D.
Molinnus
,
O.
Mirza
,
T.
Guinovart
,
J. R.
Windmiller
,
G.
Valdés-Ramírez
,
F. J.
Andrade
,
M. J.
Schöning
, and
J.
Wang
,
Biosens. Bioelectron.
54
,
603
609
(
2014
).
28.
E. K.
Wujcik
,
N. J.
Blasdel
,
D.
Trowbridge
, and
C. N.
Monty
,
IEEE Sens. J.
13
(
9
),
3430
3436
(
2013
).
29.
W.
Ji
,
H.
Liu
,
Y.
Liu
,
W.
Zhang
,
T.
Zhou
,
X.
Liu
,
C.
Tao
,
J.
Dai
,
B.
Zha
,
R.
Xie
,
J.
Wu
,
Q.
Wu
,
W.
Zhang
,
L.
Li
, and
F.
Huo
,
npj Flexible Electron.
7
(
1
),
53
(
2023
).
30.
J.
Liao
,
X.
Zhang
,
Z.
Sun
,
H.
Chen
,
J.
Fu
,
H.
Si
,
C.
Ge
, and
S.
Lin
,
Biosensors
12
(
6
),
397
(
2022
).
31.
M.
Bauer
,
L.
Wunderlich
,
F.
Weinzierl
,
Y.
Lei
,
A.
Duerkop
,
H. N.
Alshareef
, and
A. J.
Baeumner
,
Anal. Bioanal. Chem.
413
(
3
),
763
777
(
2021
).
32.
M.
Parrilla
,
I.
Ortiz-Gómez
,
R.
Cánovas
,
A.
Salinas-Castillo
,
M.
Cuartero
, and
G. A.
Crespo
,
Anal. Chem.
91
(
13
),
8644
8651
(
2019
).
33.
T.
Chen
,
X.
Li
,
C.
Qiu
,
W.
Zhu
,
H.
Ma
,
S.
Chen
, and
O.
Meng
,
Biosens. Bioelectron.
53
,
200
206
(
2014
).
34.
W.
Liu
,
H.
Cheng
, and
X.
Wang
,
npj Flexible Electron.
7
(
1
),
43
(
2023
).
35.
Y.
Zhu
and
K.
Petkovic-Duran
,
Microfluid. Nanofluid.
8
(
2
),
275
282
(
2010
).
36.
E. W.
Lam
,
G. A.
Cooksey
,
B. A.
Finlayson
, and
A.
Folch
,
Appl. Phys. Lett.
89
(
16
),
164105
(
2006
).
37.
J.
Niu
,
S.
Lin
,
D.
Chen
,
Z.
Wang
,
C.
Cao
,
A.
Gao
,
S.
Cui
,
Y.
Liu
,
Y.
Hong
,
X.
Zhi
, and
D.
Cui
,
Small
20
(11),
2306769
(
2023
).
38.
H.
Zhang
,
L.
Sun
,
C.
Song
,
Y.
Liu
,
X.
Xuan
,
F.
Wang
,
J.
Zhong
, and
L.
Sun
,
Sens. Rev.
42
(
1
),
76
88
(
2022
).
39.
Y.
Yang
,
Y.
Song
,
X.
Bo
,
J.
Min
,
O. S.
Pak
,
L.
Zhu
,
M.
Wang
,
J.
Tu
,
A.
Kogan
,
H.
Zhang
,
T. K.
Hsiai
,
Z.
Li
, and
W.
Gao
,
Nat. Biotechnol.
38
(
2
),
217
224
(
2020
).
40.
M.
Liu
,
S.
Wang
,
Z.
Xiong
,
Z.
Zheng
,
N.
Ma
,
L.
Li
,
Q.
Gao
,
C.
Ge
,
Y.
Wang
, and
T.
Zhang
,
Biosens. Bioelectron.
237
,
115504
(
2023
).
41.
L.
Wei
,
Y.
He
,
Z.
Lv
,
D.
Guo
,
L.
Cheng
,
H.
Wu
, and
A.
Liu
,
Biosensors
13
(
1
), 67 (
2023
).
42.
D.
Mukasa
,
M.
Wang
,
J.
Min
,
Y.
Yang
,
S. A.
Solomon
,
H.
Han
,
C.
Ye
, and
W.
Gao
,
Adv. Mater.
35
(
35
),
2212161
(
2023
).
43.
S.
Kim
,
J.
Kang
,
I.
Lee
,
J.
Jang
,
C. B.
Park
,
W.
Lee
, and
B.-S.
Bae
,
npj Flexible Electron.
7
(
1
),
33
(
2023
).
44.
A.
Abellán-Llobregat
,
I.
Jeerapan
,
A.
Bandodkar
,
L.
Vidal
,
A.
Canals
,
J.
Wang
, and
E.
Morallón
,
Biosens. Bioelectron.
91
,
885
891
(
2017
).
45.
Z.
Noura
,
I.
Shah
,
S.
Aziz
,
A.
Ahmed
,
D.-W.
Jung
,
L.
Brahim
, and
R.
ElMostafa
,
Sensors
22
(
22
),
8971
(
2022
).
You do not currently have access to this content.