The integration of microfabrication and microfluidics techniques into cell culture technology has significantly transformed cell culture conditions, scaffold architecture, and tissue biofabrication. These tools offer precise control over cell positioning and enable high-resolution analysis and testing. Culturing cells in 3D systems, such as spheroids and organoids, enables recapitulating the interaction between cells and the extracellular matrix, thereby allowing the creation of human-based biomimetic tissue models that are well-suited for pre-clinical drug screening. Here, we demonstrate an innovative microfluidic device for the formation, culture, and testing of hepatocyte spheroids, which comprises a large array of patterned microwells for hosting hepatic spheroid culture in a reproducible and organized format in a dynamic fluidic environment. The device allows maintaining and characterizing different spheroid sizes as well as exposing to various drugs in parallel enabling high-throughput experimentation. These liver spheroids exhibit physiologically relevant hepatic functionality, as evidenced by their ability to produce albumin and urea at levels comparable to in vivo conditions and the capability to distinguish the toxic effects of selected drugs. This highlights the effectiveness of the microenvironment provided by the chip in maintaining the functionality of hepatocyte spheroids. These data support the notion that the liver-spheroid chip provides a favorable microenvironment for the maintenance of hepatocyte spheroid functionality.

1.
Q.
Ramadan
,
D. R.
Perinelli
,
L.
Orian
, and
S.
Baratchi
, “
Editorial: Innovative approaches in drug discovery and development
,”
Front. Med. Technol.
5
,
1206088
(
2023
).
2.
R. G.
Harrison
,
M. J.
Greenman
,
F. B.
Mall
, and
C. M.
Jackson
,
Anat. Rec.
1
,
116
128
(
2005
).
3.
M.
Kapałczyńska
,
T.
Kolenda
,
W.
Przybyła
,
M.
Zajączkowska
,
A.
Teresiak
,
V.
Filas
, and
K.
Lamperska
, “
2D and 3D cell cultures—A comparison of different types of cancer cell cultures
,”
Arch. Med. Res.
14
,
910
919
(
2018
).
4.
H.
Gonzalez
,
C.
Hagerling
, and
Z.
Werb
, “
Roles of the immune system in cancer: From tumor initiation to metastatic progression
,”
Genes Dev.
32
,
1267
1284
(
2018
).
5.
A. G.
Souza
et al, “
Comparative assay of 2D and 3D cell culture models: Proliferation, gene expression and anticancer drug response
,”
Curr. Pharm. Des.
24
,
1689
1694
(
2018
).
6.
G.
Fang
,
C.
Chen
,
H.
Lu
, and
D.
Jin
, “
Advances in spheroids and organoids on a chip
,”
Adv. Funct. Mater.
33
,
2215043
(
2023
).
7.
H.
Clevers
, “
Modeling development and disease with organoids
,”
Cell
165
,
1586
1597
(
2016
).
8.
F.
Hirschhaeuser
,
H.
Menne
,
C.
Dittfeld
,
J.
West
,
W.
Mueller-Klieser
, and
L. A.
Kunz-Schughart
, “
Multicellular tumor spheroids: An underestimated tool is catching up again
,”
J. Biotechnol.
148
,
3
15
(
2010
).
9.
N.
Brandenberg
,
S.
Hoehnel
,
F.
Kuttler
,
K.
Homicsko
,
C.
Ceroni
,
T.
Ringel
,
N.
Gjorevski
,
G.
Schwank
,
G.
Coukos
,
G.
Turcatti
, and
M. P.
Lutolf
, “
High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays
,”
Nat. Biomed. Eng.
4
,
863
874
(
2020
).
10.
Q.
Ramadan
and
M.
Zourob
, “
Organ-on-a-chip engineering: Toward bridging the gap between lab and industry
,”
Biomicrofluidics
14
,
041501
(
2020
).
11.
A.
Bhushan
,
N.
Senutovitch
,
S. S.
Bale
,
W. J.
McCarty
,
M.
Hegde
,
R.
Jindal
, and
D.
Lansing Taylor
, “
Towards a three-dimensional microfluidic liver platform for predicting drug efficacy and toxicity in humans
,”
Stem cell Res. Ther.
4
,
1
6
(
2013
).
12.
M.
Hegde
,
R.
Jindal
,
A.
Bhushan
,
S. S.
Bale
,
W. J.
McCarty
,
I.
Golberg
, and
M. L.
Yarmush
, “
Dynamic interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic platform
,”
Lab Chip
14
,
2033
2039
(
2014
).
13.
M. A.
Nguyen
,
N. T.
Dinh
,
M. H.
Do Thi
,
D.
Nguyen Thi
,
U. T.
Pham
,
T. Q.
Tran
, and
D. T. N.
Pham
, “
Simple and rapid method of microwell array fabrication for drug testing on 3D cancer spheroids
,”
ACS Omega
9
,
16949
16958
(
2024
).
14.
G. H.
Underhill
and
S. R.
Khetani
, “
Advances in engineered human liver platforms for drug metabolism studies
,”
Drug Metab. Dispos.
46
,
1626
1637
(
2018
).
15.
Q.
Ramadan
,
R. S.
Fardous
,
R.
Hazaymeh
,
S.
Alshmmari
, and
M.
Zourob
, “
Pharmacokinetics-on-a-chip: In vitro microphysiological models for emulating of drugs ADME
,”
Adv. Biol.
5
,
2100775
(
2021
).
16.
G. H.
Underhill
and
S. R.
Khetani
, “
Bioengineered liver models for drug testing and cell differentiation studies
,”
Cell. Mol. Gastroenterol. Hepatol.
5
,
426
439.e1
(
2018
).
17.
J.
Ko
,
D.
Park
,
J.
Lee
,
S.
Jung
,
K.
Baek
,
K. E.
Sung
, and
N. L.
Jeon
, “
Microfluidic high-throughput 3D cell culture
,”
Nat. Rev. Bioeng.
(published online) (
2024
).
18.
A.
Tevlek
,
S.
Kecili
,
O. S.
Ozcelik
,
H.
Kulah
, and
H. C.
Tekin
, “
Spheroid engineering in microfluidic devices
,”
ACS Omega
8
,
3630
3649
(
2023
).
19.
J. M.
de Hoyos-Vega
,
H. J.
Hong
,
G.
Stybayeva
, and
A.
Revzin
, “
Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors
,”
APL Bioeng.
5
,
041504
(
2021
).
20.
M.
Krishna
, “
Microscopic anatomy of the liver
,”
Clin. Liver Dis.
2
,
S4
(
2013
).
21.
T.
Kietzmann
, “
Metabolic zonation of the liver: The oxygen gradient revisited
,”
Redox Biol.
11
,
622
630
(
2017
).
22.
S.
Babai
,
L.
Auclert
, and
H.
Le-Louët
, “
Safety data and withdrawal of hepatotoxic drugs
,”
Therapie
76
,
715
723
(
2021
).
23.
E.
Raschi
and
F.
De Ponti
, “
Strategies for early prediction and timely recognition of drug-induced liver injury: The case of cyclin-dependent kinase 4/6 inhibitors
,”
Front. Pharmacol.
10
,
481015
(
2019
).
24.
F. A.
Atienzar
,
E. A.
Blomme
,
M.
Chen
,
P.
Hewitt
,
J. G.
Kenna
,
G.
Labbe
,
F.
Moulin
,
F.
Pognan
,
A. B.
Roth
,
L.
Suter-Dick
,
O.
Ukairo
,
R. J.
Weaver
,
Y.
Will
, and
D. M.
Dambach
, “
Key challenges and opportunities associated with the use of in vitro models to detect human DILI: Integrated risk assessment and mitigation plans
,”
Biomed. Res. Int.
2016
,
9737920
.
25.
I. J.
Onakpoya
,
C. J.
Heneghan
, and
J. K.
Aronson
, “
Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature
,”
BMC Med.
14
,
1
11
(
2016
).
27.
S. C.
Ramaiahgari
,
M. W.
den Braver
,
B.
Herpers
et al, “
A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies
,”
Arch. Toxicol.
88
,
1083
1095
(
2014
).
28.
H.
Gaskell
,
P.
Sharma
,
H. E.
Colley
,
C.
Murdoch
,
D. P.
Williams
, and
S. D.
Webb
, “
Characterization of a functional C3A liver spheroid model
,”
Toxicol. Res.
5
,
1053
1065
(
2016
).
29.
S.
Hong
and
J. M.
Song
, “
A 3D cell printing-fabricated HepG2 liver spheroid model for high-content in situ quantification of drug-induced liver toxicity
,”
Biomater. Sci.
9
,
5939
5950
(
2021
).
30.
X.
Zhu
,
Q.
Wu
,
Y.
He
,
M.
Gao
,
Y.
Li
,
W.
Peng
,
S.
Li
,
Y.
Liu
,
R.
Zhang
, and
J.
Bao
, “
Fabrication of size-controllable and arrangement-orderly HepG2 spheroids for drug screening via decellularized liver matrix-derived micropattern array chips
,”
ACS Omega
7
,
2364
2376
(
2022
).
31.
S. C.
Ramaiahgari
,
S.
Waidyanatha
,
D.
Dixon
,
M. J.
DeVito
,
R. S.
Paules
, and
S. S.
Ferguson
, “
Three-dimensional (3D) HepaRG spheroid model with physiologically relevant xenobiotic metabolism competence and hepatocyte functionality for liver toxicity screening
,”
Toxicol. Sci.
159
,
124
136
(
2017
).
32.
L. M.
Otte
,
K.
Ramachandran
, and
L.
Stehno-Bittel
, “
An automated multiplexed hepatotoxicity and CYP induction assay using HepaRG cells in 2D and 3D
,”
SLAS Discov.
22
,
614
625
(
2017
).
33.
J.
Liu
,
R.
Li
,
R.
Xue
,
T.
Li
,
L.
Leng
,
Y.
Wang
et al, “
Liver extracellular matrices bioactivated hepatic spheroids as a model system for drug hepatotoxicity evaluations
,”
Adv. Biosyst.
2
,
1800110
(
2018
).
34.
H. R.
Jung
,
H. M.
Kang
,
J. W.
Ryu
et al, “
Cell spheroids with enhanced aggressiveness to mimic human liver cancer in vitro and in vivo
,”
Sci. Rep.
7
,
10499
(
2017
).
35.
Q.
Wang
,
J.
Liu
,
W.
Yin
,
D.
Sun
,
Z.
Man
,
S.
Jiang
,
X.
Ran
,
Y.
Su
,
Y.
Wang
, and
J.
Dong
, “
Generation of multicellular tumor spheroids with micro-well array for anticancer drug combination screening based on a valuable biomarker of hepatocellular carcinoma
,”
Front. Bioeng. Biotechnol.
10
,
1087656
(
2022
).
36.
B.
Bulutoglu
,
C.
Rey-Bedón
,
S.
Mert
,
L.
Tian
,
Y. Y.
Jang
,
M. L.
Yarmush
, and
O. B.
Usta
, “
A comparison of hepato-cellular in vitro platforms to study CYP3A4 induction
,”
PLoS One
15
,
e0229106
(
2020
).
37.
T.
Ogihara
,
H.
Arakawa
,
T.
Jomura
,
Y.
Idota
,
S.
Koyama
,
K.
Yano
et al, “
Utility of human hepatocyte spheroids without feeder cells for evaluation of hepatotoxicity
,”
J. Toxicol. Sci.
42
,
499
507
(
2017
).
38.
D. F. G.
Hendriks
,
L.
Fredriksson Puigvert
,
S.
Messner
,
W.
Mortiz
, and
M.
Ingelman-Sundberg
, “
Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability
,”
Sci. Rep.
6
,
35434
(
2016
).
39.
M.
Kozyra
,
I.
Johansson
,
Å
Nordling
,
S.
Ullah
,
V. M.
Lauschke
, and
M.
Ingelman-Sundberg
, “
Human hepatic 3D spheroids as a model for steatosis and insulin resistance
,”
Sci. Rep.
8
,
14297
(
2018
).
40.
S. U.
Vorrink
,
Y.
Zhou
,
M.
Ingelman-Sundberg
, and
V. M.
Lauschke
, “
Prediction of drug-induced hepatotoxicity using long-term stable primary hepatic 3D spheroid cultures in chemically defined conditions
,”
Toxicol. Sci.
163
,
655
665
(
2018
).
41.
Y.
Zhou
,
J. X.
Shen
, and
V. M.
Lauschke
, “
Comprehensive evaluation of organotypic and microphysiological liver models for prediction of drug-induced liver injury
,”
Front. Pharmacol.
10
,
1093
(
2019
).
42.
F.
Meier
,
N.
Freyer
,
J.
Brzeszczynska
,
F.
Knöspel
,
L.
Armstrong
,
M.
Lako
et al, “
Hepatic differentiation of human iPSCs in different 3D models: A comparative study
,”
Int. J. Mol. Med.
40
,
1759
1771
(
2017
).
43.
C.
Olgasi
,
A.
Cucci
, and
A.
Follenzi
, “
iPSC-Derived liver organoids: A journey from drug screening, to disease modeling, arriving to regenerative medicine
,”
Int. J. Mol. Sci.
21
,
6215
(
2020
).
44.
K. D.
Asensi
,
R. C. S.
Menezes
,
V.
Hoff
,
L. A. P.
Faccioli
,
T. H.
Kasai-Brunswick
, and
R. C. S.
Goldenberg
, “
Strategies for hepatocytes differentiation derived from induced pluripotent stem cells using spheroids
,”
Cytotherapy
23
,
34
35
(
2021
).
45.
S. R.
Khetani
, “
Pluripotent stem cell-derived human liver organoids enter the realm of high-throughput drug screening
,”
Gastroenterology
160
,
653
655
(
2021
).
46.
T.
Shinozawa
,
M.
Kimura
,
Y.
Cai
,
N.
Saiki
,
Y.
Yoneyama
,
R.
Ouchi
, and
T.
Takebe
, “
High-fidelity drug-induced liver injury screen using human pluripotent stem cell–derived organoids
,”
Gastroenterology
160
,
831
846.e10
(
2021
).
47.
T. T.
Chang
and
M.
Hughes-Fulford
, “
Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes
,”
Tissue Eng. Part A
15
,
559
567
(
2009
).
48.
Y.
Takahashi
,
Y.
Hori
,
T.
Yamamoto
,
T.
Urashima
,
Y.
Ohara
, and
H.
Tanaka
, “
Three-dimensional (3D) spheroid cultures improve the metabolic gene expression profiles of HepaRG cells
,”
Biosci. Rep.
35
,
1
7
(
2015
).
49.
A. A.
Ellero
,
I.
van den Bout
,
M.
Vlok
et al, “
Continual proteomic divergence of HepG2 cells as a consequence of long-term spheroid culture
,”
Sci. Rep.
11
,
10917
(
2021
).
50.
S.
Yang
,
M.
Ooka
,
R. J.
Margolis
, and
M.
Xia
, “
Liver three-dimensional cellular models for high-throughput chemical testing
,”
Cell Rep. Methods
3
,
100432
(
2023
).
51.
C. C.
Bell
,
A. C. A.
Dankers
,
V. M.
Lauschke
,
R.
Sison-Young
,
R.
Jenkins
,
C.
Rowe
,
C. E.
Goldring
,
K.
Park
,
S. L.
Regan
,
T.
Walker
,
C.
Schofield
,
A.
Baze
,
A. J.
Foster
,
D. P.
Williams
,
A. W. M.
van de Ven
,
F.
Jacobs
,
J. V.
Houdt
,
T.
Lähteenmäki
,
J.
Snoeys
,
S.
Juhila
,
L.
Richert
, and
M.
Ingelman-Sundberg
, “
Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: A multicenter study
,”
Toxicol. Sci.
162
,
655
666
(
2018
).
52.
K. M.
Bircsak
,
R.
DeBiasio
,
M.
Miedel
,
A.
Alsebahi
,
R.
Reddinger
,
A.
Saleh
,
T.
Shun
,
L. A.
Vernetti
, and
A.
Gough
, “
A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate®
,”
Toxicology
450
,
152667
(
2021
).
53.
Y.
Chen
,
D.
Gao
,
H.
Liu
,
S.
Lin
, and
Y.
Jiang
, “
Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening
,”
Anal. Chim. Acta
898
,
85
92
(
2015
).
54.
L.
Ewart
,
A.
Apostolou
,
S. A.
Briggs
,
C. V.
Carman
,
J. T.
Chaff
,
A. R.
Heng
,
S.
Jadalannagari
,
J.
Janardhanan
,
K.-J.
Jang
,
S. R.
Joshipura
et al, “Qualifying a human liver-chip for predictive toxicology: Performance assessment and economic implications,” BioRxiv (2021).
55.
J. M.
de Hoyos-Vega
,
A. M.
Gonzalez-Suarez
,
D. F.
Cedillo-Alcantar
,
G.
Stybayeva
,
A.
Matveyenko
,
H.
Malhi
, and
A.
Revzin
, “
Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit
,”
Biosens. Bioelectron.
248
,
115896
(
2024
).
56.
T. D.
Do
,
U. T.
Pham
,
L. P.
Nguyen
,
T. M.
Nguyen
,
C. N.
Bui
,
S.
Oliver
, and
D. T.
Nguyen
, “
Fabrication of a low-cost microfluidic device for high-throughput drug testing on static and dynamic cancer spheroid culture models
,”
Diagnostics
13
,
1394
(
2023
).
57.
M.
Hecker
,
S. H.
Ting M
, and
J.
Malmström
, “
Simple coatings to render polystyrene protein resistant
,”
Coatings
8
,
55
(
2018
).
58.
Clinical and Laboratory Standards Institute
,
Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline
, 4th ed. (
Clinical and Laboratory Standards Institute
,
Wayne, PA
,
2014
). CLSI Document M29-A4.
59.
M. A.
Badea
,
M.
Balas
,
A.
Hermenean
,
A.
Ciceu
,
H.
Herman
,
D.
Ionita
, and
A.
Dinischiotu
, “
Influence of Matrigel on single- and multiple-spheroid cultures in breast cancer research
,”
SLAS Discov.
24
,
563
578
(
2019
).
60.
K.-J.
Jang
et al, “
Reproducing human and cross-species drug toxicities using a liver-chip
,”
Sci. Transl. Med.
11
,
eaax5516
(
2019
).
61.
L.
Ewart
,
A.
Apostolou
,
S. A.
Briggs
et al, “
Performance assessment and economic analysis of a human liver-chip for predictive toxicology
,”
Commun. Med.
2
,
154
(
2022
).
62.
L.
Zheng
, “
Metformin as a rare cause of drug-induced liver injury a case report and literature review
,”
Am. J. Ther.
23
,
e315
e317
(
2016
).
63.
C.
Wang
,
H.
Deng
,
Y.
Xu
, and
Y.
Liu
, “
Literature review of the clinical characteristics of metformin-induced hepatotoxicity
,”
Front. Pharmacol.
13
,
969505
(
2022
).

Supplementary Material

You do not currently have access to this content.