Biofilms are communities formed by bacteria adhering to surfaces, widely present in porous medium, and their growth can lead to clogging. Our experiment finds that under certain flow conditions, biofilms detach in pores and form a dynamically changing flow path. We define detachment that occurs far from the boundary of the flow path (with a distance greater than 200 μm) as internal detachment and detachment that occurs at the boundary of the flow path as external detachment. To understand the mechanism of biofilm detachment, we study the detachment behaviors of the Bacillus subtilis biofilm in a porous medium in a microfluidic device, where Bacillus subtilis strain is triple fluorescent labeled, which can represent three main phenotypes during the biofilm formation: motile cells, matrix-producing cells, and spores. We find that slow small-scale internal detachment occurs in regions with very few motile cells and matrix-producing cells, and bacterial movement in these areas is disordered. The increase in the number of matrix-producing cells induces clogging, and after clogging, the rapid detachment of the bulk internal biofilm occurs due to the increased pressure difference at the inlet and outlet. When both internal and external detachments occur simultaneously, the number of matrix-producing cells in the internal detachment area is 2.5 times that in the external detachment area. The results indicate that biofilm detachment occurs in areas with fewer matrix-producing cells, as matrix-producing cells can help resist detachment by secreting extracellular polymeric substances (EPSs).

1.
Aufrecht
,
J. A.
,
Fowlkes
,
J. D.
,
Bible
,
A. N.
,
Morrell-Falvey
,
J.
,
Doktycz
,
M. J.
, and
Retterer
,
S. T.
, “
Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network
,”
PLoS One
14
,
e0218316
(
2019
).
2.
Beauregard
,
P. B.
,
Chai
,
Y. R.
,
Vlamakis
,
H.
,
Losick
,
R.
, and
Kolter
,
R.
, “
Bacillus subtilis biofilm induction by plant polysaccharides
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
E1621
E1630
(
2013
).
3.
Bottero
,
S.
,
Storck
,
T.
,
Heimovaara
,
T. J.
,
van Loosdrecht
,
M. C. M.
,
Enzien
,
M. V.
, and
Picioreanu
,
C.
, “
Biofilm development and the dynamics of preferential flow paths in porous media
,”
Biofouling
29
,
1069
1086
(
2013
).
4.
Charbonneau
,
A.
,
Novakowski
,
K.
, and
Ross
,
N.
, “
The effect of a biofilm on solute diffusion in fractured porous media
,”
J. Contam. Hydrol.
85
,
212
228
(
2006
).
5.
Deng
,
W.
,
Cardenas
,
M. B.
,
Kirk
,
M. F.
,
Altman
,
S. J.
, and
Bennett
,
P. C.
, “
Effect of permeable biofilm on micro- and macro-scale flow and transport in bioclogged pores
,”
Environ. Sci. Technol.
47
,
11092
11098
(
2013
).
6.
Drescher
,
K.
,
Shen
,
Y.
,
Bassler
,
B. L.
, and
Stone
,
H. A.
, “
Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
4345
4350
(
2013
).
7.
Ertelt
,
M. J.
,
Eicheler
,
C.
,
Machner
,
A.
, and
Lieleg
,
O.
, “
Durability of biofilm-enriched hybrid mortar towards chemical and physical challenges
,”
Mater. Lett.
326
,
132937
(
2022
).
8.
Gan
,
W. T.
,
Guo
,
X. J.
,
Huang
,
Y.
,
Zhu
,
X. Q.
,
Xia
,
A.
,
Zhu
,
X.
, and
Liao
,
Q.
, “
Temperature-controlled bacteria biofilm adhesion and formation for CO/CO2 bioconversion to ethanol by grafting N-isopropylacrylamide@SiC
,”
Chem. Eng. J.
451
,
11
(
2023
).
9.
Gröesbacher
,
M.
,
Eckert
,
D.
,
Cirpka
,
O. A.
, and
Griebler
,
C.
, “
Contaminant concentration versus flow velocity: Drivers of biodegradation and microbial growth in groundwater model systems
,”
Biodegradation
29
,
211
232
(
2018
).
10.
Hashem
,
A.
,
Tabassum
,
B.
, and
Abd Allah
,
E. F.
, “
Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress
,”
Saudi J. Biol. Sci.
26
,
1291
1297
(
2019
).
11.
Hou
,
J.
,
Veeregowda
,
D. H.
,
van de Belt-Gritter
,
B.
,
Busscher
,
H. J.
, and
van der Mei
,
H. C.
, “
Extracellular polymeric matrix production and relaxation under fluid shear and mechanical pressure in Staphylococcus aureus biofilms
,”
Appl. Environ. Microbiol.
84,
e01516–17 (
2018
).
12.
Hwang
,
G.
,
Klein
,
M. I.
, and
Koo
,
H.
, “
Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces
,”
Biofouling
30
,
1079
1091
(
2014
).
13.
Jamal
,
M.
,
Ahmad
,
W.
,
Andleeb
,
S.
,
Jalil
,
F.
,
Imran
,
M.
,
Nawaz
,
M. A.
, et al, “
Bacterial biofilm and associated infections
,”
J. Chin. Med. Assoc.
81
,
7
11
(
2018
).
14.
Jang
,
H.
,
Rusconi
,
R.
, and
Stocker
,
R.
, “
Biofilm disruption by an air bubble reveals heterogeneous age-dependent detachment patterns dictated by initial extracellular matrix distribution
,”
npj Biofilms Microbiomes
3
, 6 (
2017
).
15.
Jung
,
H.
and
Meile
,
C.
, “
Pore-scale numerical investigation of evolving porosity and permeability driven by biofilm growth
,”
Transp. Porous Media
139
,
203
221
(
2021
).
16.
Karimifard
,
S.
,
Li
,
X.
,
Elowsky
,
C.
, and
Li
,
Y.
, “
Modeling the impact of evolving biofilms on flow in porous media inside a microfluidic channel
,”
Water Res.
188
,
116536
(
2021
).
17.
Kurz
,
D. L.
,
Secchi
,
E.
,
Carrillo
,
F. J.
,
Bourg
,
I. C.
,
Stocker
,
R.
, and
Jimenez-Martinez
,
J.
, “
Competition between growth and shear stress drives intermittency in preferential flow paths in porous medium biofilms
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2122202119
(
2022
).
18.
Kurz
,
D. L.
,
Secchi
,
E.
,
Stocker
,
R.
, and
Jimenez-Martinez
,
J.
, “
Morphogenesis of biofilms in porous media and control on hydrodynamics
,”
Environ. Sci. Technol.
57
,
5666
5677
(
2023
).
19.
Lee
,
S. H.
,
Secchi
,
E.
, and
Kang
,
P. K.
, “
Rapid formation of bioaggregates and morphology transition to biofilm streamers induced by pore-throat flows
,”
Proc. Natl. Acad. Sci. U.S.A.
120
, e2204466120 (
2023
).
20.
Li
,
S.
,
Liu
,
S. Y.
,
Chan
,
S. Y.
, and
Chua
,
S. L.
, “
Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection
,”
ISME J.
16
,
1388
1396
(
2022
).
21.
Muhammad
,
M. H.
,
Idris
,
A. L.
,
Fan
,
X.
,
Guo
,
Y.
,
Yu
,
Y.
,
Jin
,
X.
, et al, “
Beyond risk: Bacterial biofilms and their regulating approaches
,”
Front. Microbiol.
11
, 928 (
2020
).
22.
Pan
,
L.
,
Xie
,
X.
,
Wang
,
J.
, and
Dong
,
H.
, “
Preparation of denitrification and dephosphorization biological fillers and its effect on treatment of rural domestic sewage
,”
Trans. Chin. Soc. Agric. Eng.
33
,
230
236
(
2017
).
23.
Pereira
,
J. F. B.
,
Gudiña
,
E. J.
,
Costa
,
R.
,
Vitorino
,
R.
,
Teixeira
,
J. A.
,
Coutinho
,
J. A. P.
, and
Rodrigues
,
L. R.
, “
Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications
,”
Fuel
111
,
259
268
(
2013
).
24.
Qin
,
Y.
,
Angelini
,
L. L.
, and
Chai
,
Y.
, “
Bacillus subtilis cell differentiation, biofilm formation and environmental prevalence
,”
Microorganisms
10
, 1108 (
2022
).
25.
Saxena
,
A. K.
,
Kumar
,
M.
,
Chakdar
,
H.
,
Anuroopa
,
N.
, and
Bagyaraj
,
D. J.
, “
Bacillus species in soil as a natural resource for plant health and nutrition
,”
J. Appl. Microbiol.
128
,
1583
1594
(
2020
).
26.
Stewart
,
T. L.
and
Fogler
,
H. S.
, “
Pore-scale investigation of biomass plug development and propagation in porous media
,”
Biotechnol. Bioeng.
77
,
577
588
(
2002
).
27.
Tsagkari
,
E.
,
Connelly
,
S.
,
Liu
,
Z.
,
McBride
,
A.
, and
Sloan
,
W. T.
, “
The role of shear dynamics in biofilm formation
,”
npj Biofilms Microbiomes
8
, 33 (
2022
).
28.
Van Acker
,
H.
,
Van Dijck
,
P.
, and
Coenye
,
T.
, “
Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms
,”
Trends Microbiol.
22
,
326
333
(
2014
).
29.
Vlamakis
,
H.
,
Chai
,
Y.
,
Beauregard
,
P.
,
Losick
,
R.
, and
Kolter
,
R.
, “
Sticking together: Building a biofilm the Bacillus subtilis way
,”
Nat. Rev. Microbiol.
11
,
157
168
(
2013
).
30.
Wang
,
C.
,
Miao
,
L.
,
Hou
,
J.
,
Wang
,
P.
,
Qian
,
J.
, and
Dai
,
S.
, “
The effect of flow velocity on the distribution and composition of extracellular polymeric substances in biofilms and the detachment mechanism of biofilms
,”
Water Sci. Technol.
69
,
825
832
(
2014
).
31.
Xia
,
Y.
,
Jayathilake
,
P. G.
,
Li
,
B.
,
Zuliani
,
P.
,
Deehan
,
D.
,
Longyear
,
J.
, et al, “
Coupled CFD-DEM modeling to predict how EPS affects bacterial biofilm deformation, recovery and detachment under flow conditions
,”
Biotechnol. Bioeng.
119
,
2551
2563
(
2022
).
32.
Xing
,
X.
,
Wang
,
H.
,
Hu
,
C.
, and
Liu
,
L.
, “
Characterization of bacterial community and iron corrosion in drinking water distribution systems with O3-biological activated carbon treatment
,”
J. Environ. Sci.
69
,
192
204
(
2018
).
33.
Yan
,
X.
,
Zhou
,
Y. X.
,
Tang
,
X. X.
,
Liu
,
X. X.
,
Yi
,
Z. W.
,
Fang
,
M. J.
, et al, “
Macrolactins from marine-derived Bacillus subtilis B5 bacteria as inhibitors of inducible nitric oxide and cytokines expression
,”
Mar. Drugs
14
, 195 (
2016
).
34.
Yao
,
C.
,
Meng
,
X.
,
Qu
,
X.
,
Cheng
,
T.
,
Da
,
Q. A.
,
Zhang
,
K.
, and
Lei
,
G.
, “
Kinetic model and numerical simulation of microbial growth, migration, and oil displacement in reservoir porous media
,”
ACS Omega
7
,
32549
32561
(
2022
).
35.
Ye
,
S.
,
Sleep
,
B. E.
, and
Chien
,
C.
, “
The impact of methanogenesis on flow and transport in coarse sand
,”
J. Contam. Hydrol.
103
,
48
57
(
2009
).
36.
Yuan
,
L.
,
Straub
,
H.
,
Shishaeva
,
L.
, and
Ren
,
Q.
, “
Microfluidics for biofilm studies
,”
Annu. Rev. Anal. Chem.
16
,
139
159
(
2023
).
You do not currently have access to this content.