The global impact of cancer on human health has raised significant concern. In this context, the tumor microenvironment (TME) plays a pivotal role in the tumorigenesis and malignant progression. In order to enhance the accuracy and efficacy of therapeutic outcomes, there is an imminent requirement for in vitro models that can accurately replicate the intricate characteristics and constituents of TME. Microfluidic devices exhibit notable advantages in investigating the progression and treatment of tumors and have the potential to become a novel methodology for evaluating immune cell activities in TME and assist clinicians in assessing the prognosis of patients. In addition, it shows great advantages compared to traditional cell experiments. Therefore, the review first outlines the applications and advantages of microfluidic chips in facilitating tumor cell culture, constructing TME and investigating immune cell activities. Second, the roles of microfluidic devices in the analysis of circulating tumor cells, tumor prognosis, and drug screening have also been mentioned. Moreover, a forward-looking perspective is discussed, anticipating the widespread clinical adoption of microfluidic devices in the future.

1.
D. F.
Quail
and
J. A.
Joyce
, “
Microenvironmental regulation of tumor progression and metastasis
,”
Nat. Med.
19
,
1423
1437
(
2013
).
2.
R. L.
Siegel
,
K. D.
Miller
,
N. S.
Wagle
, and
A.
Jemal
, “
Cancer statistics, 2023
,”
CA Cancer J. Clin.
73
,
17
48
(
2023
).
3.
C.
Belli
,
D.
Trapani
,
G.
Viale
,
P.
D'Amico
,
B. A.
Duso
,
P.
Della Vigna
,
F.
Orsi
, and
G.
Curigliano
, “
Targeting the microenvironment in solid tumors
,”
Cancer Treat. Rev.
65
,
22
32
(
2018
).
4.
K. E.
de Visser
and
J. A.
Joyce
, “
The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth
,”
Cancer Cell
41
,
374
403
(
2023
).
5.
A.
Tiwari
,
R.
Trivedi
, and
S. Y.
Lin
, “
Tumor microenvironment: Barrier or opportunity towards effective cancer therapy
,”
J. Biomed. Sci.
29
,
83
(
2022
).
6.
B.
Arneth
, “
Tumor microenvironment
,”
Medicina (Kaunas)
56
,
15
(
2020
).
7.
M. Z.
Jin
and
W. L.
Jin
, “
The updated landscape of tumor microenvironment and drug repurposing
,”
Signal Transduct. Target. Ther.
5
,
166
(
2020
).
8.
X.
Lei
,
Y.
Lei
,
J. K.
Li
,
W. X.
Du
,
R. G.
Li
,
J.
Yang
,
J.
Li
,
F.
Li
, and
H. B.
Tan
, “
Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy
,”
Cancer Lett.
470
,
126
133
(
2020
).
9.
T.
Wu
and
Y.
Dai
, “
Tumor microenvironment and therapeutic response
,”
Cancer Lett.
387
,
61
68
(
2017
).
10.
L. B.
Kennedy
and
A. K. S. A.
Salama
, “
A review of cancer immunotherapy toxicity
,”
CA Cancer J. Clin.
70
,
86
104
(
2020
).
11.
R. S.
Riley
,
C. H.
June
,
R.
Langer
, and
M. J.
Mitchell
, “
Delivery technologies for cancer immunotherapy
,”
Nat. Rev. Drug Discov.
18
,
175
196
(
2019
).
12.
Y.
Zhang
and
Z.
Zhang
, “
The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications
,”
Cell Mol. Immunol.
17
,
807
821
(
2020
).
13.
M.
Buoncervello
,
L.
Gabriele
, and
E.
Toschi
, “
The Janus face of tumor microenvironment targeted by immunotherapy
,”
Int. J. Mol. Sci.
20
,
4320
(
2019
).
14.
E. J.
Lee
,
Z. L.
Krassin
,
H. E.
Abaci
,
G. J.
Mahler
, and
M. B.
Esch
, “
Pumped and pumpless microphysiological systems to study (nano)therapeutics
,”
Wiley Interdiscip. Rev. Comput. Mol. Sci.
15
,
e1911
(
2023
).
15.
E. K.
Sackmann
,
A. L.
Fulton
, and
D. J.
Beebe
, “
The present and future role of microfluidics in biomedical research
,”
Nature
507
,
181
189
(
2014
).
16.
K.
Wu
,
X.
He
,
J.
Wang
,
T.
Pan
,
R.
He
,
F.
Kong
,
Z.
Cao
,
F.
Ju
,
Z.
Huang
, and
L.
Nie
, “
Recent progress of microfluidic chips in immunoassay
,”
Front. Bioeng. Biotechnol.
10
,
1112327
(
2022
).
17.
X.
Yang
,
C.
Gao
,
Y.
Liu
,
L.
Zhu
, and
K.
Yang
, “
Simplified cell magnetic isolation assisted SC(2) chip to realize ‘sample in and chemotaxis out’: Validated by healthy and T2DM patients’ neutrophils
,”
Micromachines (Basel)
13
,
1820
(
2022
).
18.
H.
Park
,
G.
Saravanakumar
,
J.
Kim
,
J.
Lim
, and
W. J.
Kim
, “
Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics
,”
Adv. Healthc. Mater.
10
,
e2000834
(
2021
).
19.
P.
Mehta
,
Z.
Rahman
,
P.
Ten Dijke
, and
P. E.
Boukany
, “
Microfluidics meets 3D cancer cell migration
,”
Trends Cancer
8
,
683
697
(
2022
).
20.
H.
Xie
,
J. W.
Appelt
, and
R. W.
Jenkins
, “
Going with the flow: Modeling the tumor microenvironment using microfluidic technology
,”
Cancers (Basel)
13
,
6052
(
2021
).
21.
V.
Kumar
and
S.
Varghese
, “
Ex vivo tumor-on-a-chip platforms to study intercellular interactions within the tumor microenvironment
,”
Adv. Healthc. Mater.
8
,
e1801198
(
2019
).
22.
A.
Sontheimer-Phelps
,
B. A.
Hassell
, and
D. E.
Ingber
, “
Modelling cancer in microfluidic human organs-on-chips
,”
Nat. Rev. Cancer
19
,
65
81
(
2019
).
23.
K. E.
Sung
and
D. J.
Beebe
, “
Microfluidic 3D models of cancer
,”
Adv. Drug Deliv. Rev.
79–80
,
68
78
(
2014
).
24.
R.
Amin
,
S.
Knowlton
,
A.
Hart
,
B.
Yenilmez
,
F.
Ghaderinezhad
,
S.
Katebifar
,
M.
Messina
,
A.
Khademhosseini
, and
S.
Tasoglu
, “
3D-printed microfluidic devices
,”
Biofabrication
8
,
022001
(
2016
).
25.
Y. L.
Huang
,
J. E.
Segall
, and
M.
Wu
, “
Microfluidic modeling of the biophysical microenvironment in tumor cell invasion
,”
Lab Chip
17
,
3221
3233
(
2017
).
26.
M. F.
Coughlin
and
R. D.
Kamm
, “
The Use of microfluidic platforms to probe the mechanism of cancer cell extravasation
,”
Adv. Healthc. Mater.
9
,
e1901410
(
2020
).
27.
Y.
Liu
,
X.
Chen
,
J.
Chen
,
Y.
Luo
,
Z.
Chen
,
D.
Lin
,
J.
Zhang
, and
D.
Liu
, “
Gel-Free single-cell culture arrays on a microfluidic chip for highly efficient expansion and recovery of colon cancer stem cells
,”
ACS Biomater. Sci. Eng.
8
,
3623
3632
(
2022
).
28.
S.
Fuchs
,
V.
Rieger
,
A. Ø.
Tjell
,
S.
Spitz
,
K.
Brandauer
,
R.
Schaller-Ammann
,
J.
Feiel
,
P.
Ertl
,
I.
Klimant
, and
T.
Mayr
, “
Optical glucose sensor for microfluidic cell culture systems
,”
Biosens. Bioelectron.
237
,
115491
(
2023
).
29.
Y. A.
Chen
,
A. D.
King
,
H. C.
Shih
,
C. C.
Peng
,
C. Y.
Wu
,
W. H.
Liao
, and
Y. C.
Tung
, “
Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions
,”
Lab Chip
11
,
3626
3633
(
2011
).
30.
K.
Kwapiszewska
,
A.
Michalczuk
,
M.
Rybka
,
R.
Kwapiszewski
, and
Z. A.
Brzózka
, “
A microfluidic-based platform for tumour spheroid culture, monitoring and drug screening
,”
Lab Chip
14
,
2096
2104
(
2014
).
31.
M.
Mehling
and
S.
Tay
, “
Microfluidic cell culture
,”
Curr. Opin. Biotechnol.
25
,
95
102
(
2014
).
32.
F.
Fontana
,
M.
Marzagalli
,
M.
Sommariva
,
N.
Gagliano
, and
P.
Limonta
, “
In vitro 3D cultures to model the tumor microenvironment
,”
Cancers (Basel)
13
,
2970
(
2021
).
33.
L. M.
Wilder
,
J. R.
Thompson
, and
R. M.
Crooks
, “
Electrochemical pH regulation in droplet microfluidics
,”
Lab Chip
22
,
632
640
(
2022
).
34.
S.
Tie
,
W.
Su
,
X.
Zhang
,
Y.
Chen
,
X.
Zhao
, and
M.
Tan
, “
pH-Responsive core-shell microparticles prepared by a microfluidic chip for the encapsulation and controlled release of procyanidins
,”
J. Agric. Food Chem.
69
,
1466
1477
(
2021
).
35.
V.
Mittal
, “
Epithelial mesenchymal transition in tumor metastasis
,”
Annu. Rev. Pathol.
13
,
395
412
(
2018
).
36.
E. A.
Adjei-Sowah
,
S. A.
O'Connor
,
J.
Veldhuizen
,
C.
Lo Cascio
,
C.
Plaisier
,
S.
Mehta
, and
M.
Nikkhah
, “
Investigating the interactions of glioma stem cells in the perivascular niche at single-cell resolution using a microfluidic tumor microenvironment model
,”
Adv. Sci.
9
,
e2201436
(
2022
).
37.
D.
Truong
,
R.
Fiorelli
,
E. S.
Barrientos
,
E. L.
Melendez
,
N.
Sanai
,
S.
Mehta
, and
M.
Nikkhah
, “
A three-dimensional (3D) organotypic microfluidic model for glioma stem cells – vascular interactions
,”
Biomaterials
198
,
63
77
(
2019
).
38.
J.
Song
,
A.
Miermont
,
C. T.
Lim
, and
R. D.
Kamm
, “
A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines
,”
Sci. Rep.
8
,
17949
(
2018
).
39.
L.
Cabel
,
C.
Proudhon
,
H.
Gortais
,
D.
Loirat
,
F.
Coussy
,
J. Y.
Pierga
, and
F. C.
Bidard
, “
Circulating tumor cells: Clinical validity and utility
,”
Int. J. Clin. Oncol.
22
,
421
430
(
2017
).
40.
M. G.
Krebs
,
R.
Sloane
,
L.
Priest
,
L.
Lancashire
,
J. M.
Hou
,
A.
Greystoke
,
T. H.
Ward
,
R.
Ferraldeschi
,
A.
Hughes
,
G.
Clack
,
M.
Ranson
,
C.
Dive
, and
F. H.
Blackhall
, “
Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer
,”
J. Clin. Oncol.
29
,
1556
1563
(
2011
).
41.
S.
Maheswaran
,
L. V.
Sequist
,
S.
Nagrath
,
L.
Ulkus
,
B.
Brannigan
,
C. V.
Collura
,
E.
Inserra
,
S.
Diederichs
,
A. J.
Iafrate
,
D. W.
Bell
,
S.
Digumarthy
,
A.
Muzikansky
,
D.
Irimia
,
J.
Settleman
,
R. G.
Tompkins
,
T. J.
Lynch
,
M.
Toner
, and
D. A.
Haber
, “
Detection of mutations in EGFR in circulating lung-cancer cells
,”
N. Engl. J. Med.
359
,
366
377
(
2008
).
42.
M.
Kanayama
,
T.
Kuwata
,
M.
Mori
,
Y.
Nemoto
,
N.
Nishizawa
,
R.
Oyama
,
H.
Matsumiya
,
A.
Taira
,
S.
Shinohara
,
M.
Takenaka
,
K.
Yoneda
,
K.
Kuroda
,
T.
Ohnaga
, and
F.
Tanaka
, “
Prognostic impact of circulating tumor cells detected with the microfluidic ‘universal CTC-chip’ for primary lung cancer
,”
Cancer Sci.
113
,
1028
1037
(
2022
).
43.
K.
Yoneda
,
T.
Kuwata
,
Y.
Chikaishi
,
M.
Mori
,
M.
Kanayama
,
M.
Takenaka
,
S.
Oka
,
A.
Hirai
,
N.
Imanishi
,
K.
Kuroda
,
Y.
Ichiki
,
T.
Ohnaga
, and
F.
Tanaka
, “
Detection of circulating tumor cells with a novel microfluidic system in malignant pleural mesothelioma
,”
Cancer Sci.
110
,
726
733
(
2019
).
44.
J.
Zhang
,
H.
Tavakoli
,
L.
Ma
,
X.
Li
,
L.
Han
, and
X.
Li
, “
Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment
,”
Adv. Drug Deliv. Rev.
187
,
114365
(
2022
).
45.
Y.
Jiang
,
D.
Nie
,
Z.
Hu
,
C.
Zhang
,
L.
Chang
,
Y.
Li
,
Z.
Li
,
W.
Hu
,
H.
Li
,
S.
Li
,
C.
Xu
,
S.
Liu
,
F.
Yang
,
W.
Wen
,
D.
Han
,
K.
Zhang
, and
W.
Qin
, “
Macrophage-derived nanosponges adsorb cytokines and modulate macrophage polarization for renal cell carcinoma immunotherapy
,”
Adv. Healthc. Mater.
e2400303
(published online,
2024
).
46.
Y.
Zhang
,
Y.
Chen
,
J.
Li
,
X.
Zhu
,
Y.
Liu
,
X.
Wang
,
H.
Wang
,
Y.
Yao
,
Y.
Gao
, and
Z.
Chen
, “
Development of toll-like receptor agonist-loaded nanoparticles as precision immunotherapy for reprogramming tumor-associated macrophages
,”
ACS Appl. Mater. Interfaces
13
,
24442
24452
(
2021
).
47.
Y.
Deng
,
Y.
Fu
,
S. L.
Chua
, and
B. L.
Khoo
, “
Biofilm potentiates cancer-promoting effects of tumor-associated macrophages in a 3D multi-faceted tumor model
,”
Small
19
,
e2205904
(
2023
).
48.
C. L.
Dietsche
,
E.
Hirth
, and
P. S.
Dittrich
, “
Multiplexed analysis of signalling proteins at the single-immune cell level
,”
Lab Chip
23
,
362
371
(
2023
).
49.
D.
Wu
,
Y.
Yu
,
C.
Zhao
,
X.
Shou
,
Y.
Piao
,
X.
Zhao
,
Y.
Zhao
, and
S.
Wang
, “
NK-Cell-Encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy
,”
ACS Appl. Mater. Interfaces
11
,
33716
33724
(
2019
).
50.
Y.
Wang
,
Z.
Liu
,
Y.
Qi
,
J.
Wu
,
B.
Liu
, and
X.
Cui
, “
Activin A, a novel chemokine, induces mouse NK cell migration via AKT and calcium signaling
,”
Cells
13
,
728
(
2024
).
51.
J. M.
Ayuso
,
S.
Rehman
,
M.
Virumbrales-Munoz
,
P. H.
McMinn
,
P.
Geiger
,
C.
Fitzgerald
,
T.
Heaster
,
M. C.
Skala
, and
D. J.
Beebe
, “
Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion
,”
Sci. Adv.
7
, eabc2331 (
2021
).
52.
A.
Gardner
and
B.
Ruffell
, “
Dendritic cells and cancer immunity
,”
Trends Immunol.
37
,
855
865
(
2016
).
53.
S.
Parlato
,
A.
De Ninno
,
R.
Molfetta
,
E.
Toschi
,
D.
Salerno
,
A.
Mencattini
,
G.
Romagnoli
,
A.
Fragale
,
L.
Roccazzello
,
M.
Buoncervello
,
I.
Canini
,
E.
Bentivegna
,
M.
Falchi
,
F. R.
Bertani
,
A.
Gerardino
,
E.
Martinelli
,
C.
Natale
,
R.
Paolini
,
L.
Businaro
, and
L.
Gabriele
, “
3D microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells
,”
Sci. Rep.
7
,
1093
(
2017
).
54.
K. O.
Okeyo
,
R.
Hiyaji
, and
H.
Oana
, “
A single-cell surgery microfluidic device for transplanting tumor cytoplasm into dendritic cells without nuclei mixing
,”
Biotechnol. J.
18
,
e2200135
(
2023
).
55.
M. E.
Shaul
and
Z. G.
Fridlender
, “
Tumour-associated neutrophils in patients with cancer
,”
Nat. Rev. Clin. Oncol.
16
,
601
620
(
2019
).
56.
Z. G.
Fridlender
,
J.
Sun
,
S.
Kim
,
V.
Kapoor
,
G.
Cheng
,
L.
Ling
,
G. S.
Worthen
, and
S. M.
Albelda
, “
Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN
,”
Cancer Cell
16
,
183
194
(
2009
).
57.
V.
Surendran
,
D.
Rutledge
,
R.
Colmon
, and
A.
Chandrasekaran
, “
A novel tumor-immune microenvironment (TIME)-on-chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion
,”
Biofabrication
13
,
035029
(
2021
).
58.
M. A.
Lakins
,
E.
Ghorani
,
H.
Munir
,
C. P.
Martins
, and
J. D.
Shields
, “
Cancer-associated fibroblasts induce antigen-specific deletion of CD8 (+) T cells to protect tumour cells
,”
Nat. Commun.
9
,
948
(
2018
).
59.
A.
Pavesi
,
A. T.
Tan
,
S.
Koh
,
A.
Chia
,
M.
Colombo
,
E.
Antonecchia
,
C.
Miccolis
,
E.
Ceccarello
,
G.
Adriani
,
M. T.
Raimondi
,
R. D.
Kamm
, and
A.
Bertoletti
, “
A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors
,”
JCI Insight
2
, e89762 (
2017
).
60.
L.
Kiru
,
A.
Zlitni
,
A. M.
Tousley
,
G. N.
Dalton
,
W.
Wu
,
F.
Lafortune
,
A.
Liu
,
K. M.
Cunanan
,
H.
Nejadnik
,
T.
Sulchek
,
M. E.
Moseley
,
R. G.
Majzner
, and
H. E.
Daldrup-Link
, “
In vivo imaging of nanoparticle-labeled CAR T cells
,”
Proc. Natl. Acad. Sci. U.S.A.
119
, e2102363119 (
2022
).
61.
S. S.
Kim
,
W. A.
Sumner
,
S.
Miyauchi
,
E. E. W.
Cohen
,
J. A.
Califano
, and
A. B.
Sharabi
, “
Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients
,”
Clin. Cancer Res.
27
,
6075
6082
(
2021
).
62.
K.
Eyer
,
R. C. L.
Doineau
,
C. E.
Castrillon
,
L.
Briseno-Roa
,
V.
Menrath
,
G.
Mottet
,
P.
England
,
A.
Godina
,
E.
Brient-Litzler
,
C.
Nizak
,
A.
Jensen
,
A. D.
Griffiths
,
J.
Bibette
,
P.
Bruhns
, and
J.
Baudry
, “
Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring
,”
Nat. Biotechnol.
35
,
977
982
(
2017
).
63.
A.
Gerard
,
A.
Woolfe
,
G.
Mottet
,
M.
Reichen
,
C.
Castrillon
,
V.
Menrath
,
S.
Ellouze
,
A.
Poitou
,
R.
Doineau
,
L.
Briseno-Roa
,
P.
Canales-Herrerias
,
P.
Mary
,
G.
Rose
,
C.
Ortega
,
M.
Delince
,
S.
Essono
,
B.
Jia
,
B.
Iannascoli
,
O.
Richard-Le Goff
,
R.
Kumar
,
S. N.
Stewart
,
Y.
Pousse
,
B.
Shen
,
K.
Grosselin
,
B.
Saudemont
,
A.
Sautel-Caille
,
A.
Godina
,
S.
McNamara
,
K.
Eyer
,
G. A.
Millot
,
J.
Baudry
,
P.
England
,
C.
Nizak
,
A.
Jensen
,
A. D.
Griffiths
,
P.
Bruhns
, and
C.
Brenan
, “
High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics
,”
Nat. Biotechnol.
38
,
715
721
(
2020
).
64.
S.
Nagaraju
,
D.
Truong
,
G.
Mouneimne
, and
M.
Nikkhah
, “
Microfluidic tumor-vascular model to study breast cancer cell invasion and intravasation
,”
Adv. Healthc. Mater.
7
,
e1701257
(
2018
).
65.
D.
Xie
,
Z.
Liu
,
J.
Wu
,
W.
Feng
,
K.
Yang
,
J.
Deng
,
G.
Tian
,
S.
Santos
,
X.
Cui
, and
F.
Lin
, “
The effects of activin A on the migration of human breast cancer cells and neutrophils and their migratory interaction
,”
Exp. Cell Res.
357
,
107
115
(
2017
).
66.
S. Y.
Jeong
,
J. H.
Lee
,
Y.
Shin
,
S.
Chung
, and
H. J.
Kuh
, “
Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment
,”
PLoS One
11
,
e0159013
(
2016
). .
67.
A. J.
Chang
,
K. A.
Autio
,
M.
Roach 3rd
, and
H. I.
Scher
, “
High-risk prostate cancer-classification and therapy
,”
Nat. Rev. Clin. Oncol.
11
,
308
323
(
2014
).
68.
Z.
Ao
,
H.
Cai
,
Z.
Wu
,
L.
Hu
,
X.
Li
,
C.
Kaurich
,
M.
Gu
,
L.
Cheng
,
X.
Lu
, and
F.
Guo
, “
Evaluation of cancer immunotherapy using mini-tumor chips
,”
Theranostics
12
,
3628
3636
(
2022
).
69.
Z.
Ao
,
H.
Cai
,
Z.
Wu
,
L.
Hu
,
A.
Nunez
,
Z.
Zhou
,
H.
Liu
,
M.
Bondesson
,
X.
Lu
,
X.
Lu
,
M.
Dao
, and
F.
Guo
, “
Microfluidics guided by deep learning for cancer immunotherapy screening
,”
Proc. Natl. Acad. Sci. U.S.A.
119
,
e2214569119
(
2022
).
70.
J. J.
Agresti
,
E.
Antipov
,
A. R.
Abate
,
K.
Ahn
,
A. C.
Rowat
,
J. C.
Baret
,
M.
Marquez
,
A. M.
Klibanov
,
A. D.
Griffiths
, and
D. A.
Weitz
, “
Ultrahigh-throughput screening in drop-based microfluidics for directed evolution
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
4004
4009
(
2010
).
71.
J.
Diao
,
L.
Young
,
S.
Kim
,
E. A.
Fogarty
,
S. M.
Heilman
,
P.
Zhou
,
M. L.
Shuler
,
M.
Wu
, and
M. P.
DeLisa
, “
A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis
,”
Lab Chip
6
,
381
388
(
2006
).
72.
W.
Zhao
,
Y.
Zhou
,
Y. Z.
Feng
,
X.
Niu
,
Y.
Zhao
,
J.
Zhao
,
Y.
Dong
,
M.
Tan
,
Y.
Xianyu
, and
Y.
Chen
, “
Computer vision-based artificial intelligence-mediated encoding-decoding for multiplexed microfluidic digital immunoassay
,”
ACS Nano
17
,
13700
13714
(
2023
).
You do not currently have access to this content.