Molecularly imprinted polymers (MIPs), functioning as artificial bioreceptors, hold significant promise for biomarker detection in healthcare, disease diagnosis, and addressing drug abuse. In contrast to natural bioreceptors, MIP-based sensors offer numerous advantages, such as high stability, cost-effectiveness, high selectivity, sensitivity, and notably straightforward preparation with customizable binding sites for diverse targets. Conventional MIP sensors often necessitate external redox reagents in analytes to transduce binding events into electrochemical signals for indirect detection, presenting challenges for practical applications in wearables or point-of-care (POC) testing. Redox-active MIP sensors have emerged as a viable alternative, enabling direct and label-free electrochemical detection, with two types developed. The first type utilizes electrocatalytic materials to expedite electron transfer and facilitate a redox reaction between the captured electroactive target and the electrode. The second type incorporates an embedded redox reactive component that allows selective binding of a target to modulate its electron transfer, leading to a change in the electrical signal. This review covers emerging trends and challenges in redox-active MIP sensors for direct electrochemical detection of biomarkers, focusing on sensing mechanisms, synthesis methods, and applications. Additionally, recent progress in wearable and POC redox-active MIP sensors is highlighted. A comprehensive outlook of challenges is further provided, aiming to advance direct biomarker detection for diverse healthcare applications.

1.
S. K.
Das
,
K. K.
Nayak
,
P.
Krishnaswamy
,
V.
Kumar
, and
N.
Bhat
, “
Review—Electrochemistry and other emerging technologies for continuous glucose monitoring devices
,”
ECS Sens. Plus
1
,
031601
(
2022
).
2.
S. K.
Vashist
,
P. B.
Luppa
,
L. Y.
Yeo
,
A.
Ozcan
, and
J. H.
Luong
, “
Emerging technologies for next-generation point-of-care testing
,”
Trends Biotechnol.
33
,
692
705
(
2015
).
3.
S.
Yeasmin
,
G.
Ammanath
,
A.
Onder
,
E. Y. H.
Xin
,
U. H.
Yildiz
,
A.
Palaniappan
, and
B.
Liedberg
, “
Current trends and challenges in point-of-care urinalysis of biomarkers in trace amounts
,”
TrAC, Trends Anal. Chem.
157
,
116786
(
2022
).
4.
W.
Zhang
,
R.
Wang
,
F.
Luo
,
P.
Wang
, and
Z.
Lin
, “
Miniaturized electrochemical sensors and their point-of-care applications
,”
Chin. Chem. Lett.
31
,
589
600
(
2020
).
5.
S. M.
Mugo
and
J.
Alberkant
, “
Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat
,”
Anal. Bioanal. Chem.
412
,
1825
1833
(
2020
).
6.
M. A.
Beluomini
,
J. L.
da Silva
,
A. C.
de Sá
,
E.
Buffon
,
T. C.
Pereira
, and
N. R.
Stradiotto
, “
Electrochemical sensors based on molecularly imprinted polymer on nanostructured carbon materials: A review
,”
J. Electroanal. Chem.
840
,
343
366
(
2019
).
7.
K. K.
Reddy
and
K. V.
Gobi
, “
Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis
,”
Sens. Actuators B
183
,
356
363
(
2013
).
8.
G.
Vlatakis
,
L. I.
Andersson
,
R.
Müller
, and
K.
Mosbach
, “
Drug assay using antibody mimics made by molecular imprinting
,”
Nature
361
,
645
647
(
1993
).
9.
R.
Li
,
Y.
Feng
,
G.
Pan
, and
L.
Liu
, “
Advances in molecularly imprinting technology for bioanalytical applications
,”
Sensors
19
,
177
(
2019
).
10.
M.
Caldara
,
J.
Kulpa
,
J. W.
Lowdon
,
T. J.
Cleij
,
H.
Diliën
,
K.
Eersels
, and
B. V.
Grinsven
, “
Recent advances in molecularly imprinted polymers for glucose monitoring: From fundamental research to commercial application
,”
Chemosensors
11
,
32
(
2023
).
11.
S.
Akgönüllü
,
S.
Kılıç
,
C.
Esen
, and
A.
Denizli
, “
Molecularly imprinted polymer-based sensors for protein detection
,”
Polymers
15
,
629
(
2023
).
12.
F.
Lopes
,
J. G.
Pacheco
,
P.
Rebelo
, and
C.
Delerue-Matos
, “
Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection
,”
Sens. Actuators B
243
,
745
752
(
2017
).
13.
W.
Liu
,
Y.
Ma
,
G.
Sun
,
S.
Wang
,
J.
Deng
, and
H.
Wei
, “
Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone
,”
Biosens. Bioelectron.
92
,
305
312
(
2017
).
14.
Q.
Zhang
,
D.
Berg
, and
S. M.
Mugo
, “
Molecularly imprinted carbon based electrodes for tetrahydrocannabinol sensing
,”
Inorg. Chem. Commun.
107
,
107459
(
2019
).
15.
S.
Yeasmin
,
B.
Wu
,
Y.
Liu
,
A.
Ullah
, and
L.-J.
Cheng
, “
Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection
,”
Biosens. Bioelectron.
206
,
114142
(
2022
).
16.
M.
Amatatongchai
,
J.
Sitanurak
,
W.
Sroysee
,
S.
Sodanat
,
S.
Chairam
,
P.
Jarujamrus
,
D.
Nacapricha
, and
P. A.
Lieberzeit
, “
Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination
,”
Anal. Chim. Acta
1077
,
255
265
(
2019
).
17.
A.
Sanati
,
R.
Siavash Moakhar
,
I.
Hosseini
,
K.
Raeissi
,
F.
Karimzadeh
,
M.
Jalali
,
M.
Kharaziha
,
S.
Sheibani
,
L.
Shariati
, and
J. F.
Presley
, “
Gold nano/micro-islands overcome the molecularly imprinted polymer limitations to achieve ultrasensitive protein detection
,”
ACS Sens.
6
,
797
807
(
2021
).
18.
S.
Bhakta
and
P.
Mishra
, “
Molecularly imprinted polymer-based sensors for cancer biomarker detection
,”
Sens. Actuators Rep.
3
,
100061
(
2021
).
19.
Y.
Li
,
L.
Luo
,
Y.
Kong
,
Y.
Li
,
Q.
Wang
,
M.
Wang
,
Y.
Li
,
A.
Davenport
, and
B.
Li
, “
Recent advances in molecularly imprinted polymer-based electrochemical sensors
,”
Biosens. Bioelectron.
249
,
116018
(
2024
).
20.
F.
Cui
,
Z.
Zhou
, and
H. S.
Zhou
, “
Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases
,”
Sensors
20
,
996
(
2020
).
21.
E.
Mazzotta
,
T.
Di Giulio
, and
C.
Malitesta
, “
Electrochemical sensing of macromolecules based on molecularly imprinted polymers: Challenges, successful strategies, and opportunities
,”
Anal. Bioanal. Chem.
414
,
5165
5200
(
2022
).
22.
A. S.
Rosslan
,
M. F. M.
Shakhih
,
F. N. M.
Amirrudin
,
A. A.
Wahab
,
F.
Abdullah
, and
M. H.
Ramlee
, “
A review on molecularly imprinted polymer (MIP) for electrochemical sensor development
,”
Mal. J. Fund. Appl. Sci.
18
,
283
294
(
2022
).
23.
J. J.
BelBruno
, “
Molecularly imprinted polymers
,”
Chem. Rev.
119
,
94
119
(
2018
).
24.
H.
Zhang
, “
Molecularly imprinted nanoparticles for biomedical applications
,”
Adv. Mater.
32
,
1806328
(
2020
).
25.
J. W.
Lowdon
,
H.
Diliën
,
P.
Singla
,
M.
Peeters
,
T. J.
Cleij
,
B.
van Grinsven
, and
K.
Eersels
, “
MIPs for commercial application in Low-cost sensors and assays–An overview of the current status Quo
,”
Sens. Actuators B
325
,
128973
(
2020
).
26.
C. C.
Chernecky
and
B. J.
Berger
,
Laboratory Tests and Diagnostic Procedures
(
Elsevier Health Science
,
2012
).
27.
E.
Aardal
and
A.-C.
Holm
, “
Cortisol in saliva-reference ranges and relation to cortisol in serum
,”
Eur. J. Clin. Chem. Clin. Biochem.
33
,
927
932
(
1995
).
28.
A. J.
Steckl
and
P.
Ray
, “
Stress biomarkers in biological fluids and their point-of-Use detection
,”
ACS Sens.
3
,
2025
2044
(
2018
).
29.
C.-L.
Lin
,
T.-J.
Wu
,
D. A.
Machacek
,
N.-S.
Jiang
, and
P. C.
Kao
, “
Urinary free cortisol and cortisone determined by high performance liquid chromatography in the diagnosis of Cushing’s syndrome
,”
J. Clin. Endocrinol. Metab.
82
,
151
155
(
1997
).
30.
A. M.
Rivas
,
Z.
Mulkey
,
J.
Lado-Abeal
, and
S.
Yarbrough
, “
Diagnosing and managing low serum testosterone,
Baylor Univ. Med. Center Proc.
27
,
321
324
(
2014
).
31.
N.
Goncharov
,
G.
Katsya
,
A.
Dobracheva
,
A.
Nizhnik
,
G.
Kolesnikova
,
V.
Herbst
, and
J.
Westermann
, “
Diagnostic significance of free salivary testosterone measurement using a direct luminescence immunoassay in healthy men and in patients with disorders of androgenic status
,”
Aging Male
9
,
111
122
(
2006
).
32.
J.-Y.
Moon
,
W.
Kwon
,
S.
Suh
,
J. C.
Cheong
,
M. K.
In
,
B. C.
Chung
,
J. Y.
Kim
, and
M. H.
Choi
, “
Reference ranges for urinary levels of testosterone and epitestosterone, which May reveal gonadal function, in a Korean male population
,”
J. Steroid Biochem. Mol. Biol.
140
,
100
105
(
2014
).
33.
A. R.
Cherian
,
L.
Benny
,
A.
George
,
U.
Sirimahachai
,
A.
Varghese
, and
G.
Hegde
, “
Electro fabrication of molecularly imprinted sensor based on Pd nanoparticles decorated poly-(3 thiophene acetic acid) for progesterone detection
,”
Electrochim. Acta
408
,
139963
(
2022
).
34.
S.
Datta
,
R. J.
Hurley
,
J. S.
Naulty
,
P.
Stern
,
D. H.
Lambert
,
M.
Concepcion
,
D.
Tulchinsky
,
J. B.
Weiss
, and
G. W.
Ostheimer
, “
Plasma and cerebrospinal fluid progesterone concentrations in pregnant and nonpregnant women
,”
Anesth. Analg.
65
,
950
954
(
1986
).
35.
M.
Groschl
, “
Current status of salivary hormone analysis
,”
Clin. Chem.
54
,
1759
1769
(
2008
).
36.
P. M.
Sluss
,
F. J.
Hayes
,
J. M.
Adams
,
W.
Barnes
,
G.
Williams
,
S.
Frost
,
J.
Ramp
,
D.
Pacenti
,
D. C.
Lehotay
, and
S.
George
, “
Mass spectrometric and physiological validation of a sensitive, automated, direct immunoassay for serum estradiol using the architect®
,”
Clin. Chim. Acta
388
,
99
105
(
2008
).
37.
R. M.
Qaisi
,
A.
Akhdhar
,
J.-w.
Choi
, and
W. A.
El-Said
, “
A photoluminescence sensor for in-situ monitoring of the dopamine neurotransmitters released from PC12 cells
,”
Spectrochim. Acta, Part A
287
,
122109
(
2023
).
38.
D. F.
Davidson
, “
Elevated urinary dopamine in adults and children
,”
Ann. Clin. Biochem.
42
,
200
207
(
2005
).
39.
A.
Kumar
,
B.
Purohit
,
U. P.
Azad
,
M. T.
Yaraki
,
D. S.
Dkhar
,
Y. N.
Tan
,
A.
Srivastava
, and
P.
Chandra
, “
Gold nanostar and graphitic carbon nitride nanocomposite for serotonin detection in biological fluids and human embryonic kidney cell microenvironment
,”
Microchim. Acta
190
,
45
(
2023
).
40.
D. M.
Fouad
and
W. A.
El-Said
, “
Selective electrochemical detection of epinephrine using gold nanoporous film
,”
J. Nanomater.
2016
, 6194230 (
2016
).
41.
S.
Yeasmin
,
G.
Ammanath
,
Y.
Ali
,
B. O.
Boehm
,
U. H.
Yildiz
,
A.
Palaniappan
, and
B.
Liedberg
, “
Colorimetric urinalysis for On-site detection of metabolic biomarkers
,”
ACS Appl. Mater. Interfaces
12
,
31270
31281
(
2020
).
42.
G.
Ammanath
,
U. H.
Yildiz
,
A.
Palaniappan
, and
B.
Liedberg
, “
Luminescent device for the detection of oxidative stress biomarkers in artificial urine
,”
ACS Appl. Mater. Interfaces
10
,
7730
7736
(
2018
).
43.
H.
Lee
,
Y. J.
Hong
,
S.
Baik
,
T.
Hyeon
, and
D. H.
Kim
, “
Enzyme-based glucose sensor: From invasive to wearable device
,”
Adv. Healthcare Mater.
7
,
1701150
(
2018
).
44.
A. F.
Hagel
,
H.
Albrecht
,
W.
Dauth
,
W.
Hagel
,
F.
Vitali
,
I.
Ganzleben
,
H. W.
Schultis
,
P. C.
Konturek
,
J.
Stein
, and
M. F.
Neurath
, “
Plasma concentrations of ascorbic acid in a cross section of the German population
,”
J. Int. Med. Res.
46
,
168
174
(
2018
).
45.
Y.
Tao
,
Y.
Wang
,
R.
Zhu
,
Y.
Chen
,
X.
Liu
,
M.
Li
,
L.
Yang
,
Y.
Wang
, and
D.
Wang
, “
Fiber based organic electrochemical transistor integrated with molecularly imprinted membrane for uric acid detection
,”
Talanta
238
,
123055
(
2022
).
46.
A.
Jaiswal
,
S.
Madaan
,
N.
Acharya
,
S.
Kumar
,
D.
Talwar
, and
D.
Dewani
, “
Salivary uric acid: A noninvasive wonder for clinicians?
,”
Cureus
13
, e19649 (
2021
).
47.
S.
Soares
and
F. R.
Rocha
, “
Spot test for determination of uric acid in saliva by smartphone-based digital images: A New proposal for detecting kidney dysfunctions
,”
Microchem. J.
162
,
105862
(
2021
).
48.
A.
Vernerová
,
L.
Kujovská Krčmová
,
B.
Melichar
, and
F.
Švec
, “
Non-Invasive determination of uric acid in human saliva in the diagnosis of serious disorders
,”
Clin. Chem. Lab. Med.
59
,
797
812
(
2021
).
49.
V.
Ratautaite
,
U.
Samukaite-Bubniene
,
D.
Plausinaitis
,
R.
Boguzaite
,
D.
Balciunas
,
A.
Ramanaviciene
,
G.
Neunert
, and
A.
Ramanavicius
, “
Molecular imprinting technology for determination of uric acid
,”
Int. J. Mol. Sci.
22
,
5032
(
2021
).
50.
S.
Takahagi
,
T.
Tanaka
,
K.
Ishii
,
H.
Suzuki
,
Y.
Kameyoshi
,
H.
Shindo
, and
M.
Hide
, “
Sweat antigen induces histamine release from basophils of patients with cholinergic urticaria associated with atopic diathesis
,”
Br. J. Dermatol.
160
,
426
428
(
2009
).
51.
S.
Takahagi
,
M.
Okamoto
,
K.
Ishii
,
A.
Tanaka
,
H.
Mizuno
,
N.
Harada
,
N.
Yanagida
, and
M.
Hide
, “
Clinical and histological characterization of transient dermal pain triggered by sweating stimuli
,”
Allergol. Int.
71
,
362
372
(
2022
).
52.
R. R.
Kumar
,
M. O.
Shaikh
, and
C.-H.
Chuang
, “
A review of recent advances in non-enzymatic electrochemical creatinine biosensing
,”
Anal. Chim. Acta
1183
,
338748
(
2021
).
53.
D.
Ackermann
,
M.
Groessl
,
M.
Pruijm
,
B.
Ponte
,
G.
Escher
,
C. H.
d’Uscio
,
I.
Guessous
,
G.
Ehret
,
A.
Pechère-Bertschi
,
P.-Y.
Martin
et al, “
Reference intervals for the urinary steroid metabolome: The impact of sex, age, day and night time on human adult steroidogenesis
,”
PLOS One
14
,
e0214549
(
2019
).
54.
M. B.
Rone
,
J.
Fan
, and
V.
Papadopoulos
, “
Cholesterol transport in steroid biosynthesis: Role of protein–protein interactions and implications in disease states
,”
Biochim. Biophys. Acta
1791
,
646
658
(
2009
).
55.
K.
Romejko
,
A.
Rymarz
,
H.
Sadownik
, and
S.
Niemczyk
, “
Testosterone deficiency as one of the major endocrine disorders in chronic kidney disease
,”
Nutrients
14
,
3438
(
2022
).
56.
D. N.
da Silva
and
A. C.
Pereira
, “
An electrochemical sensor modified with a molecularly imprinted polymer and carbon black for 17-Β-estradiol detection
,”
Anal. Methods
14
,
1208
1213
(
2022
).
57.
M. K.
Shelby
,
D. J.
Crouch
,
D. L.
Black
,
T. A.
Robert
, and
R.
Heltsley
, “
Screening indicators of dehydroepiandosterone, androstenedione, and dihydrotestosterone use: A literature review
,”
J. Anal. Toxicol.
35
,
638
655
(
2011
).
58.
T.
Field
,
M.
Diego
,
M.
Hernandez-Reif
,
B.
Figueiredo
,
O.
Deeds
,
A.
Ascencio
,
S.
Schanberg
, and
C.
Kuhn
, “
Prenatal dopamine and neonatal behavior and biochemistry
,”
Infant. Behav. Dev.
31
,
590
593
(
2008
).
59.
B.
Wu
,
S.
Yeasmin
,
Y.
Liu
, and
L.-J.
Cheng
, “
Sensitive and selective electrochemical sensor for serotonin detection based on ferrocene-gold nanoparticles decorated multiwall carbon nanotubes
,”
Sens. Actuators B
354
,
131216
(
2022
).
60.
N.
Nontawong
,
P.
Ngaosri
,
S.
Chunta
,
P.
Jarujamrus
,
D.
Nacapricha
,
P. A.
Lieberzeit
, and
M.
Amatatongchai
, “
Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device
,”
Anal. Chim. Acta
1191
,
339363
(
2022
).
61.
M.
Amatatongchai
,
N.
Nontawong
,
P.
Ngaosri
,
S.
Chunta
,
S.
Wanram
,
P.
Jarujamrus
,
D.
Nacapricha
, and
P. A.
Lieberzeit
, “
Facile and compact electrochemical paper-based analytical device for point-of-care diagnostic of dual carcinogen oxidative stress biomarkers through a molecularly imprinted polymer coated on graphene quantum-dot capped gold
,”
Anal. Chem.
94
,
16692
16700
(
2022
).
62.
K.
Dhara
and
R. M.
Debiprosad
, “
Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection
,”
Anal. Biochem.
586
,
113415
(
2019
).
63.
M.
Akhoundian
,
A.
Rüter
, and
S.
Shinde
, “
Ultratrace detection of histamine using a molecularly-imprinted polymer-based voltammetric sensor
,”
Sensors
17
,
645
(
2017
).
64.
N.
Nontawong
,
M.
Amatatongchai
,
S.
Thimoonnee
,
S.
Laosing
,
P.
Jarujamrus
,
C.
Karuwan
, and
S.
Chairam
, “
Novel amperometric flow-injection analysis of creatinine using a molecularly-imprinted polymer coated copper oxide nanoparticle-modified carbon-paste-electrode
,”
J. Pharm. Biomed. Anal.
175
,
112770
(
2019
).
65.
H.
Teymourian
,
M.
Parrilla
,
J. R.
Sempionatto
,
N. F.
Montiel
,
A.
Barfidokht
,
R.
Van Echelpoel
,
K.
De Wael
, and
J.
Wang
, “
Wearable electrochemical sensors for the monitoring and screening of drugs
,”
ACS Sens.
5
,
2679
2700
(
2020
).
66.
D. R.
Solanki
,
D.
Koyyalagunta
,
R. V.
Shah
,
S. M.
Silverman
, and
L.
Manchikanti
, “
Monitoring opioid adherence in chronic pain patients: Assessment of risk of substance misuse
,”
Pain Physician
14
,
E119
(
2011
).
67.
S.
Ren
,
W.
Cui
,
Y.
Liu
,
S.
Cheng
,
Q.
Wang
,
R.
Feng
, and
Z.
Zheng
, “
Molecularly imprinted sensor based on 1T/2H MoS2 and MWCNTs for voltammetric detection of acetaminophen
,”
Sens. Actuators A
345
,
113772
(
2022
).
68.
P. A.
Cormack
and
A. Z.
Elorza
, “
Molecularly imprinted polymers: Synthesis and characterisation
,”
J. Chromatogr. B
804
,
173
182
(
2004
).
69.
K. F.
Pratama
,
M. E. R.
Manik
,
D.
Rahayu
, and
A. N.
Hasanah
, “
Effect of the molecularly imprinted polymer component ratio on analytical performance
,”
Chem. Pharm. Bull.
68
,
1013
1024
(
2020
).
70.
M.
Wang
,
Y.
Yang
,
J.
Min
,
Y.
Song
,
J.
Tu
,
D.
Mukasa
,
C.
Ye
,
C.
Xu
,
N.
Heflin
, and
J. S.
McCune
, “
A wearable electrochemical biosensor for the monitoring of metabolites and nutrients
,”
Nat. Biomed. Eng.
6
,
1225
1235
(
2022
).
71.
S. E.
Elugoke
,
A. S.
Adekunle
,
O. E.
Fayemi
,
E. D.
Akpan
,
B. B.
Mamba
,
E. S. M.
Sherif
, and
E. E.
Ebenso
, “
Molecularly imprinted polymers (MIPs) based electrochemical sensors for the determination of catecholamine neurotransmitters—Review
,”
Electrochem. Sci. Adv.
1
,
e2000026
(
2021
).
72.
K.
Haupt
,
P. X.
Medina Rangel
, and
B. T. S.
Bui
, “
Molecularly imprinted polymers: Antibody mimics for bioimaging and therapy
,”
Chem. Rev.
120
,
9554
9582
(
2020
).
73.
A.
Adumitrăchioaie
,
M.
Tertiș
,
A.
Cernat
,
R.
Săndulescu
, and
C.
Cristea
, “
Electrochemical methods based on molecularly imprinted polymers for drug detection. A review
,”
Int. J. Electrochem. Sci.
13
,
2556
2576
(
2018
).
74.
K. A.
Sarpong
,
W.
Xu
,
W.
Huang
, and
W.
Yang
, “
The development of molecularly imprinted polymers in the clean-up of water pollutants: A review
,”
Am. J. Anal. Chem.
10
,
202
226
(
2019
).
75.
G.
Vasapollo
,
R. D.
Sole
,
L.
Mergola
,
M. R.
Lazzoi
,
A.
Scardino
,
S.
Scorrano
, and
G.
Mele
, “
Molecularly imprinted polymers: Present and future prospective
,”
Int. J. Mol. Sci.
12
,
5908
5945
(
2011
).
76.
S.
Rahman
,
B.
Bozal-Palabiyik
,
D. N.
Unal
,
C.
Erkmen
,
M.
Siddiq
,
A.
Shah
, and
B.
Uslu
, “
Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants
,”
Trends Environ. Anal. Chem.
36
,
e00176
(
2022
).
77.
W.
Dong
,
M.
Yan
,
M.
Zhang
,
Z.
Liu
, and
Y.
Li
, “
A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer
,”
Anal. Chim. Acta
542
,
186
192
(
2005
).
78.
D.
Bitas
and
V.
Samanidou
, “
Molecular imprinting for sample preparation
,”
LCGC Europe
31
,
660
664
(
2018
).
79.
R. A.
Lorenzo
,
A. M.
Carro
,
C.
Alvarez-Lorenzo
, and
A.
Concheiro
, “
To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs)
,”
Int. J. Mol. Sci.
12
,
4327
4347
(
2011
).
80.
V.
Ayerdurai
,
M.
Cieplak
, and
W.
Kutner
, “
Molecularly imprinted polymer-based electrochemical sensors for food contaminants determination
,”
TrAC, Trends Anal. Chem.
158
,
116830
(
2022
).
81.
L.
Yuan
,
L.
Jiang
,
T.
Hui
,
L.
Jie
,
X.
Bingbin
,
Y.
Feng
, and
L.
Yingchun
, “
Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement
,”
Sens. Actuators B
206
,
647
652
(
2015
).
82.
W.
Tang
,
L.
Yin
,
J. R.
Sempionatto
,
J. M.
Moon
,
H.
Teymourian
, and
J.
Wang
, “
Touch-based stressless cortisol sensing
,”
Adv. Mater.
33
,
2008465
(
2021
).
83.
T.
Alizadeh
,
M.
Akhoundian
, and
M. R.
Ganjali
, “
A ferrocene/imprinted polymer nanomaterial-modified carbon paste electrode as a New generation of gate effect-based voltammetric sensor
,”
New J. Chem.
42
,
4719
4727
(
2018
).
84.
A.
Rabti
,
N.
Raouafi
, and
A.
Merkoçi
, “
Bio (sensing) devices based on ferrocene–functionalized graphene and carbon nanotubes
,”
Carbon
108
,
481
514
(
2016
).
85.
G. K.
Rowe
and
S. E.
Creager
, “
Redox and Ion-pairing thermodynamics in self-assembled monolayers
,”
Langmuir
7
,
2307
2312
(
1991
).
86.
G.
Valincius
,
G.
Niaura
,
B.
Kazakevičienė
,
Z.
Talaikytė
,
M.
Kažemėkaitė
,
E.
Butkus
, and
V.
Razumas
, “
Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers
,”
Langmuir
20
,
6631
6638
(
2004
).
87.
H.
Ju
and
D.
Leech
, “
Effect of electrolytes on the electrochemical behaviour of 11-(ferrocenylcarbonyloxy) undecanethiol SAMS on gold disk electrodes
,”
Phys. Chem. Chem. Phys.
1
,
1549
1554
(
1999
).
88.
Z.
Panahi
,
L.
Custer
, and
J. M.
Halpern
, “
Recent advances in Non-enzymatic electrochemical detection of hydrophobic metabolites in biofluids
,”
Sens. Actuators Rep.
3
,
100051
(
2021
).
89.
S.
Yeasmin
,
A.
Ullah
,
B.
Wu
,
X.
Zhang
, and
L.-J.
Cheng
, “
Enzyme-mimics for sensitive and selective steroid metabolite detection
,”
ACS Appl. Mater. Interfaces
15
,
13971
13982
(
2023
).
90.
B.
Rezaei
and
S.
Mirahmadi-Zare
, “
Nanoscale manipulation of prednisolone as electroactive configuration using molecularly imprinted-multiwalled carbon nanotube paste electrode
,”
Electroanalysis
23
,
2724
2734
(
2011
).
91.
L.
Wang
and
Y.
Li
, “
A sensitive amperometric sensor based on CuO and molecularly imprinted polymer composite for determination of danazol in human urine
,”
Int. J. Electrochem. Sci.
17
,
221178
(
2022
).
92.
J.
Bao
,
Q.
Zhang
, and
W.
Huang
, “
Determination of metandienone using molecularly imprinted based electrochemical sensor in human urine
,”
Int. J. Electrochem. Sci.
17
,
22129
(
2022
).
93.
J.
Zhang
,
X.-T.
Guo
,
J.-P.
Zhou
,
G.-Z.
Liu
, and
S.-Y.
Zhang
, “
Electrochemical preparation of surface molecularly imprinted poly (3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine
,”
Mater. Sci. Eng. C.
91
,
696
704
(
2018
).
94.
J.
Chen
,
H.
Huang
,
Y.
Zeng
,
H.
Tang
, and
L.
Li
, “
A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine
,”
Biosens. Bioelectron.
65
,
366
374
(
2015
).
95.
C.
Peng
,
L.
Miao
,
D.
Qiu
, and
S.
Chen
, “
Co3O4-chitosan/biomass-derived porous carbon molecularly imprinted polymer integrated electrode for selective detection of glucose
,”
Ceram. Int.
48
,
23137
23144
(
2022
).
96.
Y.
Chen
,
X.
Peng
,
Y.
Song
, and
G.
Ma
, “
An ascorbic acid-imprinted poly (o-phenylenediamine)/AuNPs@COFTFPB-NBPDA for electrochemical sensing ascorbic acid
,”
Chemosensors
10
,
407
(
2022
).
97.
S.
Lakard
,
I.-A.
Pavel
, and
B.
Lakard
, “
Electrochemical biosensing of dopamine neurotransmitter: A review
,”
Biosensors
11
,
179
(
2021
).
98.
Y.
Liu
,
J.
Liu
,
J.
Liu
,
W.
Gan
,
B.-c.
Ye
, and
Y.
Li
, “
Highly sensitive and selective voltammetric determination of dopamine using a gold electrode modified with a molecularly imprinted polymeric film immobilized on flaked hollow nickel nanospheres
,”
Microchim. Acta
184
,
1285
1294
(
2017
).
99.
Y.
Teng
,
F.
Liu
, and
X.
Kan
, “
Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires
,”
Microchim. Acta
184
,
2515
2522
(
2017
).
100.
H.-H.
Wang
,
X.-J.
Chen
,
W.-T.
Li
,
W.-H.
Zhou
,
X.-C.
Guo
,
W.-Y.
Kang
,
D.-X.
Kou
,
Z.-J.
Zhou
,
Y.-N.
Meng
, and
Q.-W.
Tian
, “
ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine
,”
Talanta
176
,
573
581
(
2018
).
101.
M.
Tertiş
,
A.
Florea
,
A.
Adumitrăchioaie
,
A.
Cernat
,
D.
Bogdan
,
L.
Barbu-Tudoran
,
N.
Jaffrezic Renault
,
R.
Săndulescu
, and
C.
Cristea
, “
Detection of dopamine by a biomimetic electrochemical sensor based on polythioaniline-bridged gold nanoparticles
,”
ChemPlusChem
82
,
561
569
(
2017
).
102.
C.
Xue
,
Q.
Han
,
Y.
Wang
,
J.
Wu
,
T.
Wen
,
R.
Wang
,
J.
Hong
,
X.
Zhou
, and
H.
Jiang
, “
Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers
,”
Biosens. Bioelectron.
49
,
199
203
(
2013
).
103.
D.
Wu
,
H.
Li
,
X.
Xue
,
H.
Fan
,
Q.
Xin
, and
Q.
Wei
, “
Sensitive and selective determination of dopamine by electrochemical sensor based on molecularly imprinted electropolymerization of o-phenylenediamine
,”
Anal. Methods
5
,
1469
1473
(
2013
).
104.
B. B.
Prasad
,
D.
Kumar
,
R.
Madhuri
, and
M. P.
Tiwari
, “
Sol–gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples
,”
Electrochim. Acta
56
,
7202
7211
(
2011
).
105.
T.
Qian
,
C.
Yu
,
X.
Zhou
,
P.
Ma
,
S.
Wu
,
L.
Xu
, and
J.
Shen
, “
Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes
,”
Biosens. Bioelectron.
58
,
237
241
(
2014
).
106.
İ
Koçak
and
B.
Gürler Akyüz
, “
Dopamine electrochemical sensor based on molecularly imprinted polymer on carbon electrodes with platinum nanoparticles
,”
Electrocatalysis
14
,
763
775
(
2023
).
107.
Z.
Lu
,
Y.
Li
,
T.
Liu
,
G.
Wang
,
M.
Sun
,
Y.
Jiang
,
H.
He
,
Y.
Wang
,
P.
Zou
, and
X.
Wang
, “
A dual-template imprinted polymer electrochemical sensor based on AuNPs and nitrogen-doped graphene oxide quantum dots coated on NiS2/biomass carbon for simultaneous determination of dopamine and chlorpromazine
,”
Chem. Eng. J.
389
,
124417
(
2020
).
108.
T.
Zhang
,
X.
Xuan
,
M.
Li
,
C.
Li
,
P.
Li
, and
H.
Li
, “
Molecularly imprinted Ni-polyacrylamide-based electrochemical sensor for the simultaneous detection of dopamine and adenine
,”
Anal. Chim. Acta
1202
,
339689
(
2022
).
109.
A. N.
Patel
,
P. R.
Unwin
, and
J. V.
Macpherson
, “
Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond
,”
Phys. Chem. Chem. Phys.
15
,
18085
18092
(
2013
).
110.
T.
Rajarathinam
,
M.
Kang
,
S.
Hong
, and
S.-C.
Chang
, “
Nanocomposite-based electrochemical sensors for neurotransmitters detection in neurodegenerative diseases
,”
Chemosensors
11
,
103
(
2023
).
111.
N.
Chauhan
,
S.
Soni
,
P.
Agrawal
,
Y. P. S.
Balhara
, and
U.
Jain
, “
Recent advancement in nanosensors for neurotransmitters detection: Present and future perspective
,”
Process Biochem.
91
,
241
259
(
2020
).
112.
C.
Xue
,
X.
Wang
,
W.
Zhu
,
Q.
Han
,
C.
Zhu
,
J.
Hong
,
X.
Zhou
, and
H.
Jiang
, “
Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles
,”
Sens. Actuators B
196
,
57
63
(
2014
).
113.
Y.
Yang
,
Y.
Zeng
,
C.
Tang
,
X.
Zhu
,
X.
Lu
,
L.
Liu
,
Z.
Chen
, and
L.
Li
, “
Voltammetric determination of 5-hydroxytryptamine based on the Use of platinum nanoparticles coated with molecularly imprinted silica
,”
Microchim. Acta
185
,
1
8
(
2018
).
114.
M. L.
Yola
and
N.
Atar
, “
A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2d) hexagonal boron nitride nanosheets with molecularly imprinted polymer
,”
Appl. Surf. Sci.
458
,
648
655
(
2018
).
115.
Y.
Wu
,
X.
Feng
,
S.
Zhou
,
H.
Shi
,
H.
Wu
,
S.
Zhao
, and
W.
Song
, “
Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid
,”
Microchim. Acta
180
,
1325
1332
(
2013
).
116.
H.
Zhou
,
G.
Xu
,
A.
Zhu
,
Z.
Zhao
,
C.
Ren
,
L.
Nie
, and
X.
Kan
, “
A multiporous electrochemical sensor for epinephrine recognition and detection based on molecularly imprinted polypyrrole
,”
RSC Adv.
2
,
7803
7808
(
2012
).
117.
Z.
Wang
,
K.
Wang
,
L.
Zhao
,
S.
Chai
,
J.
Zhang
,
X.
Zhang
, and
Q.
Zou
, “
A novel sensor made of antimony doped tin oxide-silica composite Sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine
,”
Mater. Sci. Eng. C.
80
,
180
186
(
2017
).
118.
B. B.
Prasad
and
S.
Fatma
, “
One monomer doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid
,”
Electrochim. Acta
232
,
474
483
(
2017
).
119.
J.
de los Rios
,
V.
Galvan
, and
G. S.
Prakash
, “
Synthesis of Ni–TiO2 nanocomposites as enzyme-less, amperometric sensors for the electrooxidation of glucose
,”
ECS Adv.
2
,
026502
(
2023
).
120.
K. M.
Chahrour
,
P. C.
Ooi
,
A. A.
Nazeer
,
L. A.
Al-Hajji
,
P. R.
Jubu
,
C. F.
Dee
,
M.
Ahmadipour
, and
A. A.
Hamzah
, “
CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted Non-enzymatic glucose biosensors
,”
New J. Chem.
47
,
7890
7902
(
2023
).
121.
W.
Zheng
,
M.
Zhao
,
W.
Liu
,
S.
Yu
,
L.
Niu
,
G.
Li
,
H.
Li
, and
W.
Liu
, “
Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine
,”
J. Electroanal. Chem.
813
,
75
82
(
2018
).
122.
N.
Li
,
C.
Nan
,
X.
Mei
,
Y.
Sun
,
H.
Feng
, and
Y.
Li
, “
Electrochemical sensor based on dual-template molecularly imprinted polymer and nanoporous gold leaf modified electrode for simultaneous determination of dopamine and uric acid
,”
Microchim. Acta
187
,
1
10
(
2020
).
123.
A.
Florea
,
T.
Cowen
,
S.
Piletsky
, and
K.
De Wael
, “
Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands
,”
Analyst
144
,
4639
4646
(
2019
).
124.
M.
Akhoundian
,
T.
Alizadeh
,
M. R.
Ganjali
, and
P.
Norouzi
, “
Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs-modified electrode
,”
Talanta
200
,
115
123
(
2019
).
125.
C.-H.
Weng
,
W.-M.
Yeh
,
K.-C.
Ho
, and
G.-B.
Lee
, “
A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine
,”
Sens. Actuators B
121
,
576
582
(
2007
).
126.
Y.
Wang
,
L.
Yao
,
X.
Liu
,
J.
Cheng
,
W.
Liu
,
T.
Liu
,
M.
Sun
,
L.
Zhao
,
F.
Ding
, and
Z.
Lu
, “
Cuco2o4/N-doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole
,”
Biosens. Bioelectron.
142
,
111483
(
2019
).
127.
H.
Wang
,
D.
Qian
,
X.
Xiao
,
C.
Deng
,
L.
Liao
,
J.
Deng
, and
Y.-W.
Lin
, “
Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes
,”
Bioelectrochemistry
121
,
115
124
(
2018
).
128.
T.
Alizadeh
,
M. R.
Ganjali
,
F.
Rafiei
, and
M.
Akhoundian
, “
Synthesis of nano-sized timolol-imprinted polymer via ultrasonication assisted suspension polymerization in silicon oil and its use for the fabrication of timolol voltammetric sensor
,”
Mater. Sci. Eng. C
77
,
300
307
(
2017
).
129.
Y.
Liu
,
X.
Hu
,
Y.
Xia
,
F.
Zhao
, and
B.
Zeng
, “
A novel ratiometric electrochemical sensor based on dual-monomer molecularly imprinted polymer and Pt/Co3O4 for sensitive detection of chlorpromazine hydrochloride
,”
Anal. Chim. Acta
1190
,
339245
(
2022
).
130.
M.
Mostafavi
,
M. R.
Yaftian
,
F.
Piri
, and
H.
Shayani-Jam
, “
A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite
,”
Biosens. Bioelectron.
122
,
160
167
(
2018
).
131.
A.
Abdallah
,
A.
El-Shafei
, and
M. E.
Khalifa
, “
Selective and sensitive electrochemical sensor based on molecular imprinting strategy for recognition and quantification of sofosbuvir in real samples
,”
Arab. J. Sci. Eng.
47
,
197
207
(
2021
).
132.
T.
Alizadeh
,
F.
Atashi
,
M.
Akhoundian
, and
M. R.
Ganjali
, “
Highly selective extraction and voltammetric determination of the opioid drug buprenorphine Via a carbon paste electrode impregnated with nano-sized molecularly imprinted polymer
,”
Microchim. Acta
186
,
1
8
(
2019
).
133.
N. A.
El Gohary
,
A.
Madbouly
,
R. M.
El Nashar
, and
B.
Mizaikoff
, “
Voltammetric determination of valaciclovir using a molecularly imprinted polymer modified carbon paste electrode
,”
Electroanalysis
29
,
1388
1399
(
2017
).
134.
P.
Peng
,
L.
Liao
,
Z.
Yu
,
M.
Jiang
,
J.
Deng
, and
X.
Xiao
, “
A novel sensor based on multi-walled carbon nanotubes and boron-doped double-layer molecularly imprinted membrane for the analysis of SCZ in pharmaceutical and biological samples
,”
Int. J. Environ. Anal. Chem.
99
,
1495
1514
(
2019
).
135.
A.
Zarezadeh
,
H. R.
Rajabi
,
O.
Sheydaei
, and
H.
Khajehsharifi
, “
Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination
,”
Mater. Sci. Eng. C.
94
,
879
885
(
2019
).
136.
A.
Motaharian
,
K.
Naseri
,
O.
Mehrpour
, and
S.
Shoeibi
, “
Electrochemical determination of atypical antipsychotic drug quetiapine using nano-molecularly imprinted polymer modified carbon paste electrode
,”
Anal. Chim. Acta
1097
,
214
221
(
2020
).
137.
S.
Velayati
,
F.
Saadati
,
H.
Shayani-Jam
,
A.
Shekari
,
R.
Valipour
, and
M. R.
Yaftian
, “
Fabrication and evaluation of a molecularly imprinted polymer electrochemical nanosensor for the sensitive monitoring of phenobarbital in biological samples
,”
Microchem. J.
174
,
107063
(
2022
).
138.
S.
Massumi
,
E.
Ahmadi
,
A.
Akbari
, and
M. B.
Gholivand
, “
Highly sensitive and selective sensor based on molecularly imprinted polymer for voltammetric determination of nevirapine in biological samples
,”
J. Electroanal. Chem.
876
,
114508
(
2020
).
139.
Y.
Gu
,
X.
Yan
,
C.
Li
,
B.
Zheng
,
Y.
Li
,
W.
Liu
,
Z.
Zhang
, and
M.
Yang
, “
Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection
,”
Biosens. Bioelectron.
77
,
393
399
(
2016
).
140.
N.
Xiao
,
J.
Deng
,
J.
Cheng
,
S.
Ju
,
H.
Zhao
,
J.
Xie
,
D.
Qian
, and
J.
He
, “
Carbon paste electrode modified with duplex molecularly imprinted polymer hybrid film for metronidazole detection
,”
Biosens. Bioelectron.
81
,
54
60
(
2016
).
141.
A. A.
Ensafi
,
P.
Nasr-Esfahani
, and
B.
Rezaei
, “
Metronidazole determination with an extremely sensitive and selective electrochemical sensor based on graphene nanoplatelets and molecularly imprinted polymers on graphene quantum dots
,”
Sens. Actuators B
270
,
192
199
(
2018
).
142.
C.
Su
,
Z.
Li
,
D.
Zhang
,
Z.
Wang
,
X.
Zhou
,
L.
Liao
, and
X.
Xiao
, “
A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of Acetaminophen
,”
Biosens. Bioelectron.
148
,
111819
(
2020
).
143.
Y.
Sun
,
J.
He
,
G. I.
Waterhouse
,
L.
Xu
,
H.
Zhang
,
X.
Qiao
, and
Z.
Xu
, “
A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen
,”
Sens. Actuators B
300
,
126993
(
2019
).
144.
E. K.
Trindade
,
B. V.
Silva
, and
R. F.
Dutra
, “
A probeless and label-free electrochemical immunosensor for cystatin C detection based on ferrocene functionalized-graphene platform
,”
Biosens. Bioelectron.
138
,
111311
(
2019
).
145.
V.
Magudeeswaran
,
J.
Velayutham
,
S. S.
Paramasivam
,
G.
Karuppaiah
,
S. A.
Mariappan
, and
P.
Manickam
, “
Self-reporting molecularly imprinted polymer-based electrochemical sensors for structurally similar analytes
,”
ECS Trans.
107
,
16673
(
2022
).
146.
L.
Gillan
and
E.
Jansson
, “
Molecularly imprinted polymer on roll-to-roll printed electrodes as a single Use sensor for monitoring of cortisol in sweat
,”
Flex. Print. Electron.
7
,
025014
(
2022
).
147.
A.
Goyal
and
T.
Sakata
, “
Development of a redox-label-doped molecularly imprinted polymer on Β-cyclodextrin/reduced graphene oxide for electrochemical detection of a stress biomarker
,”
ACS Omega
7
,
33491
33499
(
2022
).
148.
D.
Udomsap
,
C.
Branger
,
G.
Culioli
,
P.
Dollet
, and
H.
Brisset
, “
A versatile electrochemical sensing receptor based on a molecularly imprinted polymer
,”
Chem. Commun.
50
,
7488
7491
(
2014
).
149.
S.
Yeasmin
,
A.
Ullah
,
B.
Wu
,
X.
Zhang
, and
L.-J.
Cheng
, “
Hybrid functional polymer-enabled multiplexed chemosensor patch for wearable adrenocortex stress profiling
,”
ACS Appl. Mater. Interfaces
15
,
50034
50046
(
2023
).
150.
P.
Lach
,
M.
Cieplak
,
K. R.
Noworyta
,
P.
Pieta
,
W.
Lisowski
,
J.
Kalecki
,
R.
Chitta
,
F.
D’Souza
,
W.
Kutner
, and
P. S.
Sharma
, “
Self-reporting molecularly imprinted polymer with the covalently immobilized ferrocene redox probe for selective electrochemical sensing of P-synephrine
,”
Sens. Actuators B
344
,
130276
(
2021
).
151.
S.
Yeasmin
,
B.
Wu
,
A.
Ullah
,
X.
Zhang
, and
L.-J.
Cheng
, “
Enzyme-free glucose monitoring patch
,”
ECS Meet. Abstr.
241
,
2489
(
2022
).
152.
M.
Wang
,
Y.
Yang
,
J.
Min
,
Y.
Song
,
J.
Tu
,
D.
Mukasa
,
C.
Ye
,
C.
Xu
,
N.
Heflin
,
J. S.
McCune
et al, “
A wearable electrochemical biosensor for the monitoring of metabolites and nutrients
,”
Nat. Biomed. Eng.
6
,
1225
1235
(
2022
).
153.
H.
Hou
,
Y.
Jin
,
L.
Sheng
,
Y.
Huang
, and
R.
Zhao
, “
One-step synthesis of well-defined molecularly imprinted nanospheres for the class-selective recognition and separation of Β-blockers in human serum
,”
J. Chromatogr. A
1673
,
463204
(
2022
).
154.
M.
Parrilla
,
U.
Detamornrat
,
J.
Domínguez-Robles
,
S.
Tunca
,
R. F.
Donnelly
, and
K.
De Wael
, “
Wearable microneedle-based array patches for continuous electrochemical monitoring and drug delivery: Toward a closed-loop system for methotrexate treatment
,”
ACS Sens.
8
,
4161
4170
(
2023
).
155.
B.
Wang
,
C.
Zhao
,
Z.
Wang
,
K.-A.
Yang
,
X.
Cheng
,
W.
Liu
,
W.
Yu
,
S.
Lin
,
Y.
Zhao
,
K. M.
Cheung
et al, “
Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring
,”
Sci. Adv.
8
,
eabk0967
(
2022
).
156.
T.
Beiki
,
G.
Najafpour-Darzi
,
M.
Mohammadi
,
M.
Shakeri
, and
R.
Boukherroub
, “
Fabrication of a novel electrochemical biosensor based on a molecular imprinted polymer-aptamer hybrid receptor for lysozyme determination
,”
Anal. Bioanal. Chem.
415
,
899
911
(
2023
).
157.
P.
Preechakasedkit
,
N.
Nawaukkaratharnant
,
K.
Teekayupak
,
A.
Lomae
, and
N.
Ruecha
, “
Single-preparation rGO/Cu–Cu2O nanocomposite-modified electrode integrating NaOH immobilized polymer blend film for one-step nonenzymatic glucose detection
,”
J. Sci.: Adv. Mater. Devices
8
,
100535
(
2023
).
158.
J. H.
Yoo
and
J. H.
Kim
, “
Advances in continuous glucose monitoring and integrated devices for management of diabetes with insulin-based therapy: Improvement in glycemic control
,”
Diabetes Metab. J.
47
,
27
41
(
2023
).
159.
N. M.
Hemed
,
S.
Leal-Ortiz
,
E. T.
Zhao
, and
N. A.
Melosh
On-demand, reversible, ultrasensitive polymer membrane based on molecular imprinting polymer
,”
ACS Nano
17
,
5632
5643
(
2023
).
160.
Z.
Xu
,
X.
Qiao
,
R.
Tao
,
Y.
Li
,
S.
Zhao
,
Y.
Cai
, and
X.
Luo
, “
A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat
,”
Biosens. Bioelectron.
234
,
115360
(
2023
).
You do not currently have access to this content.