Circulating tumor cells (CTCs) with different epithelial and mesenchymal phenotypes play distinct roles in the metastatic cascade. However, the influence of their phenotypic traits and chemotherapy on their transit and retention within capillaries remains unclear. To explore this, we developed a microfluidic device comprising 216 microchannels of different widths from 5 to 16 μm to mimic capillaries. This platform allowed us to study the behaviors of human breast cancer epithelial MCF-7 and mesenchymal MDA-MB-231 cells through microchannels under chemotherapy-induced stress. Our results revealed that when the cell diameter to microchannel width ratio exceeded 1.2, MCF-7 cells exhibited higher transit percentages than MDA-MB-231 cells under a flow rate of 0.13 mm/s. Tamoxifen (250 nM) reduced the transit percentage of MCF-7 cells, whereas 100 nM paclitaxel decreased transit percentages for both cell types. These differential responses were partially due to altered cell stiffness following drug treatments. When cells were entrapped at microchannel entrances, tamoxifen, paclitaxel, and high-flow stress (0.5 mm/s) induced a reduction in mitochondrial membrane potential (MMP) in MCF-7 cells. Tamoxifen treatment also elevated reactive oxygen species (ROS) levels in MCF-7 cells. Conversely, MMP and ROS levels in entrapped MDA-MB-231 cells remained unaffected. Consequently, the viability and proliferation of entrapped MCF-7 cells declined under these chemical and physical stress conditions. Our findings emphasize that phenotypically distinct CTCs may undergo selective filtration and exhibit varied responses to chemotherapy in capillaries, thereby impacting cancer metastasis outcomes. This highlights the importance of considering both cell phenotype and drug response to improve treatment strategies.

1.
M.
Poudineh
,
E. H.
Sargent
,
K.
Pantel
, and
S. O.
Kelley
, “
Profiling circulating tumour cells and other biomarkers of invasive cancers
,”
Nat. Biomed. Eng.
2
,
72
84
(
2018
).
2.
L.
Thery
,
A.
Meddis
,
L.
Cabel
,
C.
Proudhon
,
A.
Latouche
,
J. Y.
Pierga
, and
F. C.
Bidard
, “
Circulating tumor cells in early breast cancer
,”
JNCI Cancer Spectr.
3
,
pkz026
(
2019
).
3.
J.
Massague
and
A. C.
Obenauf
, “
Metastatic colonization by circulating tumour cells
,”
Nature
529
,
298
306
(
2016
).
4.
K.
Kurma
and
C.
Alix-Panabieres
, “
Mechanobiology and survival strategies of circulating tumor cells: A process towards the invasive and metastatic phenotype
,”
Front. Cell Dev. Biol.
11
,
1188499
(
2023
).
5.
A.
Varotsos Vrynas
,
J.
Perea Paizal
,
C.
Bakal
, and
S. H.
Au
, “
Arresting metastasis within the microcirculation
,”
Clin. Exp. Metastasis
38
,
337
342
(
2021
).
6.
Y.
Kienast
,
L.
von Baumgarten
,
M.
Fuhrmann
,
W. E.
Klinkert
,
R.
Goldbrunner
,
J.
Herms
, and
F.
Winkler
, “
Real-time imaging reveals the single steps of brain metastasis formation
,”
Nat. Med.
16
,
116
122
(
2010
).
7.
C. L.
Chaffer
and
R. A.
Weinberg
, “
A perspective on cancer cell metastasis
,”
Science
331
,
1559
1564
(
2011
).
8.
X.
Zhang
and
M.
Mak
, “
Biophysical informatics approach For quantifying phenotypic heterogeneity In cancer cell migration In confined microenvironments
,”
Bioinformatics.
37
,
2042
2052
(
2021
).
9.
K. M.
Stroka
,
H.
Jiang
,
S. H.
Chen
,
Z.
Tong
,
D.
Wirtz
,
S. X.
Sun
, and
K.
Konstantopoulos
, “
Water permeation drives tumor cell migration in confined microenvironments
,”
Cell
157
,
611
623
(
2014
).
10.
S. P.
Desai
,
S. N.
Bhatia
,
M.
Toner
, and
D.
Irimia
, “
Mitochondrial localization and the persistent migration of epithelial cancer cells
,”
Biophys. J.
104
,
2077
2088
(
2013
).
11.
S.
Byun
,
S.
Son
,
D.
Amodei
,
N.
Cermak
,
J.
Shaw
,
J. H.
Kang
,
V. C.
Hecht
,
M. M.
Winslow
,
T.
Jacks
,
P.
Mallick
, and
S. R.
Manalis
, “
Characterizing deformability and surface friction of cancer cells
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
7580
7585
(
2013
).
12.
X.
Zhang
,
T.
Chan
, and
M.
Mak
, “
Morphodynamic signatures of MDA-MB-231 single cells and cell doublets undergoing invasion in confined microenvironments
,”
Sci. Rep.
11
,
6529
(
2021
).
13.
K.
Hosseini
,
A.
Frenzel
, and
E.
Fischer-Friedrich
, “
EMT changes actin cortex rheology in a cell-cycle-dependent manner
,”
Biophys. J.
120
,
3516
3526
(
2021
).
14.
M.
Peralta
,
N.
Osmani
, and
J. G.
Goetz
, “
Circulating tumor cells: Towards mechanical phenotyping of metastasis
,”
iScience
25
,
103969
(
2022
).
15.
Y.
Wu
,
M.
Sarkissyan
, and
J. V.
Vadgama
, “
Epithelial-mesenchymal transition and breast cancer
,”
J. Clin. Med.
5
,
13
(
2016
).
16.
H.
Polioudaki
,
S.
Agelaki
,
R.
Chiotaki
,
E.
Politaki
,
D.
Mavroudis
,
A.
Matikas
,
V.
Georgoulias
, and
P. A.
Theodoropoulos
, “
Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer
,”
BMC Cancer
15
,
399
(
2015
).
17.
H. K.
Brown
,
M.
Tellez-Gabriel
,
P. F.
Cartron
,
F. M.
Vallette
,
M. F.
Heymann
, and
D.
Heymann
, “
Characterization of circulating tumor cells as a reflection of the tumor heterogeneity: Myth or reality?
,”
Drug Discov. Today
24
,
763
772
(
2019
).
18.
L. A.
Hapach
,
S. P.
Carey
,
S. C.
Schwager
,
P. V.
Taufalele
,
W.
Wang
,
J. A.
Mosier
,
N.
Ortiz-Otero
,
T. J.
McArdle
,
Z. E.
Goldblatt
,
M. C.
Lampi
,
F.
Bordeleau
,
J. R.
Marshall
,
I. M.
Richardson
,
J.
Li
,
M. R.
King
, and
C. A.
Reinhart-King
, “
Phenotypic heterogeneity and metastasis of breast cancer cells
,”
Cancer Res.
81
,
3649
3663
(
2021
).
19.
J. P.
Thiery
,
H.
Acloque
,
R. Y.
Huang
, and
M. A.
Nieto
, “
Epithelial-mesenchymal transitions in development and disease
,”
Cell
139
,
871
890
(
2009
).
20.
A. G.
Waks
and
E. P.
Winer
, “
Breast cancer treatment: A review
,”
JAMA
321
,
288
300
(
2019
).
21.
X.
Liu
,
J.
Li
,
B. L.
Cadilha
,
A.
Markota
,
C.
Voigt
,
Z.
Huang
,
P. P.
Lin
,
D. D.
Wang
,
J.
Dai
,
G.
Kranz
,
A.
Krandick
,
D.
Libl
,
H.
Zitzelsberger
,
I.
Zagorski
,
H.
Braselmann
,
M.
Pan
,
S.
Zhu
,
Y.
Huang
,
S.
Niedermeyer
,
C. A.
Reichel
,
B.
Uhl
,
D.
Briukhovetska
,
J.
Suarez
,
S.
Kobold
,
O.
Gires
, and
H.
Wang
, “
Epithelial-type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis
,”
Sci. Adv.
5
,
eaav4275
(
2019
).
22.
E. D.
Williams
,
D.
Gao
,
A.
Redfern
, and
E. W.
Thompson
, “
Controversies around epithelial-mesenchymal plasticity in cancer metastasis
,”
Nat. Rev. Cancer
19
,
716
732
(
2019
).
23.
V.
Gensbittel
,
M.
Krater
,
S.
Harlepp
,
I.
Busnelli
,
J.
Guck
, and
J. G.
Goetz
, “
Mechanical adaptability of tumor cells in metastasis
,”
Dev. Cell
56
,
164
179
(
2021
).
24.
G.
Follain
,
N.
Osmani
,
A. S.
Azevedo
,
G.
Allio
,
L.
Mercier
,
M. A.
Karreman
,
G.
Solecki
,
M. J.
Garcia Leon
,
O.
Lefebvre
,
N.
Fekonja
,
C.
Hille
,
V.
Chabannes
,
G.
Dolle
,
T.
Metivet
,
F.
Hovsepian
,
C.
Prudhomme
,
A.
Pichot
,
N.
Paul
,
R.
Carapito
,
S.
Bahram
,
B.
Ruthensteiner
,
A.
Kemmling
,
S.
Siemonsen
,
T.
Schneider
,
J.
Fiehler
,
M.
Glatzel
,
F.
Winkler
,
Y.
Schwab
,
K.
Pantel
,
S.
Harlepp
, and
J. G.
Goetz
, “
Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells
,”
Dev. Cell
45
,
33
52.e12
(
2018
).
25.
M.
Mak
,
C. A.
Reinhart-King
, and
D.
Erickson
, “
Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device
,”
Lab Chip
13
,
340
348
(
2013
).
26.
X.
Liu
,
J.
Fang
,
S.
Huang
,
X.
Wu
,
X.
Xie
,
J.
Wang
,
F.
Liu
,
M.
Zhang
,
Z.
Peng
, and
N.
Hu
, “
Tumor-on-a-chip: From bioinspired design to biomedical application
,”
Microsyst. Nanoeng.
7
,
50
(
2021
).
27.
G. M.
Landwehr
,
A. J.
Kristof
,
S. M.
Rahman
,
J. H.
Pettigrew
,
R.
Coates
,
J. B.
Balhoff
,
U. L.
Triantafillu
,
Y.
Kim
, and
A. T.
Melvin
, “
Biophysical analysis of fluid shear stress induced cellular deformation in a microfluidic device
,”
Biomicrofluidics
12
,
054109
(
2018
).
28.
Y.
Xia
,
Y.
Wan
,
S.
Hao
,
M.
Nisic
,
R. A.
Harouaka
,
Y.
Chen
,
X.
Zou
, and
S. Y.
Zheng
, “
Nucleus of circulating tumor cell determines Its translocation through biomimetic microconstrictions and Its physical enrichment by microfiltration
,”
Small
14
,
e1802899
(
2018
).
29.
S. K.
Dash
,
B.
Patra
,
V.
Sharma
,
S. K.
Das
, and
R. S.
Verma
, “
Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression
,”
Lab Chip
22
,
2200
2211
(
2022
).
30.
S.
Huveneers
,
M. J.
Daemen
, and
P. L.
Hordijk
, “
Between Rho(k) and a hard place: The relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease
,”
Circ. Res.
116
,
895
908
(
2015
).
31.
G.
Follain
,
D.
Herrmann
,
S.
Harlepp
,
V.
Hyenne
,
N.
Osmani
,
S. C.
Warren
,
P.
Timpson
, and
J. G.
Goetz
, “
Fluids and their mechanics in tumour transit: Shaping metastasis
,”
Nat. Rev. Cancer
20
,
107
124
(
2020
).
32.
E. R.
Kisanga
,
J.
Gjerde
,
A.
Guerrieri-Gonzaga
,
F.
Pigatto
,
A.
Pesci-Feltri
,
C.
Robertson
,
D.
Serrano
,
G.
Pelosi
,
A.
Decensi
, and
E. A.
Lien
, “
Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial
,”
Clin. Cancer Res.
10
,
2336
2343
(
2004
).
33.
L. M.
Zasadil
,
K. A.
Andersen
,
D.
Yeum
,
G. B.
Rocque
,
L. G.
Wilke
,
A. J.
Tevaarwerk
,
R. T.
Raines
,
M. E.
Burkard
, and
B. A.
Weaver
, “
Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles
,”
Sci. Transl. Med.
6
,
229ra243
(
2014
).
34.
H. A.
Park
,
S. R.
Brown
, and
Y.
Kim
, “
Cellular mechanisms of circulating tumor cells during breast cancer metastasis
,”
Int. J. Mol. Sci.
21
,
5040
(
2020
).
35.
D. B.
Zorov
,
M.
Juhaszova
, and
S. J.
Sollott
, “
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release
,”
Physiol. Rev.
94
,
909
950
(
2014
).
36.
D.
Lin
,
L.
Shen
,
M.
Luo
,
K.
Zhang
,
J.
Li
,
Q.
Yang
,
F.
Zhu
,
D.
Zhou
,
S.
Zheng
,
Y.
Chen
, and
J.
Zhou
, “
Circulating tumor cells: Biology and clinical significance
,”
Signal Transduction Target Theor.
6
,
404
(
2021
).
37.
Y. F.
Sun
,
W.
Guo
,
Y.
Xu
,
Y. H.
Shi
,
Z. J.
Gong
,
Y.
Ji
,
M.
Du
,
X.
Zhang
,
B.
Hu
,
A.
Huang
,
G. G.
Chen
,
P. B. S.
Lai
,
Y.
Cao
,
S. J.
Qiu
,
J.
Zhou
,
X. R.
Yang
, and
J.
Fan
, “
Circulating tumor cells from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical significance in hepatocellular carcinoma
,”
Clin. Cancer Res.
24
,
547
559
(
2018
).
38.
J. M.
Hope
,
M. R.
Bersi
,
J. A.
Dombroski
,
A. B.
Clinch
,
R. S.
Pereles
,
W. D.
Merryman
, and
M. R.
King
, “
Circulating prostate cancer cells have differential resistance to fluid shear stress-induced cell death
,”
J. Cell Sci.
134
,
jcs251470
(
2021
).
39.
D. L.
Moose
,
B. L.
Krog
,
T. H.
Kim
,
L.
Zhao
,
S.
Williams-Perez
,
G.
Burke
,
L.
Rhodes
,
M.
Vanneste
,
P.
Breheny
,
M.
Milhem
,
C. S.
Stipp
,
A. C.
Rowat
, and
M. D.
Henry
, “
Cancer cells resist mechanical destruction in circulation via RhoA/actomyosin-dependent mechano-adaptation
,”
Cell Rep.
30
,
3864
3874.e6
(
2020
).
40.
C. D.
Paul
,
K.
Bishop
,
A.
Devine
,
E. L.
Paine
,
J. R.
Staunton
,
S. M.
Thomas
,
J. R.
Thomas
,
A. D.
Doyle
,
L. M.
Miller Jenkins
,
N. Y.
Morgan
,
R.
Sood
, and
K.
Tanner
, “
Tissue architectural cues drive organ targeting of tumor cells in zebrafish
,”
Cell Syst.
9
,
187
206.e16
(
2019
).
41.
M.
Pepona
,
P.
Balogh
,
D. F.
Puleri
,
W. F.
Hynes
,
C.
Robertson
,
K.
Dubbin
,
J.
Alvarado
,
M. L.
Moya
, and
A.
Randles
, “
Investigating the interaction between circulating tumor cells and local hydrodynamics via experiment and simulations
,”
Cell. Mol. Bioeng.
13
,
527
540
(
2020
).
42.
J.
Perea Paizal
,
S. H.
Au
, and
C.
Bakal
, “
Squeezing through the microcirculation: Survival adaptations of circulating tumour cells to seed metastasis
,”
Br. J. Cancer
124
,
58
65
(
2021
).
You do not currently have access to this content.