There are many applications where upstream sample processing is required to concentrate dispersed particles in flow; this may be to increase the concentration (e.g., to enhance biosensor accuracy) or to decrease it (e.g., by removing contaminants from flow). The AC electrokinetic phenomenon, dielectrophoresis (DEP), has been used widely for particle trapping for flow, but the magnitude of the force drops reduces rapidly with distance from electrode edges, so that nm-scale particles such as viruses and bacteria are only trapped when near the electrode surface. This limits the usable flow rate in the device and can render the final device unusable for practical applications. Conversely, another electrokinetic phenomenon, AC electro-osmosis (ACEO), can be used to move particles to electrode surfaces but is unable to trap them from flow, limiting their ability for sample cleanup or trap-and-purge concentration. In this paper, we describe the optimization of ACEO electrodes aligned parallel to pressure-driven flow as a precursor/preconditioner to capture particles from a flow stream and concentrate them adjacent to the channel wall to enhance DEP capture. This is shown to be effective at flow rates of up to 0.84 ml min−1. Furthermore, the analysis of the 3D flow structure in the ACEO device by both simulation and confocal microscopy suggests that while the system offers significant benefits, the flow structure in the volume near the channel lid is such that while substantial trapping can occur, particles in this part of the chamber cannot be trapped, independent of the chamber height.

1.
National Research Council,
Review of the Scientific Approaches Used During the FBI's Investigation of the 2001 Anthrax Letters
(
National Academies Press
,
2011
).
2.
B.
Singh
,
B.
Datta
,
A.
Ashish
, and
G.
Dutta
, “
A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis
,”
Sens. Int.
2
,
100119
(
2021
).
3.
R.
Pethig
,
Dielectrophoresis Theory, Methodology and Biological Applications
(
John Wiley & Sons Inc.
, Hoboken,
2017
).
4.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
, “
Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
,”
Adv. Colloid Interface Sci.
152
,
48
88
(
2011
).
5.
N.
Green
,
A.
Ramos
,
A.
Gonzalez
,
H.
Morgan
, and
A.
Castellanos
, “
Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements
,”
Phys. Rev. E
61
,
4011
4018
(
2000
).
6.
A.
Ramos
,
P.
Garcia-Sanchez
, and
H.
Morgan
, “
AC electrokinetics of conducting microparticles: A review
,”
Curr. Opin. Colloid Interface Sci.
24
,
79
90
(
2016
).
7.
A.
Gonzalez
,
A.
Ramos
,
N.
Green
,
A.
Castellanos
, and
H.
Morgan
, “
Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis
,”
Phys. Rev. E
61
,
4019
4028
(
2000
).
8.
N. G.
Green
,
A.
Ramos
,
A.
Gonzalez
,
H.
Morgan
, and
A.
Castellanos
, “
Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation
,”
Phys. Rev. E
66
,
026305
(
2002
).
9.
N. G.
Green
and
H.
Morgan
, “
Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces
,”
J. Phys. D: Appl. Phys.
31
,
L25
30
(
1998
).
10.
K. F.
Hoettges
,
M. B.
McDonell
, and
M. P.
Hughes
, “
Use of combined dielectrophoretic/electrohydrodynamic forces for biosensor enhancement
,”
J. Phys. D: Appl. Phys.
36
,
L101
L104
(
2003
).
11.
K. F.
Hoettges
,
M. P.
Hughes
,
A.
Cotton
,
N. A.
Hopkins
, and
M. B.
McDonnell
, “
Optimizing particle collection for enhanced surface-based biosensors
,”
IEEE Eng. Med. Biol.
22
,
68
74
(
2003
).
12.
Y.
Hubner
,
K. F.
Hoettges
,
M. B.
McDonnell
,
M. J.
Carter
, and
M. P.
Hughes
, “
Applications of dielectrophoretic/electrohydrodynamic ‘zipper’ electrodes for detection of biological nanoparticles
,”
Int. J. Nanomed.
2
,
427
431
(
2007
).
13.
M. N.
Mohtar
,
K. F.
Hoettges
, and
M. P.
Hughes
, “
Factors affecting particle collection by electro-osmosis in microfluidic systems
,”
Electrophoresis
35
,
345
351
(
2014
).
14.
R.
Pethig
,
Y.
Huang
,
X.-B.
Wang
, and
J. P. H.
Burt
, “
Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes
,”
J Phys. D: Appl. Phys.
25
,
881
(
1992
).
15.
J. A.
Price
,
J. P.
Burt
, and
R.
Pethig
, “
Applications of a new optical technique for measuring the dielectrophoretic behaviour of micro-organisms
,”
Biochim. Biophys. Acta
964
,
221
230
(
1988
).
16.
H. O.
Fatoyinbo
,
K. F.
Hoettges
,
S. M.
Reddy
, and
M. P.
Hughes
, “
An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications
,”
Biosens. Bioelectron.
23
,
225
232
(
2007
).
17.
N. A. P.
Ondevilla
,
T.-W.
Wong
,
N.-Y.
Lee
, and
H.-C.
Chang
, “
An AC electrokinetics-based electrochemical aptasensor for the rapid detection of microRNA-155
,”
Biosens. Bioelectron.
199
,
113847
(
2022
).
18.
E. M.
Melvin
,
B. R.
Moore
,
K. H.
Gilchrist
,
S.
Grego
, and
O. D.
Velev
, “
On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes
,”
Biomicrofluidics
5
,
034113
(
2011
).
19.
C. C.
Chung
,
T.
Glawdel
,
C. L.
Ren
, and
H. C.
Chang
, “
Combination of ac electroosmosis and dielectrophoresis for particle manipulation on electrically-induced microscale wave structures
,”
J. Micromech. Microeng.
25
,
035003
(
2015
).
20.
W. Y.
Ng
,
S.
Goh
,
S. Y. C.
Lam
,
C.
Yang
, and
I.
Rodríguez
, “
DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels
,”
Lab Chip
9
,
802
809
(
2009
).
21.
K. F.
Hoettges
,
M. B.
McDonnell
, and
M. P.
Hughes
, “
Continuous flow nanoparticle concentration using alternating current-electroosmotic flow
,”
Electrophoresis
35
,
467
473
(
2014
).
22.
Y.
Ren
,
J.
Liu
,
W.
Liu
,
Q.
Lang
,
Y.
Tao
,
Q.
Hu
,
L.
Hou
, and
H.
Jiang
, “
Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced charge electroosmosis
,”
Lab Chip
16
,
2803
(
2016
).
23.
C.-H.
Han
and
J.
Jang
, “
Integrated microfluidic platform with electrohydrodynamic focusing and a carbon nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria
,”
Lab Chip
21
,
184
(
2021
).
24.
P. N.
Shankar
and
M. D.
Deshpande
, “
Fluid mechanics in the driven cavity
,”
Annu. Rev. Fluid Mech.
32
,
93
136
(
2000
).
You do not currently have access to this content.