Microvalves play a crucial role in manipulating fluid states within a microfluidic system and are finding widespread applications in fields such as biology, medicine, and environmental preservation. Leveraging the characteristics and features of microvalves enables the realization of various complicated microfluidic functions. Continuous advancement in the manufacturing process contributes to more flexible control modes for passive microvalves. As a consequence, these valves are progressively shrinking in size while simultaneously improving in precision and stability. Although active microvalves have the benefits of low leakage, rapid response time, and wide adaptability range, the energy supply system limits the size and even their applicability in integration and miniaturization. In comparison, passive microvalves have the advantage of relying solely on the fluid flow or fluid driving pressure to control the open/close of fluid flow over active microvalves, in spite of having slightly reduced control accuracy. Their self-sustaining feature is highly consistent with the need for assembly and miniaturization in the point-of-care testing technology. Hence, these valves have attracted significant interest for research and application purposes. This review focuses on the recent literature on passive microvalves and details existing passive microvalves from three different aspects: operating principle, processing method, and applications. This work aims to increase the visibility of passive microvalves among researchers and enhance their comprehension by classifying them according to the aforementioned three aspects, facilitating the practical applications and further developments of passive microvalves. Additionally, this paper is expected to serve as a comprehensive and systematic reference for interdisciplinary researchers that intend to design related microfluidic systems.

1.
A.
Manz
,
N.
Graber
, and
H. M.
Widmer
,
Sensor Actuat. B: Chem.
1
(
1–6
),
244
248
(
1990
).
2.
P. W.
Miller
,
H.
Audrain
,
D.
Bender
,
A. J.
deMello
,
A. D.
Gee
,
N. J.
Long
, and
R.
Vilar
,
Chemistry
17
(
2
),
460
463
(
2011
).
3.
N.
Emmanuel
,
G.
Emonds-Alt
,
M.
Lismont
,
G.
Eppe
, and
J.-C. M.
Monbaliu
,
J. Chem. Educ.
94
(
6
),
775
780
(
2017
).
4.
J. B.
Nielsen
,
R. L.
Hanson
,
H. M.
Almughamsi
,
C.
Pang
,
T. R.
Fish
, and
A. T.
Woolley
,
Anal. Chem.
92
(
1
),
150
168
(
2020
).
5.
N.
Liu
,
C.
Petchakup
,
H. M.
Tay
,
K. H. H.
Li
, and
H. W.
Hou
,
Applications of Microfluidic Systems in Biology and Medicine
(Springer, Singapore,
2019
), pp.
99
150
.
6.
K.
Illath
,
S.
Kar
,
P.
Gupta
,
A.
Shinde
,
S.
Wankhar
,
F. G.
Tseng
,
K. T.
Lim
,
M.
Nagai
, and
T. S.
Santra
,
Biomaterials
280
,
121247
(
2022
).
7.
J.
Sateesh
,
K.
Guha
,
A.
Dutta
,
P.
Sengupta
,
D.
Yalamanchili
,
N. S.
Donepudi
,
M.
Surya Manoj
, and
S. S.
Sohail
,
Biomicrofluidics
16
(
4
),
041501
(
2022
).
8.
J.
Cao
,
X.
Chen
,
S.
Huang
,
W.
Shi
,
Q.
Fan
,
Y.
Gong
,
Y.
Peng
,
L.
Wu
, and
C.
Yang
,
TrAC, Trends Anal. Chem.
158
, 116868 (
2023
).
9.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
,
D. W.
Bell
,
D.
Irimia
,
L.
Ulkus
,
M. R.
Smith
,
E. L.
Kwak
,
S.
Digumarthy
,
A.
Muzikansky
,
P.
Ryan
,
U. J.
Balis
,
R. G.
Tompkins
,
D. A.
Haber
, and
M.
Toner
,
Nature
450
(
7173
),
1235
1239
(
2007
).
10.
S. Y.
Teh
,
R.
Lin
,
L. H.
Hung
, and
A. P.
Lee
,
Lab Chip
8
(
2
),
198
220
(
2008
).
11.
L.
Mazutis
,
J.
Gilbert
,
W. L.
Ung
,
D. A.
Weitz
,
A. D.
Griffiths
, and
J. A.
Heyman
,
Nat. Protoc.
8
(
5
),
870
891
(
2013
).
12.
S. N.
Bhatia
and
D. E.
Ingber
,
Nat. Biotechnol.
32
(
8
),
760
772
(
2014
).
13.
S.
Smith
,
D.
Mager
,
A.
Perebikovsky
,
E.
Shamloo
,
D.
Kinahan
,
R.
Mishra
,
S. M.
Torres Delgado
,
H.
Kido
,
S.
Saha
,
J.
Ducree
,
M.
Madou
,
K.
Land
, and
J. G.
Korvink
,
Micromachines
7
(
2
), 22 (
2016
).
14.
M.
Bauer
,
J.
Bartoli
,
S. O.
Martinez-Chapa
, and
M.
Madou
,
Micromachines
10
(
1
), 31 (
2019
).
15.
S.
Peshin
,
D.
George
,
R.
Shiri
,
L.
Kulinsky
, and
M.
Madou
,
Micromachines
13
(
2
), 303 (
2022
).
16.
A.
Sood
,
A.
Kumar
,
V. K.
Gupta
,
C. M.
Kim
, and
S. S.
Han
,
ACS Biomater. Sci. Eng.
9
(
1
),
62
84
(
2023
).
17.
F. M. F.
Lun
,
R. W. K.
Chiu
,
K. C.
Chan
,
T. Y.
Leung
,
T. K.
Lau
, and
Y. M.
Lo
,
Clin. Chem.
54
(
10
),
1664
1672
(
2008
).
18.
H.
Chen
,
Meth. Mol. Biol.
1392
,
103
111
(
2016
).
19.
H. S.
Han
,
P. G.
Cantalupo
,
A.
Rotem
,
S. K.
Cockrell
,
M.
Carbonnaux
,
J. M.
Pipas
, and
D. A.
Weitz
,
Angew. Chem. Int. Ed. Engl.
54
(
47
),
13985
13988
(
2015
).
20.
J.
Yuan
,
J.
Sheng
, and
P. A.
Sims
,
Genome Biol.
19
(
1
),
227
(
2018
).
21.
S. K.
Sia
,
V.
Linder
,
B. A.
Parviz
,
A.
Siegel
, and
G. M.
Whitesides
,
Angew. Chem. Int. Ed. Engl.
43
(
4
),
498
502
(
2004
).
22.
O. S.
Kwon
,
S. H.
Lee
,
S. J.
Park
,
J. H.
An
,
H. S.
Song
,
T.
Kim
,
J. H.
Oh
,
J.
Bae
,
H.
Yoon
,
T. H.
Park
, and
J.
Jang
,
Adv. Mater.
25
(
30
),
4177
4185
(
2013
).
23.
A.
Sánchez-Ferrer
,
T.
Fischl
,
M.
Stubenrauch
,
A.
Albrecht
,
H.
Wurmus
,
M.
Hoffmann
, and
H.
Finkelmann
,
Adv. Mater.
23
(
39
),
4526
4530
(
2011
).
24.
H.
Lai
and
A.
Folch
,
Lab Chip
11
(
2
),
336
342
(
2011
).
25.
Y.
Murakami
,
K.
Araki
,
R.
Ohashi
,
H.
Honma
,
N.
Misawa
,
K.
Takahashi
,
K.
Sawada
, and
M.
Ishida
,
Sens. Actuators, B
194
,
528
533
(
2014
).
26.
L.
Rao
,
B.
Cai
,
J.
Wang
,
Q.
Meng
,
C.
Ma
,
Z.
He
,
J.
Xu
,
Q.
Huang
,
S.
Li
,
Y.
Cen
,
S.
Guo
,
W.
Liu
, and
X.-z.
Zhao
,
Sens. Actuators, B
210
,
328
335
(
2015
).
27.
K.
Abi-Samra
,
R.
Hanson
,
M.
Madou
, and
R. A.
Gorkin
3rd,
Lab Chip
11
(
4
),
723
726
(
2011
).
28.
J. D.
Tice
,
A. V.
Desai
,
T. A.
Bassett
,
C. A.
Apblett
, and
P. J. A.
Kenis
,
RSC Adv.
4
(
93
),
51593
51602
(
2014
).
29.
A.
Zahra
,
R.
Scipinotti
,
D.
Caputo
,
A.
Nascetti
, and
G.
de Cesare
,
Sens. Actuators, A
236
,
206
213
(
2015
).
30.
M. C.
Kong
and
E. D.
Salin
,
Anal. Chem.
83
(
3
),
1148
1151
(
2011
).
31.
H. Q.
Li
,
D. C.
Roberts
,
J. L.
Steyn
,
K. T.
Turner
,
O.
Yaglioglu
,
N. W.
Hagood
,
S. M.
Spearing
, and
M. A.
Schmidt
,
Sens. Actuators, A
111
(
1
),
51
56
(
2004
).
32.
R.
Liu
,
Sens. Actuators, B
98
(
2–3
),
328
336
(
2004
).
33.
C.
Huang
and
C.
Tsou
,
Sens. Actuators, A
210
,
147
156
(
2014
).
34.
M.
Nafea
,
A.
Nawabjan
, and
M. S.
Mohamed Ali
,
Sens. Actuators, A
279
,
191
203
(
2018
).
35.
M. S.
Groen
,
K.
Wu
,
R. A.
Brookhuis
,
M. J.
van Houwelingen
,
D. M.
Brouwer
,
J. C.
Lötters
, and
R. J.
Wiegerink
,
J. Micromech. Microeng.
24
(
12
) (
2014
).
36.
H.
Meng
,
C.
Chen
,
Y.
Zhu
,
Z.
Li
,
F.
Ye
,
J. W. K.
Ho
, and
H.
Chen
,
Lab Chip
21
(
21
),
4166
4176
(
2021
).
37.
A.
Baldi
,
M.
Lei
,
Y.
Gu
,
R. A.
Siegel
, and
B.
Ziaie
,
Sens. Actuators, B
114
(
1
),
9
18
(
2006
).
38.
R.
Li
,
X.
Zhang
,
X.
Lv
,
L.
Geng
,
Y.
Li
,
K.
Qin
, and
Y.
Deng
,
Anal. Biochem.
539
,
48
53
(
2017
).
39.
J.
Sutanto
,
P. J.
Hesketh
, and
Y. H.
Berthelot
,
J. Micromech. Microeng.
16
(
2
),
266
275
(
2006
).
40.
L.
Swayne
,
A.
Kazarine
,
E. J.
Templeton
, and
E. D.
Salin
,
Talanta
134
,
443
447
(
2015
).
41.
M.
Li
and
D.
Li
,
Anal. Chim. Acta
1021
,
85
94
(
2018
).
42.
S.
Wang
,
X.
Zhang
,
C.
Ma
,
S.
Yan
,
D.
Inglis
, and
S.
Feng
,
Biosensors
11
(
10
) 405 (
2021
).
43.
K. W.
Oh
and
C. H.
Ahn
,
J. Micromech. Microeng.
16
(
5
),
R13
R39
(
2006
).
44.
B.
Yang
and
Q.
Lin
,
Sens. Actuators, A
134
(
1
),
186
193
(
2007
).
45.
Y.
Fang
and
X.
Tan
,
Sens. Actuators, A
158
(
1
),
121
131
(
2010
).
46.
J.
Ni
,
F.
Huang
,
B.
Wang
,
B.
Li
, and
Q.
Lin
,
J. Micromech. Microeng.
20
(
9
),
095033
(
2010
).
47.
M.
Rahbar
,
L.
Shannon
, and
B. L.
Gray
,
J. Micromech. Microeng.
26
(
5
),
055012
(
2016
).
48.
Z.
Mao
,
K.
Yoshida
, and
J.-w.
Kim
,
Microsyst. Technol.
25
(
1
),
245
255
(
2019
).
49.
C.-H.
Cheng
and
Y.-P.
Tseng
,
Microsyst. Technol.
19
(
11
),
1707
1715
(
2013
).
50.
W.
Al-Faqheri
,
F.
Ibrahim
,
T. H. G.
Thio
,
M. M.
Aeinehvand
,
H.
Arof
, and
M.
Madou
,
Sens. Actuators, A
222
,
245
254
(
2015
).
51.
C. S.
Ball
,
R. F.
Renzi
,
A.
Priye
, and
R. J.
Meagher
,
Lab Chip
16
(
22
),
4436
4444
(
2016
).
52.
T.
Pan
,
S. J.
McDonald
,
E. M.
Kai
, and
B.
Ziaie
,
J. Micromech. Microeng.
15
(
5
),
1021
1026
(
2005
).
53.
C.
Yamahata
,
F.
Lacharme
,
Y.
Burri
, and
M. A. M.
Gijs
,
Sens. Actuators, B
110
(
1
),
1
7
(
2005
).
54.
D.
Kim
and
D. J.
Beebe
,
Sens. Actuators, A
136
(
1
),
426
433
(
2007
).
55.
J.
Hyeon
and
H.
So
,
Biomed. Microdevices
21
(
1
),
19
(
2019
).
56.
E. F.
Hasselbrink
,
T. J.
Shepodd
, and
J. E.
Rehm
,
Anal. Chem.
74
(
19
),
4913
4918
(
2002
).
57.
Y.
Wang
,
K.
Toyoda
,
K.
Uesugi
, and
K.
Morishima
,
Sens. Actuators, A
304
,
111878
(
2020
).
58.
E.
Stemme
and
G.
Stemme
,
Sens. Actuators, A
39
(
2
),
159
167
(
1993
).
59.
A. Y.
Nobakht
,
M.
Shahsavan
, and
A.
Paykani
,
J. Appl. Res. Technol.
11
(
6
),
876
885
(
2013
).
60.
H.
Cho
,
H. Y.
Kim
,
J. Y.
Kang
, and
T. S.
Kim
,
J. Colloid Interface Sci.
306
(
2
),
379
385
(
2007
).
61.
C.
Lu
,
Y.
Xie
,
Y.
Yang
,
M. M. C.
Cheng
,
C.-G.
Koh
,
Y.
Bai
,
L. J.
Lee
, and
Y.-J.
Juang
,
Anal. Chem.
79
(
3
),
994
1001
(
2007
).
62.
J.
Melin
,
N.
Roxhed
,
G.
Gimenez
,
P.
Griss
,
W.
Vanderwijngaart
, and
G.
Stemme
,
Sens. Actuators, B
100
(
3
),
463
468
(
2004
).
63.
Y.
Zhang
,
Y.
Li
,
X.
Luan
,
X.
Li
,
J.
Jiang
,
Y.
Fan
,
M.
Li
,
C.
Huang
,
L.
Zhang
, and
Y.
Zhao
,
Biosensors
13
(
1
), 26 (
2023
).
64.
P. F.
Man
,
C. H.
Mastrangelo
,
M. A.
Burns
, and
D. T.
Burke
, in
Proceedings MEMS 98. IEEE Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems
(IEEE, 1998).
65.
M.
Bauer
,
M.
Ataei
,
M.
Caicedo
,
K.
Jackson
,
M.
Madou
, and
L.
Bousse
,
Microfluid. Nanofluidics
23
(
7
), 86 (
2019
).
66.
M.
Zimmermann
,
P.
Hunziker
, and
E.
Delamarche
,
Microfluid. Nanofluidics
5
(
3
),
395
402
(
2008
).
67.
J.
Berthier
,
K. A.
Brakke
,
D.
Gosselin
,
F.
Navarro
,
N.
Belgacem
,
D.
Chaussy
, and
E.
Berthier
,
Med. Eng. Phys.
48
,
75
80
(
2017
).
68.
L.
Zhang
,
B.
Jones
,
B.
Majeed
,
Y.
Nishiyama
,
Y.
Okumura
, and
T.
Stakenborg
,
J. Micromech. Microeng.
28
(
6
), 065005 (
2018
).
69.
J.
Siegrist
,
R.
Gorkin
,
L.
Clime
,
E.
Roy
,
R.
Peytavi
,
H.
Kido
,
M.
Bergeron
,
T.
Veres
, and
M.
Madou
,
Microfluid. Nanofluidics
9
(
1
),
55
63
(
2010
).
70.
S.
Zehnle
,
F.
Schwemmer
,
R.
Bergmann
,
F.
von Stetten
,
R.
Zengerle
, and
N.
Paust
,
Microfluid. Nanofluidics
19
(
6
),
1259
1269
(
2015
).
71.
Y.
Zhu
,
Y.
Chen
, and
Y.
Xu
,
Sens. Actuators, B
276
,
313
321
(
2018
).
72.
Y.
Feng
,
Z.
Zhou
,
X.
Ye
, and
J.
Xiong
,
Sens. Actuators, A
108
(
1–3
),
138
143
(
2003
).
73.
C. H.
Mastrangelo
,
M.
Okandan
,
P.
Galambos
,
S. S.
Mani
,
J. F.
Jakubczak
, and
H.
Becker
,
Microfluidics and BioMEMS
(
2001
), pp.
133
139
.
74.
B.
Xu
,
J.
Castracane
,
R. E.
Geer
,
Y.
Yao
, and
B.
Altemus
,
Proc. SPIE
4174
, 299–306 (
2000
).
75.
X.
Zhang
and
Z.
Zhang
,
Micromachines
10
(
10
), 653 (
2019
).
76.
Q.
Zhang
,
X.
Peng
,
S.
Weng
,
R.
Zhang
,
D.
Fang
,
R.
Zhao
, and
H. J.
Qi
,
Extr. Mech. Lett.
39
, 100824 (
2020
).
77.
C.
Schizas
,
V.
Melissinaki
,
A.
Gaidukeviciute
,
C.
Reinhardt
,
C.
Ohrt
,
V.
Dedoussis
,
B. N.
Chichkov
,
C.
Fotakis
,
M.
Farsari
, and
D.
Karalekas
,
Int. J. Adv. Manuf. Technol.
48
(
5–8
),
435
441
(
2010
).
78.
C.
Chen
,
L.
Zhao
,
H.
Zhang
,
X.
Shen
,
Y.
Zhu
, and
H.
Chen
,
Anal. Chem.
91
(
8
),
5169
5175
(
2019
).
79.
C.
Chen
,
H.
Meng
,
T.
Guo
,
S.
Deshpande
, and
H.
Chen
,
ACS Appl. Mater. Interfaces
14
(
35
),
40286
40296
(
2022
).
80.
K. R.
King
,
S.
Wang
,
D.
Irimia
,
A.
Jayaraman
,
M.
Toner
, and
M. L.
Yarmush
,
Lab Chip
7
(
1
),
77
85
(
2007
).
81.
J.
Melin
and
S. R.
Quake
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
213
231
(
2007
).
82.
Z. T. F.
Yu
,
K. i.
Kamei
,
H.
Takahashi
,
C. J.
Shu
,
X.
Wang
,
G. W.
He
,
R.
Silverman
,
C. G.
Radu
,
O. N.
Witte
,
K. B.
Lee
, and
H. R.
Tseng
,
Biomed. Microdevices
11
(
3
),
547
555
(
2009
).
83.
T. H.
Kang
,
S. W.
Park
,
J. H.
Lee
,
H. C.
Yoon
,
S. S.
Yang
,
Proc. SPIE
6799
, 67991C (
2007
).
84.
P.
Skafte-Pedersen
,
C. G.
Sip
,
A.
Folch
, and
M.
Dufva
,
J. Micromech. Microeng.
23
(
5
), 055011 (
2013
).
85.
V. A.
Papadimitriou
,
L. I.
Segerink
,
A.
van den Berg
, and
J. C. T.
Eijkel
,
Anal. Chim. Acta
1000
,
232
238
(
2018
).
86.
R.
Salahandish
,
M.
Hassani
,
A.
Zare
,
F.
Haghayegh
, and
A.
Sanati-Nezhad
,
Lab Chip
22
(
8
),
1542
1555
(
2022
).
87.
D. R.
Hristov
,
C.
Rodriguez-Quijada
,
J.
Gomez-Marquez
, and
K.
Hamad-Schifferli
,
Sensors (Basel)
19
(
3
),
554
(
2019
).
88.
E.
Cheah
,
D. P.
Tran
,
M. T.
Amen
,
R. D.
Arrua
,
E. F.
Hilder
, and
B.
Thierry
,
Anal. Chem.
94
(
2
),
1256
1263
(
2022
).
89.
N.
Gao
,
J.
Chang
,
Z.
Zhu
, and
H.
You
,
BioChip J.
15
(
3
),
268
275
(
2021
).
90.
L.
Gervais
and
E.
Delamarche
,
Lab Chip
9
(
23
),
3330
3337
(
2009
).
91.
B.
Hagmeyer
,
F.
Zechnall
, and
M.
Stelzle
,
Biomicrofluidics
8
(
5
),
056501
(
2014
).
92.
J. B.
Holman
,
X.
Zhu
, and
H.
Cheng
,
Biomed. Microdevices
25
(
1
),
5
(
2023
).
93.
Y.
Tanaka
,
K.
Sato
, and
T.
Kitamori
,
J. Biomed. Nanotechnol.
5
(
5
),
516
520
(
2009
).
94.
J.
Mazloum
and
A.
Shamsi
,
J. Micro-Bio Robotics
16
(
2
),
237
248
(
2020
).
95.
Y. J.
Chang
,
Y. T.
Lin
, and
C. C.
Liao
,
SLAS Technol
24
(
2
),
188
195
(
2019
).
96.
A.
Mbaye
,
C.
Kreamer
,
L.
Zink
,
M.
Fredenburg
and
R.
Rashidi
,
IOP Conf. Ser.: Mater. Sci. Eng.
417
, 012041 (
2018
).
97.
C. H.
Weng
,
M. Y.
Chen
,
C. H.
Shen
, and
R. J.
Yang
,
Biomicrofluidics
8
(
6
),
066502
(
2014
).
98.
D.
Natsuhara
,
S.
Misawa
,
R.
Saito
,
K.
Shirai
,
S.
Okamoto
,
M.
Nagai
,
M.
Kitamura
, and
T.
Shibata
,
Sci. Rep.
12
(
1
),
12852
(
2022
).
99.
C.
Chen
,
D.
Xu
,
S.
Bai
,
Z.
Yu
,
Y.
Zhu
,
X.
Xing
, and
H.
Chen
,
Lab Chip
20
(
7
),
1227
1237
(
2020
).
100.
H.
Chen
,
J.
Cornwell
,
H.
Zhang
,
T.
Lim
,
R.
Resurreccion
,
T.
Port
,
G.
Rosengarten
, and
R. E.
Nordon
,
Lab Chip
13
(
15
), 2999–3007 (
2013
).
You do not currently have access to this content.