Microfluidics or lab-on-a-chip technology has shown great potential for the separation of target particles/cells from heterogeneous solutions. Among current separation methods, vortex sorting of particles/cells in microcavities is a highly effective method for trapping and isolating rare target cells, such as circulating tumor cells, from flowing samples. By utilizing fluid forces and inertial particle effects, this passive method offers advantages such as label-free operation, high throughput, and high concentration. This paper reviews the fundamental research on the mechanisms of focusing, trapping, and holding of particles in this method, designs of novel microcavities, as well as its applications. We also summarize the challenges and prospects of this technique with the hope to promote its applications in medical and biological research.

1.
L. M.
Lee
,
J. M.
Rosano
,
Y.
Wang
et al, “
Label-free mesenchymal stem cell enrichment from bone marrow samples by inertial microfluidics
,”
Anal. Methods
10
,
713
721
(
2018
).
2.
B.
Wylot
,
K.
Konarzewska
,
L.
Bugajski
,
K.
Piwocka
, and
M.
Zawadzka
, “
Isolation of vascular endothelial cells from intact and injured murine brain cortex-technical issues and pitfalls in FACS analysis of the nervous tissue
,”
Cytometry A
87
,
908
920
(
2015
).
3.
H. W.
Xu
,
B.
Dong
,
S. H.
Xu
et al, “
High purity microfluidic sorting and in situ inactivation of circulating tumor cells based on multifunctional magnetic composites
,”
Biomaterials
138
,
69
79
(
2017
).
4.
N. M.
Karabacak
,
P. S.
Spuhler
,
F.
Fachin
et al, “
Microfluidic, marker-free isolation of circulating tumor cells from blood samples
,”
Nat. Protoc.
9
,
694
710
(
2014
).
5.
P. M.
Haverty
,
E.
Lin
,
J.
Tan
et al, “
Reproducible pharmacogenomic profiling of cancer cell line panels
,”
Nature
533
,
333
337
(
2016
).
6.
J. I.
Varillas
,
J. L.
Zhang
,
K. F.
Chen
,
I. I.
Barnes
,
C.
Liu
,
T. J.
George
, and
Z. H.
Fan
, “
Microfluidic isolation of circulating tumor cells and cancer stem-like cells from patients with pancreatic ductal adenocarcinoma
,”
Theranostics
9
,
1417
1425
(
2019
).
7.
T. H.
Kim
,
H. J.
Yoon
,
S.
Fouladdel
et al, “
Characterizing circulating tumor cells isolated from metastatic breast cancer patients using graphene oxide based microfluidic assay
,”
Adv. Biosyst.
3
,
1800278
(
2019
).
8.
K.
Pantel
and
C.
Alix-Panabières
, “
Circulating tumour cells in cancer patients: Challenges and perspectives
,”
Trends Mol. Med.
16
,
398
406
(
2010
).
9.
C.
Alix-Panabières
and
K.
Pantel
, “
Circulating tumor cells: Liquid biopsy of cancer
,”
Clin. Chem.
59
,
110
118
(
2013
).
10.
Y. Y.
Li
,
Q. H.
Lu
,
H. L.
Liu
et al, “
Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells
,”
Adv. Mater.
27
,
6848
6854
(
2015
).
11.
N.
Azizipour
,
R.
Avazpour
,
D. H.
Rosenzweig
,
M.
Sawan
, and
A.
Ajji
, “
Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip
,”
Micromachines
11
,
599
(
2020
).
12.
W. M.
Weaver
,
P.
Tseng
,
A.
Kunze
et al, “
Advances in high-throughput single-cell microtechnologies
,”
Curr. Opin. Biotechnol.
25
,
114
123
(
2014
).
13.
M.
Charnley
,
M.
Textor
,
A.
Khademhosseini
, and
M. P.
Lutolf
, “
Integration column: Microwell arrays for mammalian cell culture
,”
Integr. Biol.
1
,
625
634
(
2009
).
14.
T.
Konry
,
S.
Sarkar
,
P.
Sabhachandani
, and
N.
Cohen
, “
Innovative tools and technology for analysis of single cells and cell–cell interaction
,”
Annu. Rev. Biomed. Eng.
18
,
259
284
(
2016
).
15.
Q.
Luan
,
C.
Macaraniag
,
J.
Zhou
, and
I.
Papautsky
, “
Microfluidic systems for hydrodynamic trapping of cells and clusters
,”
Biomicrofluidics
14
,
031502
(
2020
).
16.
A.
Manz
,
D. J.
Harrison
,
E. M. J.
Verpoorte
,
J. C.
Fettinger
,
A.
Paulus
,
H.
Lüdi
, and
H. M.
Widmer
, “
Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip
,”
J. Chromatogr. A
593
,
253
258
(
1992
).
17.
A. A. S.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
, “
Microfluidics for cell separation
,”
Med. Biol. Eng. Comput.
48
,
999
1014
(
2010
).
18.
P.
Patil
,
X. X.
Madhuprasad
,
T.
Kumeria
,
D.
Losic
, and
M.
Kurkuri
, “
Isolation of circulating tumour cells by physical means in a microfluidic device: A review
,”
RSC Adv.
5
,
89745
89762
(
2015
).
19.
J. D.
Adams
and
H. T.
Soh
, “
Tunable acoustophoretic band-pass particle sorter
,”
Appl. Phys. Lett.
97
,
064103
(
2010
).
20.
M. P.
MacDonald
,
G. C.
Spalding
, and
K.
Dholakia
, “
Microfluidic sorting in an optical lattice
,”
Nature
426
,
421
424
(
2003
).
21.
S.
Hosic
,
S. K.
Murthy
, and
A. N.
Koppes
, “
Microfluidic sample preparation for single cell analysis
,”
Anal. Chem.
88
,
354
380
(
2016
).
22.
M.
Yamada
,
M.
Nakashima
, and
H. T.
Soh
, “
Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel
,”
Anal. Chem.
76
,
5465
5471
(
2004
).
23.
S.
Zheng
,
H. K.
Lin
,
B.
Lu
,
A.
Williams
,
R.
Datar
,
R. J.
Cote
, and
Y. C.
Tai
, “
3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood
,”
Biomed. Microdevices
13
,
203
213
(
2011
).
24.
C.
Wang
,
S. F.
Sun
,
Y.
Chen
,
Z. D.
Cheng
,
Y. X.
Li
,
L. S.
Jia
,
P. C.
Lin
,
Z.
Yang
, and
R. Y.
Shu
, “
Inertial particle focusing and spacing control in microfluidic devices
,”
Microfluid. Nanofluid.
22
,
1
12
(
2018
).
25.
W.
Al-Faqheri
,
T. H. G.
Thio
,
M. A.
Qasaimeh
,
A.
Dietzel
,
M.
Madou
, and
A.
Al−Halhouli
, “
Particle/cell separation on microfluidic platforms based on centrifugation effect: A review
,”
Microfluid. Nanofluid.
21
,
1
23
(
2017
).
26.
J.
Zhou
,
C. L.
Tu
,
Y. T.
Liang
,
B. B.
Huang
,
Y. F.
Fang
,
X.
Liang
,
I.
Papautsky
, and
X. S.
Ye
, “
Isolation of cells from whole blood using shear-induced diffusion
,”
Sci. Rep.
8
,
9411
(
2018
).
27.
E.
Sollier
,
D. E.
Go
,
J.
Che
et al, “
Size-selective collection of circulating tumor cells using vortex technology
,”
Lab Chip
14
,
63
77
(
2014
).
28.
R. M.
Johann
, “
Cell trapping in microfluidic chips
,”
Anal. Bioanal. Chem.
385
,
408
412
(
2006
).
29.
F.
Olm
,
A.
Urbansky
,
J. H.
Dykes
,
T.
Laurell
, and
S.
Scheding
, “
Label-free neuroblastoma cell separation from hematopoietic progenitor cell products using acoustophoresis—Towards cell processing of complex biological samples
,”
Sci. Rep.
9
,
1
11
(
2019
).
30.
Y.
Liu
,
D.
Hartono
, and
K. M.
Lim
, “
Cell separation and transportation between two miscible fluid streams using ultrasound
,”
Biomicrofluidics
6
,
012802
(
2012
).
31.
F.
Bragheri
,
P.
Minzioni
,
R.
Martinez Vazquez
et al, “
Optofluidic integrated cell sorter fabricated by femtosecond lasers
,”
Lab Chip
12
,
3779
3784
(
2012
).
32.
Y.
Chen
,
T. H.
Wu
,
Y. C.
Kung
,
M. A.
Teitell
, and
P. Y.
Chiou
, “
3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter
,”
Analyst
138
,
7308
7315
(
2013
).
33.
I.
Doh
and
Y. H.
Cho
, “
A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process
,”
Sens. Actuators A
121
,
59
65
(
2005
).
34.
K.
Takahashi
,
A.
Hattori
,
I.
Suzuki
,
T.
Ichiki
, and
K.
Yasuda
, “
Non-destructive on-chip cell sorting system with real-time microscopic image processing
,”
J. Nanobiotechnol.
2
,
1
8
(
2004
).
35.
U.
Kim
,
J. R.
Qian
,
S. A.
Kenrick
,
P. S.
Daugherty
, and
H. T.
Soh
, “
Multitarget dielectrophoresis activated cell sorter
,”
Anal. Chem.
80
,
8656
8661
(
2008
).
36.
A.
Volpe
,
C.
Gaudiuso
, and
A.
Ancona
, “
Sorting of particles using inertial focusing and laminar vortex technology: A review
,”
Micromachines
10
,
594
(
2019
).
37.
M.
Li
,
H. E.
Muñoz
,
K.
Goda
, and
D. D.
Carlo
, “
Shape-based separation of microalga Euglena gracilis using inertial microfluidics
,”
Sci. Rep.
7
,
1
8
(
2017
).
38.
S. C.
Hur
,
S. E.
Choi
,
S.
Kwon
, and
D.
Di. Carlo
, “
Inertial focusing of non-spherical microparticles
,”
Appl. Phys. Lett.
99
,
044101
(
2011
).
39.
M. E.
Warkiani
,
G. F.
Guan
,
K. B.
Luan
et al, “
Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells
,”
Lab Chip
14
,
128
137
(
2014
).
40.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle separation in spiral microchannels
,”
Lab Chip
9
,
2973
2980
(
2009
).
41.
J. S.
Sun
,
M. M.
Li
,
C.
Liu
,
Y.
Zhang
,
D. B.
Liu
,
W. W.
Liu
,
G. Q.
Hu
, and
X. Y.
Jiang
, “
Double spiral microchannel for label-free tumor cell separation and enrichment
,”
Lab Chip
12
,
3952
3960
(
2012
).
42.
J.
Zhou
,
P. V.
Giridhar
,
S.
Kasper
, and
I.
Papautsky
, “
Modulation of aspect ratio for complete separation in an inertial microfluidic channel
,”
Lab Chip
13
,
1919
1929
(
2013
).
43.
H. W.
Hou
,
M. E.
Warkiani
,
B. L.
Khoo
et al, “
Isolation and retrieval of circulating tumor cells using centrifugal forces
,”
Sci. Rep.
3
,
1259
(
2013
).
44.
T.
Luo
,
L.
Fan
,
R.
Zhu
, and
D.
Sun
, “
Microfluidic single-cell manipulation and analysis: Methods and applications
,”
Micromachines
10
,
104
(
2019
).
45.
J.
Oakey
,
J.
Allely
, and
D. W. M.
Marr
, “
Laminar-flow-based separations at the microscale
,”
Biotechnol. Prog.
18
,
1439
1442
(
2002
).
46.
A.
Jain
and
J. D.
Posner
, “
Particle dispersion and separation resolution of pinched flow fractionation
,”
Anal. Chem.
80
,
1641
1648
(
2008
).
47.
D. D.
Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
18897
(
2007
).
48.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
49.
B. R.
Long
,
M.
Heller
,
J. P.
Beech
,
H.
Linke
,
H.
Bruus
, and
J. O.
Tegenfeldt
, “
Multidirectional sorting modes in deterministic lateral displacement devices
,”
Phys. Rev. E
78
,
046304
(
2008
).
50.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D.
Di Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
51.
N.
Nivedita
,
N.
Garg
,
A. P.
Lee
, and
I.
Papautsky
, “
A high throughput microfluidic platform for size-selective enrichment of cell populations in tissue and blood samples
,”
Analyst
142
,
2558
2569
(
2017
).
52.
W. L.
Tang
,
S.
Zhu
,
D.
Jiang
,
L. Y.
Zhu
,
J. Q.
Yang
, and
N.
Xiang
, “
Channel innovations for inertial microfluidics
,”
Lab Chip
20
,
3485
3502
(
2020
).
53.
J.
Che
,
A. J.
Mach
,
D. E.
Go
,
I.
Talati
,
Y.
Ying
,
J. Y.
Rao
,
R. P.
Kulkarni
, and
D.
Di Carlo
, “
Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics
,”
PloS One
8
,
e78194
(
2013
).
54.
M.
Dhar
,
J.
Wong
,
A.
Karimi
et al, “
High efficiency vortex trapping of circulating tumor cells
,”
Biomicrofluidics
9
,
064116
(
2015
).
55.
J.
Zhou
,
S.
Kasper
, and
I.
Papautsky
, “
Enhanced size-dependent trapping of particles using microvortices
,”
Microfluid. Nanofluid.
15
,
611
623
(
2013
).
56.
H.
Haddadi
and
D.
Di Carlo
, “
Inertial flow of a dilute suspension over cavities in a microchannel
,”
J. Fluid Mech.
811
,
436
467
(
2017
).
57.
F.
Shen
,
Z. H.
Li
,
M. Z.
Ai
,
H. K.
Gao
, and
Z. M.
Liu
, “
Round cavity-based vortex sorting of particles with enhanced holding capacity
,”
Phys. Fluids
33
,
082002
(
2021
).
58.
H.
Haddadi
,
H.
Naghsh-Nilchi
, and
D.
Di Carlo
, “
Separation of cancer cells using vortical microfluidic flows
,”
Biomicrofluidics
12
,
014112
(
2018
).
59.
K.
Hood
,
S.
Lee
, and
M.
Roper
, “
Inertial migration of a rigid sphere in three-dimensional Poiseuille flow
,”
J. Fluid Mech.
765
,
452
479
(
2015
).
60.
D.
Jiang
,
C.
Ni
,
W. L.
Tang
,
D.
Huang
, and
N.
Xiang
, “
Inertial microfluidics in contraction–expansion microchannels: A review
,”
Biomicrofluidics
15
,
041501
(
2021
).
61.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using dean flows and differential migration
,”
Lab Chip
8
,
1906
1914
(
2008
).
62.
X.
Wang
,
J.
Zhou
, and
I.
Papautsky
, “
Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity
,”
Biomicrofluidics
7
,
044119
(
2013
).
63.
X.
Wang
and
I.
Papautsky
, “
Size-based microfluidic multimodal microparticle sorter
,”
Lab Chip
15
,
1350
1359
(
2015
).
64.
D.
Di Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
,
094503
(
2009
).
65.
Y. X.
Gou
,
Y. X.
Jia
,
P.
Wang
, and
C. K.
Sun
, “
Progress of inertial microfluidics in principle and application
,”
Sensors
18
,
1762
(
2018
).
66.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle filtration and extraction
,”
Microfluid. Nanofluid.
7
,
217
226
(
2009
).
67.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
,
022206
(
2011
).
68.
X.
Wang
,
M.
Zandi
,
C. C.
Ho
,
N.
Kaval
, and
I.
Papautsky
, “
Single stream inertial focusing in a straight microchannel
,”
Lab Chip
15
,
1812
1821
(
2015
).
69.
J.
Zhou
and
I.
Papautsky
, “
Fundamentals of inertial focusing in microchannels
,”
Lab Chip
13
,
1121
1132
(
2013
).
70.
J.
Zhang
,
M.
Li
,
W. H.
Li
, and
G.
Alici
, “
Investigation of trapping process in ‘centrifuge-on-a-chip,’
” in
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
IEEE
,
2013
), pp.
1266
1271
.
71.
F.
Shen
,
S.
Xue
,
M.
Xu
,
Y.
Pang
, and
Z. M.
Liu
, “
‘Experimental study of single-particle trapping mechanisms into microcavities using microfluidics
,’
Phys. Fluids
31
,
042002
(
2019
).
72.
A. J.
Mach
,
J. H.
Kim
,
A.
Arshi
,
S. C.
Hur
, and
D.
Di Carlo
, “
Automated cellular sample preparation using a centrifuge-on-a-chip
,”
Lab Chip
11
,
2827
2834
(
2011
).
73.
A.
Volpe
,
P.
Paiè
,
A.
Ancona
,
R.
Osellame
,
P. M.
Lugarà
, and
G.
Pascazio
, “
A computational approach to the characterization of a microfluidic device for continuous size-based inertial sorting
,”
J. Phys. D: Appl. Phys.
50
,
255601
(
2017
).
74.
F.
Shen
,
M.
Xu
,
Z.
Wang
, and
Z. M.
Liu
, “
Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics
,”
Appl. Phys. Express
10
,
097301
(
2017
).
75.
P.
Paiè
,
J.
Che
, and
D.
Di Carlo
, “
Effect of reservoir geometry on vortex trapping of cancer cells
,”
Microfluid. Nanofluid.
21
,
1
11
(
2017
).
76.
A.
Mohamadsharifi
,
H.
Hajghassem
,
M.
Kalantar
,
A.
Karimi
,
M.
Tabatabaei Asl
,
S.
Hosseini
, and
M.
Badieirostami
, “
High-efficiency inertial separation of microparticles using elevated columned reservoirs and vortex technique for lab-on-a-chip applications
,”
ACS Omega
8
,
28628
28639
(
2023
).
77.
X.
Wang
,
X. D.
Yang
, and
I.
Papautsky
, “
An integrated inertial microfluidic vortex sorter for tunable sorting and purification of cells
,”
Technology
4
,
88
97
(
2016
).
78.
A.
Volpe
,
P.
Paiè
,
A.
Ancona
, and
R.
Osellame
, “
Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities
,”
Microfluid. Nanofluid.
23
,
1
10
(
2019
).
79.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Enhanced particle filtration in straight microchannels using shear-modulated inertial migration
,”
Phys. Fluids
20
,
101702
(
2018
).
80.
G. F.
Guan
,
L. D.
Wu
,
A. A.
Bhagat
,
Z. R.
Li
,
P. C. Y.
Chen
,
S. Z.
Chao
,
C. J.
Ong
, and
J.
Han
, “
Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation
,”
Sci. Rep.
3
,
1475
(
2013
).
81.
N.
Osterman
,
J.
Derganc
, and
D.
Svenšek
, “
Formation of vortices in long microcavities at low Reynolds number
,”
Microfluid. Nanofluid.
20
,
1
10
(
2016
).
82.
Z. T. F.
Yu
,
Y. K.
Lee
,
M.
Wong
, and
Y.
Zohar
, “
Fluid flows in microchannels with cavities
,”
J. Microelectromech. Syst.
14
,
1386
1398
(
2005
).
83.
C. J.
Heaton
, “
On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies
,”
Phys. Fluids
20
,
103102
(
2008
).
84.
F.
Shen
,
P.
Xiao
, and
Z. M.
Liu
, “
Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number
,”
Microfluid. Nanofluid.
19
,
403
417
(
2015
).
85.
M. K.
Raihan
,
P. P.
Jagdale
,
S.
Wen
,
X. C.
Shao
,
J. B.
Bostwick
,
X. X.
Pan
,
X. C.
Xuan
et al, “
Flow of non-Newtonian fluids in a single-cavity microchannel
,”
Micromachines
12
,
836
(
2021
).
86.
R.
Fishler
,
M. K.
Mulligan
, and
J.
Sznitman
, “
Mapping low-Reynolds-number microcavity flows using microfluidic screening devices
,”
Microfluid. Nanofluid.
15
,
491
500
(
2013
).
87.
F.
Shen
,
M.
Xu
,
B.
Zhou
,
Z.
Wang
, and
Z. M.
Liu
, “
Effects of geometry factors on microvortices evolution in confined square microcavities
,”
Microfluid. Nanofluid.
22
,
1
14
(
2018
).
88.
R.
Khojah
,
R.
Stoutamore
, and
D.
Di Carlo
, “
Size-tunable microvortex capture of rare cells
,”
Lab Chip
17
,
2542
2549
(
2017
).
89.
F.
Shen
,
Z. H.
Li
,
S.
Xue
,
M. Q.
Li
, and
Z. M.
Liu
, “
Particle recirculating orbits within microvortices using microfluidics
,”
J. Phys. D: Appl. Phys.
54
,
025401
(
2021
).
90.
M. Q.
Jiang
,
S. Z.
Qian
, and
Z. H.
Liu
, “
Fully resolved simulation of single-particle dynamics in a microcavity
,”
Microfluid. Nanofluid.
22
,
1
13
(
2018
).
91.
J. P.
Shelby
,
D. S. W.
Lim
,
J. S.
Kuo
, and
D. T.
Chiu
, “
High radial acceleration in microvortices
,”
Nature
425
,
38
(
2003
).
92.
F.
Shen
,
M. Z.
Ai
,
Z. H.
Li
,
S.
Xue
,
M.
Xu
, and
Z. M.
Liu
, “
Particle orbiting motion and deviations from streamlines in a microvortex
,”
Appl. Phys. Lett.
120
,
024101
(
2022
).
93.
B.
Rallabandi
, “
Inertial forces in the Maxey–Riley equation in nonuniform flows
,”
Phys. Rev. Fluids
6
,
L012302
(
2021
).
94.
Q.
Li
,
M.
Abbas
,
J. F.
Morris
,
E.
Climent
, and
J.
Magnaudet
, “
Near-wall dynamics of a neutrally buoyant spherical particle in an axisymmetric stagnation point flow
,”
J. Fluid Mech.
892
,
A32
(
2020
).
95.
G.
D’Avino
,
F.
Greco
, and
P. L.
Maffettone
, “
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices
,”
Annu. Rev. Fluid Mech.
49
,
341
360
(
2017
).
96.
M. K.
Raihan
,
D.
Li
,
A. J.
Kummetz
,
L.
Song
,
L. D.
Yu
, and
X. C.
Xuan
, “
Vortex trapping and separation of particles in shear thinning fluids
,”
Appl. Phys. Lett.
116
,
183701
(
2020
).
97.
C. D.
Xue
,
Z. Y.
Zheng
,
G. S.
Zheng
,
D. W.
Zhao
, and
K. R.
Qin
, “
Vortex evolution patterns for flow of dilute polymer solutions in confined microfluidic cavities
,”
Soft Matter
18
,
3867
3877
(
2022
).
98.
D. M.
Sforza
,
C. M.
Putman
, and
J. R.
Cebral
, “
Hemodynamics of cerebral aneurysms
,”
Annu. Rev. Fluid Mech.
41
,
91
107
(
2009
).
99.
Y. W.
Lu
,
W.
Tan
,
X.
Shi
,
M. W.
Liu
, and
G. R.
Zhu
, “
A weak shear stress microfluidic device based on viscoelastic stagnant region (VSR) for biosensitive particle capture
,”
Talanta
233
,
122550
(
2021
).
[PubMed]
100.
C. F.
Zhao
,
Y. X.
Zang
,
P. L.
Xie
, and
Z. Y.
Xu
, “
Effects of vortices trapped in a dead end on resistance to pore-scale flow
,”
J. Pet. Sci. Eng.
207
,
109177
(
2021
).
101.
S.
Paget
, “
The distribution of secondary growths in cancer of the breast
,”
The Lancet
133
,
571
573
(
1889
).
102.
P.
Bankó S
,
Y.
Lee
,
V.
Nagygyörgy
,
M.
Zrínyi
,
C. H.
Chae
,
D. H.
Cho
, and
A.
Teleke
, “
Technologies for circulating tumor cell separation from whole blood
,”
J. Hematol. Oncol.
12
,
1
20
(
2019
).
103.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
et al, “
Isolation of rare circulating tumour cells in cancer patients by microchip technology
,”
Nature
450
,
1235
1239
(
2007
).
104.
S. B.
Cheng
,
M. M.
Chen
,
Y. K.
Wang
,
Z. H.
Sun
,
M.
Xie
, and
W. H.
Huang
, “
Current techniques and future advance of microfluidic devices for circulating tumor cells
,”
Trends Analyt. Chem.
117
,
116
127
(
2019
).
105.
C. A.
Lemaire
,
S. Z.
Liu
,
C. L.
Wilkerson
et al, “
Fast and label-free isolation of circulating tumor cells from blood: From a research microfluidic platform to an automated fluidic instrument, vtx-1 liquid biopsy system
,”
SLAS Technol.
23
,
16
29
(
2018
).
106.
J.
Che
,
V.
Yu
,
M.
Dhar
et al, “
Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic vortex technology
,”
Oncotarget
7
,
12748
12760
(
2016
).
107.
C.
Renier
,
E.
Pao
,
J.
Che
et al, “
Label-free isolation of prostate circulating tumor cells using vortex microfluidic technology
,”
npj Precis. Oncol.
1
,
1
11
(
2017
).
108.
M.
Dhar
,
J. N.
Lam
,
T.
Walser
, and
D. D.
Carlo
, “
Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
9986
9991
(
2018
).
109.
N.
Rastogi
,
P.
Seth
,
R.
Bhat
, and
P.
Sen
, “
Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells
,”
Anal. Chim. Acta
1159
,
338423
(
2021
).
110.
A.
Amini
,
H.
Hajghassem
,
A.
Nikfarjam
,
N.
Yarahmadi
,
A.
Mohamadsharifi
,
F.
HajiMohammadHoseyni
,
N.
Moradi
et al, “
Efficient label-free CTC enrichment using novel elevated height chip chamber by vortex technology
,”
Microfluid. Nanofluid.
26
,
1
13
(
2022
).
111.
A. S.
Vander Plaetsen
,
J.
Weymaere
,
O.
Tytgat
,
M.
Buyle
,
D.
Deforce
, and
F.
Van Nieuwerburgh
, “
Enrichment of circulating trophoblasts from maternal blood using laminar microscale vortices
,”
Prenatal Diagn.
41
,
1171
1178
(
2021
).
112.
S.
Jansson
,
P. O.
Bendahl
,
A. M.
Larsson
,
K. E.
Aaltonen
, and
L.
Rydén
, “
Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort
,”
BMC Cancer
16
,
433
(
2016
).
You do not currently have access to this content.