Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.

1.
M. K.
Pugsley
and
R.
Tabrizchi
, “
The vascular system: An overview of structure and function
,”
J. Pharmacol. Toxicol. Methods
44
(
2
),
333
340
(
2000
).
2.
E.
Lemichez
,
M.
Lecuit
,
X.
Nassif
, and
S.
Bourdoulous
, “
Breaking the wall: Targeting of the endothelium by pathogenic bacteria
,”
Nat. Rev. Microbiol.
8
(
2
),
93
104
(
2010
).
3.
R. R.
Isberg
and
P.
Barnes
, “
Dancing with the host: Flow-dependent bacterial adhesion
,”
Cell
110
(
1
),
1
4
(
2002
).
4.
M.
Phillipson
and
P.
Kubes
, “
The neutrophil in vascular inflammation
,”
Nat. Med.
17
(
11
),
1381
1390
(
2011
).
5.
S.
Denk
,
M.
Perl
, and
M.
Huber-Lang
, “
Damage- and pathogen-associated molecular patterns and alarmins: Keys to sepsis?
,”
Eur. Surg. Res.
48
(
4
),
171
179
(
2012
).
6.
J. W.
Krueger
,
D. F.
Young
, and
N. R.
Cholvin
, “
An in vitro study of flow response by cells
,”
J. Biomech.
4
(
1
),
31
36
(
1971
).
7.
M. J.
Levesque
and
R. M.
Nerem
, “
The elongation and orientation of cultured endothelial cells in response to shear stress
,”
J. Biomech. Eng
107
(
4
),
341
347
(
1985
).
8.
A.
Reinitz
,
J.
DeStefano
,
M.
Ye
,
A. D.
Wong
, and
P. C.
Searson
, “
Human brain microvascular endothelial cells resist elongation due to shear stress
,”
Microvasc. Res.
99
,
8
18
(
2015
).
9.
J. M.
Tarbell
, “
Shear stress and the endothelial transport barrier
,”
Cardiovasc. Res.
87
(
2
),
320
330
(
2010
).
10.
K.
Reddy
and
J. M.
Ross
, “
Shear stress prevents fibronectin binding protein-mediated Staphylococcus aureus adhesion to resting endothelial cells
,”
Infect. Immun.
69
(
5
),
3472
3475
(
2001
).
11.
K. D.
Viegas
,
S. S.
Dol
,
M. M.
Salek
,
R. D.
Shepherd
,
R. M.
Martinuzzi
, and
K. D.
Rinker
, “
Methicillin resistant Staphylococcus aureus adhesion to human umbilical vein endothelial cells demonstrates wall shear stress dependent behaviour
,”
Biomed. Eng. OnLine
10
(
1
),
20
(
2011
).
12.
J.
Claes
,
L.
Liesenborghs
,
M.
Peetermans
,
T. R.
Veloso
,
D.
Missiakas
,
O.
Schneewind
,
S.
Mancini
,
J. M.
Entenza
,
M. F.
Hoylaerts
,
R.
Heying
,
P.
Verhamme
, and
T.
Vanassche
, “
Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall
,”
J. Thromb. Haemostasis
15
(
5
),
1009
1019
(
2017
).
13.
K. I.
Pappelbaum
,
C.
Gorzelanny
,
S.
Grässle
,
J.
Suckau
,
M. W.
Laschke
,
M.
Bischoff
,
C.
Bauer
,
M.
Schorpp-Kistner
,
C.
Weidenmaier
,
R.
Schneppenheim
,
T.
Obser
,
B.
Sinha
, and
S. W.
Schneider
, “
Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress
,”
Circulation
128
(
1
),
50
59
(
2013
).
14.
J. M.
Kwiecinski
,
H. A.
Crosby
,
C.
Valotteau
,
J. A.
Hippensteel
,
M. K.
Nayak
,
A. K.
Chauhan
,
E. P.
Schmidt
,
Y. F.
Dufrêne
, and
A. R.
Horswill
, “
Staphylococcus aureus adhesion in endovascular infections is controlled by the ArlRS–MgrA signaling cascade
,”
PLoS Pathog.
15
(
5
),
e1007800
(
2019
).
15.
H.
Jagau
,
I.-K.
Behrens
,
K.
Lahme
,
G.
Lorz
,
R. W.
Köster
,
R.
Schneppenheim
,
T.
Obser
,
M. A.
Brehm
,
G.
König
,
T. P.
Kohler
,
M.
Rohde
,
R.
Frank
,
W.
Tegge
,
M.
Fulde
,
S.
Hammerschmidt
,
M.
Steinert
, and
S.
Bergmann
, “
Von Willebrand factor mediates pneumococcal aggregation and adhesion in blood flow
,”
Front. Microbiol.
10
,
511
(
2019
).
16.
E.
Mairey
,
A.
Genovesio
,
E.
Donnadieu
,
C.
Bernard
,
F.
Jaubert
,
E.
Pinard
,
J.
Seylaz
,
J.-C.
Olivo-Marin
,
X.
Nassif
, and
G.
Duménil
, “
Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier
,”
J. Exp. Med.
203
(
8
),
1939
1950
(
2006
).
17.
Y.
Zeng
,
Y.
Qiao
,
Y.
Zhang
,
X.
Liu
,
Y.
Wang
, and
J.
Hu
, “
Effects of fluid shear stress on apoptosis of cultured human umbilical vein endothelial cells induced by LPS
,”
Cell Biol. Int.
29
(
11
),
932
935
(
2005
).
18.
A.
Ploppa
,
V.
Schmidt
,
A.
Hientz
,
J.
Reutershan
,
H. A.
Haeberle
, and
B.
Nohé
, “
Mechanisms of leukocyte distribution during sepsis: An experimental study on the interdependence of cell activation, shear stress and endothelial injury
,”
Crit. Care
14
(
6
),
R201
(
2010
).
19.
M. E.
Fallon
,
R.
Mathews
, and
M. T.
Hinds
, “
In vitro flow chamber design for the study of endothelial cell (patho)Physiology
,”
J. Biomech. Eng.
144
,
020801
(
2021
).
20.
M. d.
Bergevin
,
A. E.
Boczula
,
L.
Caruso
,
H.
Persson
,
C. A.
Simmons
, and
T. J.
Moriarty
, “
A live cell imaging microfluidic model for studying extravasation of bloodborne bacterial pathogens
,”
Cell. Microbiol.
2022
,
1
(
2022
).
21.
L. E.
Hind
,
P. N.
Ingram
,
D. J.
Beebe
, and
A.
Huttenlocher
, “
Interaction with an endothelial lumen increases neutrophil lifetime and motility in response to P. aeruginosa
,”
Blood
132
(
17
),
1818
1828
(
2018
).
22.
U.
Nam
,
S.
Kim
,
J.
Park
, and
J. S.
Jeon
, “
Lipopolysaccharide-induced vascular inflammation model on microfluidic chip
,”
Micromachines
11
(
8
),
747
(
2020
).
23.
Y.
Kiyan
,
S.
Tkachuk
,
K.
Kurselis
,
N.
Shushakova
,
K.
Stahl
,
D.
Dawodu
,
R.
Kiyan
,
B.
Chichkov
, and
H.
Haller
, “
Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling
,”
Sci. Rep.
9
(
1
),
13591
(
2019
).
24.
W.
Liao
,
L.
Yi
,
W.
He
,
S.
Yang
,
P.
Zhang
,
T.
Weng
, and
Y.
Xu
, “
A PDMS-based microfluidic system for assessment of the protective role of dexmedetomidine against sepsis-related glycocalyx degradation
,”
Microfluid. Nanofluid.
27
(
5
),
29
(
2023
).
25.
D.
Kim
and
C. L.
Haynes
, “
On-chip evaluation of neutrophil activation and neutrophil–endothelial cell interaction during neutrophil chemotaxis
,”
Anal. Chem.
85
(
22
),
10787
10796
(
2013
).
26.
F.
Soroush
,
T.
Zhang
,
D. J.
King
,
Y.
Tang
,
S.
Deosarkar
,
B.
Prabhakarpandian
,
L. E.
Kilpatrick
, and
M. F.
Kiani
, “
A novel microfluidic assay reveals a key role for protein kinase C δ in regulating human neutrophil–endothelium interaction
,”
J. Leukocyte Biol.
100
(
5
),
1027
1035
(
2016
).
27.
S.
Han
,
J.-J.
Yan
,
Y.
Shin
,
J. J.
Jeon
,
J.
Won
,
H. E.
Jeong
,
R. D.
Kamm
,
Y.-J.
Kim
, and
S.
Chung
, “
A versatile assay for monitoring in vivo-like transendothelial migration of neutrophils
,”
Lab-on-a-Chip
12
(
20
),
3861
3865
(
2012
).
28.
N.
Venugopal Menon
,
H. M.
Tay
,
S. N.
Wee
,
K. H.
Holden Li
, and
H. W.
Hou
, “
Micro-engineered perfusable 3D vasculatures for cardiovascular diseases
,”
Lab Chip
17
(
17
),
2960
2968
(
2017
).
29.
X.
Wu
,
M. A.
Newbold
, and
C. L.
Haynes
, “
Recapitulation of in vivo-like neutrophil transendothelial migration using a microfluidic platform
,”
Analyst
140
(
15
),
5055
5064
(
2015
).
30.
P. N.
Ingram
,
L. E.
Hind
,
J. A.
Jiminez-Torres
,
A.
Huttenlocher
, and
D. J.
Beebe
, “
An accessible organotypic microvessel model using iPSC-derived endothelium
,”
Adv. Healthcare Mater.
7
(
2
),
1700497
(
2018
).
31.
R. B.
Riddle
,
K.
Jennbacken
,
K. M.
Hansson
, and
M. T.
Harper
, “
Endothelial inflammation and neutrophil transmigration are modulated by extracellular matrix composition in an inflammation-on-a-chip model
,”
Sci. Rep.
12
(
1
),
6855
(
2022
).
32.
D.
Heumann
and
T.
Roger
, “
Initial responses to endotoxins and gram-negative bacteria
,”
Clin. Chim. Acta
323
(
1
),
59
72
(
2002
).
33.
P. A.
Ward
,
I. H.
Lepow
, and
L. J.
Newman
, “
Bacterial factors chemotactic for polymorphonuclear leukocytes.
,”
Am. J. Pathol.
52
(
4
),
725
736
(
1968
).
34.
F. E.
Curry
and
R. H.
Adamson
, “
Endothelial glycocalyx: Permeability barrier and mechanosensor
,”
Ann. Biomed. Eng.
40
(
4
),
828
839
(
2012
).
35.
B.
Baddal
and
P.
Marrazzo
, “
Refining host-pathogen interactions: Organ-on-chip side of the coin
,”
Pathogens
10
(
2
),
203
(
2021
).
36.
F.
Yokoi
,
S.
Deguchi
, and
K.
Takayama
, “
Organ-on-a-chip models for elucidating the cellular biology of infectious diseases
,”
Biochim. Biophys. Acta BBA
1870
(
6
),
119504
(
2023
).
37.
T.
Feaugas
and
N.
Sauvonnet
, “
Organ-on-chip to investigate host-pathogens interactions
,”
Cell. Microbiol.
23
(
7
),
e13336
(
2021
).
38.
Y.
Wang
,
P.
Wang
, and
J.
Qin
, “
Microfluidic organs-on-a-chip for modeling human infectious diseases
,”
Acc. Chem. Res.
54
(
18
),
3550
3562
(
2021
).
39.
D.
Huh
,
B. D.
Matthews
,
A.
Mammoto
,
M.
Montoya-Zavala
,
H. Y.
Hsin
, and
D. E.
Ingber
, “
Reconstituting organ-level lung functions on a chip
,”
Science
328
(
5986
),
1662
1668
(
2010
).
40.
P. H.
McMinn
,
A.
Ahmed
,
A.
Huttenlocher
,
D. J.
Beebe
, and
S. C.
Kerr
, “
The lymphatic endothelium-derived follistatin: Activin a axis regulates neutrophil motility in response to Pseudomonas aeruginosa
,”
Integr. Biol.
15
,
zyad003
(
2023
).
41.
K.
Sharma
,
N.
Dhar
,
V. V.
Thacker
,
T. M.
Simonet
,
F.
Signorino-Gelo
,
G. W.
Knott
, and
J. D.
McKinney
, “
Dynamic persistence of UPEC intracellular bacterial communities in a human bladder-chip model of urinary tract infection
,”
eLife
10
,
e66481
(
2021
).
42.
F.
Siwczak
,
Z.
Cseresnyes
,
M. I. A.
Hassan
,
K. O.
Aina
,
S.
Carlstedt
,
A.
Sigmund
,
M.
Groger
,
B. G. J.
Surewaard
,
O.
Werz
,
M. T.
Figge
,
L.
Tuchscherr
,
B.
Loffler
, and
A. S.
Mosig
, “
Human macrophage polarization determines bacterial persistence of Staphylococcus aureus in a liver-on-chip-based infection model
,”
Biomaterials
287
,
121632
(
2022
).
43.
S.
Deinhardt-Emmer
,
K.
Rennert
,
E.
Schicke
,
Z.
Cseresnyés
,
M.
Windolph
,
S.
Nietzsche
,
R.
Heller
,
F.
Siwczak
,
K. F.
Haupt
,
S.
Carlstedt
,
M.
Schacke
,
M. T.
Figge
,
C.
Ehrhardt
,
B.
Löffler
, and
A. S.
Mosig
, “
Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model
,”
Biofabrication
12
(
2
),
025012
(
2020
).
44.
Y.
Zhu
,
F.
Yin
,
H.
Wang
,
L.
Wang
,
J.
Yuan
, and
J.
Qin
, “
Placental barrier-on-a-chip: Modeling placental inflammatory responses to bacterial infection
,”
ACS Biomater. Sci. Eng.
4
(
9
),
3356
3363
(
2018
).
45.
R.
Rauti
,
S.
Navok
,
D.
Biran
,
K.
Tadmor
,
Y.
Leichtmann-Bardoogo
,
E. Z.
Ron
, and
B. M.
Maoz
, “
Insight on bacterial newborn meningitis using a neurovascular-unit-on-a-chip
,”
Microbiol. Spectrum
11
(
3
),
e01233
23
(
2023
).
46.
R.
Plebani
,
R.
Potla
,
M.
Soong
,
H.
Bai
,
Z.
Izadifar
,
A.
Jiang
,
R. N.
Travis
,
C.
Belgur
,
A.
Dinis
,
M. J.
Cartwright
,
R.
Prantil-Baun
,
P.
Jolly
,
S. E.
Gilpin
,
M.
Romano
, and
D. E.
Ingber
, “
Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip
,”
J. Cystic Fibrosis
21
(
4
),
606
615
(
2022
).
47.
Y.
Du
,
N.
Li
,
H.
Yang
,
C.
Luo
,
Y.
Gong
,
C.
Tong
,
Y.
Gao
,
S.
, and
M.
Long
, “
Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip
,”
Lab Chip
17
(
5
),
782
794
(
2017
).
48.
H. J.
Kim
,
H.
Li
,
J. J.
Collins
, and
D. E.
Ingber
, “
Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip
,”
Proc. Natl. Acad. Sci. U.S.A.
113
(
1
),
E7
E15
(
2015
).
49.
M.
Gröger
,
K.
Rennert
,
B.
Giszas
,
E.
Weiß
,
J.
Dinger
,
H.
Funke
,
M.
Kiehntopf
,
F. T.
Peters
,
A.
Lupp
,
M.
Bauer
,
R. A.
Claus
,
O.
Huber
, and
A. S.
Mosig
, “
Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model
,”
Sci. Rep.
6
(
1
),
21868
(
2016
).
50.
Y.
Xu
,
S.
Li
,
C.
Wang
,
X.
Xie
, and
X.
Mi
, “
μF-hBBB chip together with tetrahedral DNA frameworks for visualization of LPS-mediated inflammation
,”
Anal. Chem.
95
(
30
),
11449
11455
(
2023
).
51.
A.
Jain
,
R.
Barrile
,
A.
van der Meer
,
A.
Mammoto
,
T.
Mammoto
,
K.
De Ceunynck
,
O.
Aisiku
,
M.
Otieno
,
C.
Louden
,
G.
Hamilton
,
R.
Flaumenhaft
, and
D.
Ingber
, “
Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
,”
Clin. Pharmacol. Ther.
103
(
2
),
332
340
(
2018
).
52.
K. H.
Benam
,
R.
Villenave
,
C.
Lucchesi
,
A.
Varone
,
C.
Hubeau
,
H.-H.
Lee
,
S. E.
Alves
,
M.
Salmon
,
T. C.
Ferrante
,
J. C.
Weaver
,
A.
Bahinski
,
G. A.
Hamilton
, and
D. E.
Ingber
, “
Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro
,”
Nat. Methods
13
(
2
),
151
157
(
2016
).
53.
R. A.
Shaikh
,
J.
Zhong
,
M.
Lyu
,
S.
Lin
,
D.
Keskin
,
G.
Zhang
,
L.
Chitkushev
, and
V.
Brusic
, in
2019 IEEE International Conference Bioinformatics and Biomedicine (BIBM)
(
IEEE
,
2019
), pp.
2207
2213
.
54.
D.
Lebeaux
,
J.-M.
Ghigo
, and
C.
Beloin
, “
Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics
,”
Microbiol. Mol. Biol. Rev.
78
(
3
),
510
543
(
2014
).
55.
J. W.
Costerton
,
P. S.
Stewart
, and
E. P.
Greenberg
, “
Bacterial biofilms: A common cause of persistent infections
,”
Science
284
(
5418
),
1318
1322
(
1999
).
56.
D.
Shi
,
G.
Mi
,
M.
Wang
, and
T. J.
Webster
, “
In vitro and ex vivo systems at the forefront of infection modeling and drug discovery
,”
Biomaterials
198
,
228
249
(
2019
).
57.
T.
Bjarnsholt
,
M.
Alhede
,
M.
Alhede
,
S. R.
Eickhardt-Sørensen
,
C.
Moser
,
M.
Kühl
,
P. Ø.
Jensen
, and
N.
Høiby
, “
The in vivo biofilm
,”
Trends Microbiol.
21
(
9
),
466
474
(
2013
).
58.
K. N.
Kragh
,
T.
Tolker-Nielsen
, and
M.
Lichtenberg
, “
The non-attached biofilm aggregate
,”
Commun. Biol.
6
(
1
),
1
13
(
2023
).
59.
A. A.
Anas
,
W. J.
Wiersinga
,
A. F.
de Vos
, and
T.
van der Poll
, “
Recent insights into the pathogenesis of bacterial sepsis
,”
Neth. J. Med.
68
(
4
),
147
152
(
2010
).
60.
C. M.
Leung
,
P.
de Haan
,
K.
Ronaldson-Bouchard
,
G.-A.
Kim
,
J.
Ko
,
H. S.
Rho
,
Z.
Chen
,
P.
Habibovic
,
N. L.
Jeon
,
S.
Takayama
,
M. L.
Shuler
,
G.
Vunjak-Novakovic
,
O.
Frey
,
E.
Verpoorte
, and
Y.-C.
Toh
, “
A guide to the organ-on-a-chip
,”
Nat. Rev. Methods Primers
2
(
1
),
1
29
(
2022
).
61.
E.
Vénéreau
,
C.
Ceriotti
, and
M. E.
Bianchi
, “
DAMPs from cell death to new life
,”
Front. Immunol.
6
,
422
(
2015
).
62.
V.
Paloschi
,
M.
Sabater-Lleal
,
H.
Middelkamp
,
A.
Vivas
,
S.
Johansson
,
A.
van der Meer
,
M.
Tenje
, and
L.
Maegdefessel
, “
Organ-on-a-chip technology: A novel approach to investigate cardiovascular diseases
,”
Cardiovasc. Res.
117
(
14
),
2742
2754
(
2021
).
63.
T. H.
Nguyen
,
M. D.
Park
, and
M.
Otto
, “
Host response to Staphylococcus epidermidis colonization and infections
,”
Front. Cell. Infect. Microbiol.
7
,
90
(
2017
).
64.
V.
Paloschi
,
J.
Pauli
,
G.
Winski
,
Z.
Wu
,
Z.
Li
,
L.
Botti
,
S.
Meucci
,
P.
Conti
,
F.
Rogowitz
,
N.
Glukha
,
N.
Hummel
,
A.
Busch
,
E.
Chernogubova
,
H.
Jin
,
N.
Sachs
,
H.-H.
Eckstein
,
A.
Dueck
,
R. A.
Boon
,
A. R.
Bausch
, and
L.
Maegdefessel
, “
Utilization of an artery-on-a-chip to unravel novel regulators and therapeutic targets in vascular diseases
,”
Adv. Healthcare Mater.
13(6)
e2302907
(
2023
).
65.
Y.
Qiu
,
B.
Ahn
,
Y.
Sakurai
,
C. E.
Hansen
,
R.
Tran
,
P. N.
Mimche
,
R. G.
Mannino
,
J. C.
Ciciliano
,
T. J.
Lamb
,
C. H.
Joiner
,
S. F.
Ofori-Acquah
, and
W. A.
Lam
, “
Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease
,”
Nat. Biomed. Eng.
2
(
6
),
453
463
(
2018
).
66.
N. K. R.
Pandian
,
B. K.
Walther
,
R.
Suresh
,
J. P.
Cooke
, and
A.
Jain
, “
Microengineered human vein-chip recreates venous valve architecture and its contribution to thrombosis
,”
Small
16
(
49
),
2003401
(
2020
).
67.
A. R.
Henderson
,
I. S.
Ilan
, and
E.
Lee
, “
A bioengineered lymphatic vessel model for studying lymphatic endothelial cell-cell junction and barrier function
,”
Microcirculation
28
(
8
),
e12730
(
2021
).
68.
S.
Chatterjee
, “
Endothelial mechanotransduction, redox signaling and the regulation of vascular inflammatory pathways
,”
Front. Physiol.
9
,
524
(
2018
).
69.
A. G.
Koutsiaris
,
S. V.
Tachmitzi
,
N.
Batis
,
M. G.
Kotoula
,
C. H.
Karabatsas
,
E.
Tsironi
, and
D. Z.
Chatzoulis
, “
Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo
,”
Biorheology
44
(
5–6
),
375
386
(
2007
).
70.
M. L.
Jackson
,
A. R.
Bond
, and
S. J.
George
, “
Mechanobiology of the endothelium in vascular health and disease: In vitro shear stress models
,”
Cardiovasc. Drugs Ther.
37
(
5
),
997
1010
(
2023
).
71.
E.
Roux
,
P.
Bougaran
,
P.
Dufourcq
, and
T.
Couffinhal
, “
Fluid shear stress sensing by the endothelial layer
,”
Front. Physiol.
11
,
861
(
2020
).
72.
G. J.
Mahler
,
C. M.
Frendl
,
Q.
Cao
, and
J. T.
Butcher
, “
Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells
,”
Biotechnol. Bioeng.
111
(
11
),
2326
2337
(
2014
).
73.
D. E.
Ingber
, “
Human organs-on-chips for disease modelling, drug development and personalized medicine
,”
Nat. Rev. Genet.
23
(
8
),
467
491
(
2022
).
74.
S.
Biglari
,
T. Y. L.
Le
,
R. P.
Tan
,
S. G.
Wise
,
A.
Zambon
,
G.
Codolo
,
M.
De Bernard
,
M.
Warkiani
,
A.
Schindeler
,
S.
Naficy
,
P.
Valtchev
,
A.
Khademhosseini
, and
F.
Dehghani
, “
Simulating inflammation in a wound microenvironment using a dermal wound-on-a-chip model
,”
Adv. Healthcare Mater.
8
(
1
),
1801307
(
2019
).
75.
A. D.
van der Meer
,
K.
Vermeul
,
A. A.
Poot
,
J.
Feijen
, and
I.
Vermes
, “
A microfluidic wound-healing assay for quantifying endothelial cell migration
,”
Am. J. Physiol. Heart Circ. Physiol.
298
(
2
),
H719
725
(
2010
).
76.
D.
Sticker
,
S.
Lechner
,
C.
Jungreuthmayer
,
J.
Zanghellini
, and
P.
Ertl
, “
Microfluidic migration and wound healing assay based on mechanically induced injuries of defined and highly reproducible areas
,”
Anal. Chem.
89
(
4
),
2326
2333
(
2017
).
77.
D.
Leaper
,
O.
Assadian
, and
C. E.
Edmiston
, “
Approach to chronic wound infections
,”
Br. J. Dermatol.
173
(
2
),
351
358
(
2015
).
78.
D.
Church
,
S.
Elsayed
,
O.
Reid
,
B.
Winston
, and
R.
Lindsay
, “
Burn wound infections
,”
Clin. Microbiol. Rev.
19
(
2
),
403
434
(
2006
).
79.
F.
Shahabipour
,
S.
Satta
,
M.
Mahmoodi
,
A.
Sun
,
N. R.
De Barros
,
S.
Li
,
T.
Hsiai
, and
N.
Ashammakhi
, “
Engineering organ-on-a-chip systems to model viral infections
,”
Biofabrication
15
(
2
),
022001
(
2023
).
80.
H.
Tang
,
Y.
Abouleila
,
L.
Si
,
A. M.
Ortega-Prieto
,
C. L.
Mummery
,
D. E.
Ingber
, and
A.
Mashaghi
, “
Human organs-on-chips for virology
,”
Trends Microbiol.
28
(
11
),
934
946
(
2020
).
81.
J.
Li
,
H.
Bai
,
Z.
Wang
,
B.
Xu
,
K. N.
Peters Olson
,
C.
Liu
,
Y.
Su
,
J.
Hao
,
J.
Shen
,
X.
Xi
,
J.
Zhen
,
R.
Yu
,
Y.
Sun
,
X.
Xie
,
W.
Tian
,
F.
Yu
,
X.
Liu
,
L.
Zhang
,
D.
Zhou
, and
L.
Si
, “
Advancements in organs-on-chips technology for viral disease and anti-viral research
,”
Organs-on-a-Chip
5
,
100030
(
2023
).
82.
M.
Zhang
,
P.
Wang
,
R.
Luo
,
Y.
Wang
,
Z.
Li
,
Y.
Guo
,
Y.
Yao
,
M.
Li
,
T.
Tao
,
W.
Chen
,
J.
Han
,
H.
Liu
,
K.
Cui
,
X.
Zhang
,
Y.
Zheng
, and
J.
Qin
, “
Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system
,”
Adv. Sci.
8
(
3
),
2002928
(
2021
).
83.
J. C.
Nawroth
,
C.
Lucchesi
,
D.
Cheng
,
A.
Shukla
,
J.
Ngyuen
,
T.
Shroff
,
A.
Varone
,
K.
Karalis
,
H.-H.
Lee
,
S.
Alves
,
G. A.
Hamilton
,
M.
Salmon
, and
R.
Villenave
, “
A microengineered airway lung chip models key features of viral-induced exacerbation of asthma
,”
Am. J. Respir. Cell Mol. Biol.
63
(
5
),
591
600
(
2020
).
84.
S.
Sun
,
L.
Jin
,
Y.
Zheng
, and
J.
Zhu
, “
Modeling human HSV infection via a vascularized immune-competent skin-on-chip platform
,”
Nat. Commun.
13
(
1
),
5481
(
2022
).
85.
Y. B.
(Abraham) Kang
,
S.
Rawat
,
N.
Duchemin
,
M.
Bouchard
, and
M.
Noh
, “
Human liver sinusoid on a chip for hepatitis B virus replication study
,”
Micromachines
8
(
1
),
27
(
2017
).
86.
M.
Kraft
, “
The role of bacterial infections in asthma
,”
Clin. Chest Med.
21
(
2
),
301
313
(
2000
).
87.
J. H.
Sung
,
M. B.
Esch
,
J.-M.
Prot
,
C. J.
Long
,
A.
Smith
,
J. J.
Hickman
, and
M. L.
Shuler
, “
Microfabricated mammalian organ systems and their integration into models of whole animals and humans
,”
Lab Chip
13
(
7
),
1201
1212
(
2013
).
88.
M. B.
Esch
and
G. J.
Mahler
, in
Microfluidic Cell Culture Systems
, 2nd ed., edited by
J. T.
Borenstein
,
V.
Tandon
,
S. L.
Tao
, and
J. L.
Charest
(
Elsevier
,
2019
), pp.
323
350
.
89.
K.
Ronaldson-Bouchard
,
D.
Teles
,
K.
Yeager
,
D. N.
Tavakol
,
Y.
Zhao
,
A.
Chramiec
,
S.
Tagore
,
M.
Summers
,
S.
Stylianos
,
M.
Tamargo
,
B. M.
Lee
,
S. P.
Halligan
,
E. H.
Abaci
,
Z.
Guo
,
J.
Jacków
,
A.
Pappalardo
,
J.
Shih
,
R. K.
Soni
,
S.
Sonar
,
C.
German
,
A. M.
Christiano
,
A.
Califano
,
K. K.
Hirschi
,
C. S.
Chen
,
A.
Przekwas
, and
G.
Vunjak-Novakovic
, “
A multi-organ chip with matured tissue niches linked by vascular flow
,”
Nat. Biomed. Eng.
6
(
4
),
351
371
(
2022
).
90.
M.
Medina
,
H.
Legido-Quigley
, and
L. Y.
Hsu
, in
Global Health Security: Recognizing Vulnerabilities, Creating Opportunities
, edited by
A. J.
Masys
,
R.
Izurieta
, and
M.
Reina Ortiz
(
Springer International Publishing
,
Cham
,
2020
), pp.
209
229
.
91.
R.
Uchimido
,
E. P.
Schmidt
, and
N. I.
Shapiro
, “
The glycocalyx: A novel diagnostic and therapeutic target in sepsis
,”
Crit. Care
23
,
16
(
2019
).
You do not currently have access to this content.