Bilestones are solid masses found in the gallbladder or biliary tract, which block the normal bile flow and eventually result in severe life-threatening complications. Studies have shown that bilestone formation may be related to bile flow dynamics and the concentration level of bile components. The bile flow dynamics in the biliary tract play a critical role in disclosing the mechanism of bile stasis and transportation. The concentration of bile composition is closely associated with processes such as nucleation and crystallization. Recently, microfluidic-based biosensors have been favored for multiple advantages over traditional benchtop detection assays for their less sample consumption, portability, low cost, and high sensitivity for real-time detection. Here, we reviewed the developments in bile dynamics study and microfluidics-based bile component detection methods. These studies may provide valuable insights into the bilestone formation mechanisms and better treatment, alongside our opinions on the future development of in vitro lithotriptic drug screening of bilestones and bile characterization tests.

1.
E. A.
Shaffer
, “
Review article: Control of gall-bladder motor function
,”
Aliment. Pharmacol. Ther.
14
,
2
8
(
2000
).
2.
H.-U.
Marschall
and
C.
Einarsson
, “
Gallstone disease
,”
J. Intern. Med.
261
(
6
),
529
542
(
2007
).
3.
F.
Lammert
,
K.
Gurusamy
,
C. W.
Ko
,
J. F.
Miquel
,
N.
Méndez-Sánchez
,
P.
Portincasa
,
K. J.
Van Erpecum
,
C. J.
Van Laarhoven
, and
D. Q. H.
Wang
, “
Gallstones
,”
Nat. Rev. Dis. Primers
2
(
2016
).
4.
X.
Luo
, “
On the mechanical behavior of the human biliary system
,”
World J. Gastroenterol.
13
(
9
),
1384
(
2007
).
5.
P. B.
Podgórski
,
A.
Przybyłkowski
, and
P.
Nehring
, “
Bile composition—Which components can have clinical significance? A review of the literature
,”
J. Gastrointest. Liver Dis.
32
(
1
),
110
117
(
2023
).
6.
K.
Meyer
,
O.
Ostrenko
,
G.
Bourantas
,
H.
Morales-Navarrete
,
N.
Porat-Shliom
,
F.
Segovia-Miranda
,
H.
Nonaka
,
A.
Ghaemi
,
J.-M.
Verbavatz
,
L.
Brusch
,
I.
Sbalzarini
,
Y.
Kalaidzidis
,
R.
Weigert
, and
M.
Zerial
, “
A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule
,”
Cell Syst.
4
(
3
),
277
290.e9
(
2017
).
7.
J. M.
Ayuso
,
M.
Virumbrales-Muñoz
,
J. M.
Lang
, and
D. J.
Beebe
, “
A role for microfluidic systems in precision medicine
,”
Nat. Commun.
13
(
1
),
3086
(
2022
).
8.
P. N.
Nge
,
C. I.
Rogers
, and
A. T.
Woolley
, “
Advances in microfluidic materials, functions, integration, and applications
,”
Chem. Rev.
113
(
4
),
2550
2583
(
2013
).
9.
E.
Nader
,
S.
Skinner
,
M.
Romana
,
R.
Fort
,
N.
Lemonne
,
N.
Guillot
,
A.
Gauthier
,
S.
Antoine-Jonville
,
C.
Renoux
,
M.-D.
Hardy-Dessources
,
E.
Stauffer
,
P.
Joly
,
Y.
Bertrand
, and
P.
Connes
, “
Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise
,”
Front. Physiol.
10
(
2019
).
10.
W. H.
Reinhart
,
G.
Näf
, and
B.
Werth
, “
Viscosity of human bile sampled from the common bile duct
,”
Clin. Hemorheol. Microcirc.
44
(
3
),
177
182
(
2010
).
11.
A. G.
Kuchumov
,
V.
Gilev
,
V.
Popov
,
V.
Samartsev
, and
V.
Gavrilov
, “
Non-newtonian flow of pathological bile in the biliary system: Experimental investigation and CFD simulations
,”
Korea Aust. Rheol. J.
26
(
1
),
81
90
(
2014
).
12.
P.-P. L. O.
Coene
,
A. K.
Groen
,
P. H. P.
Davids
,
M.
Hardeman
,
G. N. J.
Tytgat
, and
K.
Huibregtse
, “
Bile viscosity in patients with biliary drainage: Effect of Co-trimoxazole and N- acetylcysteine and role in stent clogging
,”
Scand. J. Gastroenterol.
29
(
8
),
757
763
(
1994
).
13.
W. G.
Li
,
X. Y.
Luo
,
A. G.
Johnson
,
N. A.
Hill
,
N.
Bird
, and
S. B.
Chin
, “
One-dimensional models of the human biliary system
,”
J. Biomech. Eng.
129
(
2
),
164
173
(
2007
).
14.
W. G.
Li
,
X. Y.
Luo
,
S. B.
Chin
,
N. A.
Hill
,
A. G.
Johnson
, and
N. C.
Bird
, “
Non-Newtonian bile flow in elastic cystic duct: One- and three-dimensional modeling
,”
Ann. Biomed. Eng.
36
(
11
),
1893
1908
(
2008
).
15.
A. G.
Kuchumov
,
V.
Vedeneev
,
V.
Samartsev
,
A.
Khairulin
, and
O.
Ivanov
, “
Patient-specific fluid–structure interaction model of bile flow: Comparison between 1-way and 2-way algorithms
,”
Comput. Methods Biomech. Biomed. Eng.
24
(
15
),
1693
1717
(
2021
).
16.
S.
Thomas
and
K.
Jahangir
, “
Noninvasive imaging of the biliary system relevant to percutaneous interventions
,”
Semin. Intervent. Radiol.
33
(
04
),
277
282
(
2016
).
17.
E.
Girard
,
G.
Chagnon
,
E.
Gremen
,
M.
Calvez
,
C.
Masri
,
J.
Boutonnat
,
B.
Trilling
, and
B.
Nottelet
, “
Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes
,”
J. Mech. Behav. Biomed. Mater.
98
,
291
300
(
2019
).
18.
H.
Higashiyama
,
M.
Uemura
,
H.
Igarashi
,
M.
Kurohmaru
,
M.
Kanai-Azuma
, and
Y.
Kanai
, “
Anatomy and development of the extrahepatic biliary system in mouse and rat: A perspective on the evolutionary loss of the gallbladder
,”
J. Anat.
232
(
1
),
134
145
(
2018
).
19.
C. S.
Ramesh Babu
and
M.
Sharma
, “
Biliary tract anatomy and its relationship with venous drainage
,”
J. Clin. Exp. Hepatol.
4
,
S18
S26
(
2014
).
20.
M. A.
Turner
and
A. S.
Fulcher
, “
The cystic duct: Normal anatomy and disease processes
,”
RadioGraphics
21
(
1
),
3
22
(
2001
).
21.
G. P.
Deenitchin
,
J.
Yoshida
,
K.
Chijiiwa
, and
M.
Tanaka
, “
Complex cystic duct is associated with cholelithiasis
,”
HPB Surg.
11
(
1
),
33
37
(
1998
).
22.
R.
Bhuvana
and
M.
Anburajan
, in 2013 International Conference on Communication and Signal Processing. (IEEE, 2013), pp. 658–662.
23.
J.
Thomas
,
S.
Patel
,
L.
Troop
,
R.
Guru
,
N.
Faist
,
B. J.
Bellott
, and
B. A.
Esterlen
, “
3D printed model of extrahepatic biliary ducts for biliary stent testing
,”
Materials (Basel)
13
(
21
),
4788
(
2020
).
24.
A. G.
Kuchumov
, “
Biomechanical model of bile flow in the biliary system
,”
Russ. J. Biomech.
23
(
2
),
224
248
(
2019
).
25.
A. G.
Kuchumov
,
Y. I.
Nyashin
,
V. A.
Samarcev
, and
V. A.
Gavrilov
, “
Modelling of the pathological bile flow in the duct with a calculus
,”
Acta Bioeng. Biomech.
15
(
4
),
9
17
(
2013
).
26.
A. G.
Kuchumov
, “
Mathematical modelling of the peristaltic lithogenic bile flow through the duct at papillary stenosis as a tapered finite-length tube
,”
Russ. J. Biomech.
20
(
2
),
77
96
(
2016
).
27.
W.
Dodds
,
W.
Groh
,
R.
Darweesh
,
T.
Lawson
,
S.
Kishk
, and
M.
Kern
, “
Sonographic measurement of gallbladder volume
,”
Am. J. Roentgenol.
145
(
5
),
1009
1011
(
1985
).
28.
P. J.
Howard
,
G. M.
Murphy
, and
R. H.
Dowling
, “
Gall bladder emptying patterns in response to a normal meal in healthy subjects and patients with gall stones: Ultrasound study
,”
Gut
32
(
11
),
1406
1411
(
1991
).
29.
R. C.
Ooi
,
X. Y.
Luo
,
S. B.
Chin
,
A. G.
Johnson
, and
N. C.
Bird
, “
The flow of bile in the human cystic duct
,”
J. Biomech.
37
(
12
),
1913
1922
(
2004
).
30.
M.
Al-Atabi
,
S. B.
Chin
, and
X. Y.
Luo
, “
Visualization experiment of flow structures inside two-dimensional human biliary system models
,”
J. Mech. Med. Biol.
06
(
03
),
249
260
(
2006
).
31.
M.
Al-Atabi
,
R. C.
Ooi
,
X. Y.
Luo
,
S. B.
Chin
, and
N. C.
Bird
, “
Computational analysis of the flow of bile in human cystic duct
,”
Med. Eng. Phys.
34
(
8
),
1177
1183
(
2012
).
32.
W. G.
Li
,
X. Y.
Luo
,
N. A.
Hill
,
A.
Smythe
,
S. B.
Chin
,
A. G.
Johnson
, and
N.
Bird
, “
Correlation of mechanical factors and gallbladder pain
,”
Comput. Math. Methods Med.
9
(
1
),
27
45
(
2008
).
33.
A. G.
Kuchumov
,
M.
Kamaltdinov
,
A.
Selyaninov
, and
V.
Samartsev
, “
Numerical simulation of biliary stent clogging
,”
Ser. Biomech.
33
(
1
),
3
15
(
2019
).
34.
T.
Peng
,
Y.
Zhong
,
X.
Lin
,
B.
Jiang
,
P.
Wang
, and
Y.
Jia
, “
Analysis and numerical investigation of bile flow dynamics within the strictured biliary duct
,”
Int. J. Numer. Method. Biomed. Eng.
2023, e3790.
35.
M.
Baghaei
,
M.
Kavian
,
S.
Ghodsi
, and
S. E.
Razavi
, “
Numerical investigation of bile secretion and pressure rise in obstructed human common bile duct
,”
J. Appl. Fluid Mech.
14
(
01
),
275
286
(
2021
).
36.
H.
Huang
,
B.
Zhang
,
J.
Zhong
,
G.
Han
,
J.
Zhang
,
H.
Zhou
,
T.
Mao
, and
Y.
Liu
, “
The behavior between fluid and structure from coupling system of bile, bile duct, and polydioxanone biliary stent: A numerical method
,”
Med. Eng. Phys.
113
,
103966
(
2023
).
37.
A.
Di Ciaula
,
D. Q. H.
Wang
, and
P.
Portincasa
, “
An update on the pathogenesis of cholesterol gallstone disease
,”
Curr. Opin. Gastroenterol.
34
(
2
),
71
80
(
2018
).
38.
D. Q. H.
Wang
,
D. E.
Cohen
, and
M. C.
Carey
, “
Biliary lipids and cholesterol gallstone disease
,”
J. Lipid Res.
50
(
SUPPL.
),
S406
S411
(
2009
).
39.
M. B.
Kulkarni
,
N. H.
Ayachit
, and
T. M.
Aminabhavi
, “
Biosensors and microfluidic biosensors: From fabrication to application
,”
Biosensors
12
(
7
),
543
(
2022
).
40.
Z.
Liao
,
Y.
Zhang
,
Y.
Li
,
Y.
Miao
,
S.
Gao
,
F.
Lin
,
Y.
Deng
, and
L.
Geng
, “
Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review
,”
Biosens. Bioelectron.
126
,
697
706
(
2019
).
41.
J. L.
Boyer
,
Comprehensive Physiology
(
Wiley
,
2013
), pp.
1035
1078
.
42.
L.-H.
Li
,
E. P.
Dutkiewicz
,
Y.-C.
Huang
,
H.-B.
Zhou
, and
C.-C.
Hsu
, “
Analytical methods for cholesterol quantification
,”
J. Food Drug Anal.
27
(
2
),
375
386
(
2019
).
43.
R.
Monošík
,
M.
Streďanský
, and
E.
Šturdík
, “
Biosensors - classification, characterization and new trends
,”
Acta Chim. Slovaca
5
(
1
),
109
120
(
2012
).
44.
A.
Wisitsoraat
,
P.
Sritongkham
,
C.
Karuwan
,
D.
Phokharatkul
,
T.
Maturos
, and
A.
Tuantranont
, “
Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor
,”
Biosens. Bioelectron.
26
(
4
),
1514
1520
(
2010
).
45.
G.
Kaur
,
M.
Tomar
, and
V.
Gupta
, “
Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring
,”
Sens. Actuators, B
261
,
460
466
(
2018
).
46.
E. Y.
Watanabe
,
A.
Gevaerd
,
F. R.
Caetano
,
L. H.
Marcolino-Junior
, and
M. F.
Bergamini
, “
An electrochemical microfluidic device for non-enzymatic cholesterol determination using a lab-made disposable electrode
,”
Anal. Methods
15
(
30
),
3692
3699
(
2023
).
47.
S. H.
Baek
,
C.
Park
,
J.
Jeon
, and
S.
Park
, “
Three-dimensional paper-based microfluidic analysis device for simultaneous detection of multiple biomarkers with a smartphone
,”
Biosensors
10
(
11
),
187
(
2020
).
48.
F.
Li
,
J.
Liu
,
L.
Guo
,
J.
Wang
,
K.
Zhang
,
J.
He
, and
H.
Cui
, “
High-resolution temporally resolved chemiluminescence based on double-layered 3D microfluidic paper-based device for multiplexed analysis
,”
Biosens. Bioelectron.
141
,
111472
(
2019
).
49.
V.
Román-Pizarro
,
Á
Écija-Arenas
, and
J. M.
Fernández-Romero
, “
An integrated microfluidic-based biosensor using a magnetically controlled MNPs-enzyme microreactor to determine cholesterol in serum with fluorometric detection
,”
Microchim. Acta
190
(
8
),
303
(
2023
).
50.
D. F.
Cedillo-Alcantar
,
Y. D.
Han
,
J.
Choi
,
J. L.
Garcia-Cordero
, and
A.
Revzin
, “
Automated droplet-based microfluidic platform for multiplexed analysis of biochemical markers in small volumes
,”
Anal. Chem.
91
(
8
),
5133
5141
(
2019
).
51.
X.
Han
,
D.
Han
,
J.
Zeng
,
J.
Deng
,
N.
Hu
, and
J.
Yang
, “
Fabrication and performance of monodisperse liquid crystal droplet-based microchips for the on-chip detection of bile acids
,”
Microchem. J.
157
,
105057
(
2020
).
52.
B.
Staels
and
V. A.
Fonseca
, “
Bile acids and metabolic regulation
,”
Diabetes Care
32
(
Suppl. 2
),
S237
S245
(
2009
).
53.
C.
Degirolamo
,
S.
Modica
,
G.
Palasciano
, and
A.
Moschetta
, “
Bile acids and colon cancer: Solving the puzzle with nuclear receptors
,”
Trends Mol. Med.
17
(
10
),
564
572
(
2011
).
54.
M. H.
Davidson
, “
A systematic review of bile acid sequestrant therapy in children with familial hypercholesterolemia
,”
J. Clin. Lipidol.
5
(
2
),
76
81
(
2011
).
55.
B.
Gollapelli
,
A. K.
Tatipamula
,
S.
Dewanjee
,
R. S.
Pathinti
, and
J.
Vallamkondu
, “
Detection of bile acids using optical biosensors based on cholesteric liquid crystal droplets
,”
J. Mater. Chem. C
9
(
39
),
13991
14002
(
2021
).
56.
J.
Deng
,
X.
Wang
,
W.
Liang
,
D.
Richardson
,
Q.
Lu
, and
J.
Fang
, “
Surface modified liquid crystal droplets as an optical probe for the detection of bile acids in microfluidic channels
,”
Coll. Surf. A Physicochem. Eng. Asp.
542
(
39
),
52
58
(
2018
).
57.
A.
Roda
,
E.
Michelini
,
L.
Cevenini
,
D.
Calabria
,
M. M.
Calabretta
, and
P.
Simoni
, “
Integrating biochemiluminescence detection on smartphones: Mobile chemistry platform for point-of-need analysis
,”
Anal. Chem.
86
(
15
),
7299
7304
(
2014
).
58.
J.
Fevery
, “
Bilirubin in clinical practice: A review
,”
Liver Int.
28
(
5
),
592
605
(
2008
).
59.
B.
Batra
,
S.
Lata
,
Sunny
,
J. S.
Rana
, and
C. S.
Pundir
, “
Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film
,”
Biosens. Bioelectron.
44
,
64
69
(
2013
).
60.
L.
Ngashangva
,
V.
Bachu
, and
P.
Goswami
, “
Development of new methods for determination of bilirubin
,”
J. Pharm. Biomed. Anal.
162
,
272
285
(
2019
).
61.
R.
Rawal
,
P. R.
Kharangarh
,
S.
Dawra
,
M.
Tomar
,
V.
Gupta
, and
C. S.
Pundir
, “
A comprehensive review of bilirubin determination methods with special emphasis on biosensors
,”
Process Biochem.
89
,
165
174
(
2020
).
62.
W.
Tan
,
L.
Zhang
,
J. C. G.
Doery
, and
W.
Shen
, “
Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates
,”
Lab Chip
20
(
2
),
394
404
(
2020
).
63.
B. L.
Thompson
,
S. L.
Wyckoff
,
D. M.
Haverstick
, and
J. P.
Landers
, “
Simple, reagentless quantification of total bilirubin in blood Via microfluidic phototreatment and image analysis
,”
Anal. Chem.
89
(
5
),
3228
3234
(
2017
).
64.
J. G.
Bell
,
M. P. S.
Mousavi
,
M. K.
Abd El-Rahman
,
E. K. W.
Tan
,
S.
Homer-Vanniasinkam
, and
G. M.
Whitesides
, “
Paper-based potentiometric sensing of free bilirubin in blood serum
,”
Biosens. Bioelectron.
126
,
115
121
(
2019
).
65.
G. C.
Bandara
,
L. J.
Unitan
,
M. H.
Kremer
,
O. T.
Shellhammer
,
S.
Bracha
, and
V. T.
Remcho
, “
Wicking microfluidic approach to separate blood plasma from whole blood to facilitate downstream assays
,”
Anal. Bioanal. Chem.
413
(
17
),
4511
4520
(
2021
).
66.
S.
Parween
,
D. P.
Subudhi
, and
A.
Asthana
, “
An affordable, rapid determination of total lipid profile using paper-based microfluidic device
,”
Sens. Actuators, B
285
,
405
412
(
2019
).
67.
Y.
Ren
,
K.
Ge
,
D.
Sun
,
Z.
Hong
,
C.
Jia
,
H.
Hu
,
F.
Shao
, and
B.
Yao
, “
Rapid enrichment and sensitive detection of extracellular vesicles through measuring the phospholipids and transmembrane protein in a microfluidic chip
,”
Biosens. Bioelectron.
199
,
113870
(
2022
).
68.
W.
Zhang
,
N.
Li
,
L.
Lin
,
Q.
Huang
,
K.
Uchiyama
, and
J.
Lin
, “
Concentrating single cells in picoliter droplets for phospholipid profiling on a microfluidic system
,”
Small
16
(
9
), 1903402 (
2020
).
69.
D.
Sun
,
T.
Fan
,
F.
Liu
,
F.
Wang
,
D.
Gao
, and
J.-M.
Lin
, “
A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7
,”
Biosens. Bioelectron.
212
,
114390
(
2022
).
70.
L.
Zheng
,
G.
Cai
,
S.
Wang
,
M.
Liao
,
Y.
Li
, and
J.
Lin
, “
A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging
,”
Biosens. Bioelectron.
124–125
,
143
149
(
2019
).
71.
L.
Yao
,
L.
Wang
,
F.
Huang
,
G.
Cai
,
X.
Xi
, and
J.
Lin
, “
A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7
,”
Sens. Actuators, B
259
,
1013
1021
(
2018
).
72.
Y.
Shang
,
G.
Xing
,
X.
Liu
,
H.
Lin
, and
J.-M.
Lin
, “
Fully integrated microfluidic biosensor with finger actuation for the ultrasensitive detection of Escherichia coli O157:H7
,”
Anal. Chem.
94
(
48
),
16787
16795
(
2022
).
73.
E.
Moradi
,
S.
Jalili-Firoozinezhad
, and
M.
Solati-Hashjin
, “
Microfluidic organ-on-a-chip models of human liver tissue
,”
Acta Biomater.
116
,
67
83
(
2020
).
74.
J.
Deng
,
W.
Wei
,
Z.
Chen
,
B.
Lin
,
W.
Zhao
,
Y.
Luo
, and
X.
Zhang
, “
Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: A review
,”
Micromachines
10
(
10
),
676
(
2019
).
75.
R.
Lin
and
H.
Chang
, “
Recent advances in three-dimensional multicellular spheroid culture for biomedical research
,”
Biotechnol. J.
3
(
9–10
),
1172
1184
(
2008
).
76.
K.
Ziółkowska
,
R.
Kwapiszewski
, and
Z.
Brzózka
, “
Microfluidic devices as tools for mimicking the in vivo environment
,”
New J. Chem.
35
(
5
),
979
(
2011
).
77.
Y.
Nakao
,
H.
Kimura
,
Y.
Sakai
, and
T.
Fujii
, “
Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device
,”
Biomicrofluidics
5
(
2
), 022212 (
2011
).
78.
H.
Lee
,
S.
Chae
,
J. Y.
Kim
,
W.
Han
,
J.
Kim
,
Y.
Choi
, and
D.-W.
Cho
, “
Cell-printed 3D liver-on-a-chip possessing a liver microenvironment and biliary system
,”
Biofabrication
11
(
2
),
025001
(
2019
).
79.
Y.
Du
,
G.
Khandekar
,
J.
Llewellyn
,
W.
Polacheck
,
C. S.
Chen
, and
R. G.
Wells
, “
A bile duct-on-a-chip with organ-level functions
,”
Hepatology
71
(
4
),
1350
1363
(
2020
).
80.
Y.
Du
,
I. E. M.
de Jong
,
K.
Gupta
,
O.
Waisbourd-Zinman
,
A.
Har-Zahav
,
C. J.
Soroka
,
J. L.
Boyer
,
J.
Llewellyn
,
C.
Liu
,
A.
Naji
,
W. J.
Polacheck
, and
R. G.
Wells
, “
Human vascularized bile duct-on-a chip: A multi-cellular micro-physiological system for studying cholestatic liver disease
,”
Biofabrication
16
(
1
),
015004
(
2024
).
81.
B.
Sen Elci
,
M.
Nikolaev
,
S.
Rezakhani
, and
M. P.
Lutolf
, “
Bioengineered tubular biliary organoids
,”
Adv. Healthcare Mater.
2023, 2302912.
82.
T.
Brevini
,
O. C.
Tysoe
, and
F.
Sampaziotis
, “
Tissue engineering of the biliary tract and modelling of cholestatic disorders
,”
J. Hepatol.
73
(
4
),
918
932
(
2020
).
You do not currently have access to this content.