Point-of-care (POC) diagnostic devices have been developing rapidly in recent years, but they are mainly using saliva instead of blood as a test sample. A highly efficient self-separation during the self-driven flow without power systems is desired for expanding the point-of-care diagnostic devices. Microfiltration stands out as a promising technique for blood plasma separation but faces limitations due to blood cell clogging, resulting in reduced separation speed and efficiency. These limitations are mainly caused by the high viscosity and hematocrit in the blood flow. A small increment in the hematocrit of the blood significantly increases the pressure needed for the blood plasma separation in the micro-filters and decreases the separation speed and efficiency. Addressing this challenge, this study explores the feasibility of diluting whole blood within a microfluidic device without external power systems. This study implemented a spiral microchannel utilizing the inertial focusing and Dean vortex effects to focus the red blood cells and extract the blood with lower hematocrit. The inertial migration of the particles during the capillary flow was first investigated experimentally; a maximum of 88% of the particles migrated to the bottom and top equilibrium positions in the optimized 350 × 60 μm (cross-sectional area, 5.8 aspect ratio) microchannel. With the optimized dimension of the microchannel, the whole blood samples within the physiological hematocrit range were tested in the experiments, and more than 10% of the hematocrit reduction was compared between the outer branch outlet and inner branch outlet in the 350 × 60 μm microchannel.

1.
H.
Kim
,
H.
Park
,
D. R.
Chung
,
T.
Kim
,
E.
Park
, and
M.
Kang
, “
A self-pressure-driven blood plasma-separation device for point-of-care diagnostics
,”
Talanta
247
,
123562
(
2022
).
2.
E.
Herington
and
D.
MacDougall
, “
Point-of-care testing of international normalized ratios for people on oral anticoagulants: A rapid qualitative review
,”
Can. J. Health Technol.
1
,
3
(
2021
).
3.
S.
Sachdeva
,
R. W.
Davis
, and
A. K.
Saha
, “
Microfluidic point-of-care testing: Commercial landscape and future directions
,”
Front. Bioeng. Biotechnol.
8
,
602659
(
2021
).
4.
S. K.
Vashist
, “
Point-of-care diagnostics: Recent advances and trends
,”
Biosensors
7
(
4
),
62
(
2017
).
5.
B. B.
Nunna
,
D.
Mandal
,
J. U.
Lee
,
H.
Singh
,
S.
Zhuang
,
D.
Misra
,
M. N. U.
Bhuyian
, and
E. S.
Lee
, “
Detection of cancer antigens (CA-125) using gold nano particles on interdigitated electrode-based microfluidic biosensor
,”
Nano Converg.
6
,
3
(
2019
).
6.
A. O.
Okorodudu
, “
Optimizing accuracy and precision for point-of-care tests
,”
Point Care
11
(
1
),
26
29
(
2012
).
7.
S. M.
Yang
,
S.
Lv
,
W.
Zhang
, and
Y.
Cui
, “
Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges
,”
Sensors
22
(
4
),
1620
(
2022
).
8.
H. K.
Seo
,
Y. H.
Kim
,
H. O.
Kim
, and
Y. J.
Kim
, “
Hybrid cell sorters for on-chip cell separation by hydrodynamics and magnetophoresis
,”
J. Micromech. Microeng.
20
(
9
),
095019
(
2010
).
9.
M.
Mohammadi
,
H.
Madadi
,
J.
Casals-Terré
, and
J.
Sellarès
, “
Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation
,”
Anal. Bioanal. Chem.
407
,
4733
4744
(
2015
).
10.
T.
JunáHuang
, “
High-throughput acoustic separation of platelets from whole blood
,”
Lab Chip
16
(
18
),
3466
3472
(
2016
).
11.
P.
Dow
,
K.
Kotz
,
S.
Gruszka
,
J.
Holder
, and
J.
Fiering
, “
Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage
,”
Lab Chip
18
(
6
),
923
932
(
2018
).
12.
P.
Kolliopoulos
and
S.
Kumar
, “
Capillary flow of liquids in open microchannels: Overview and recent advances
,”
npj Microgravity
7
(
1
),
51
(
2021
).
13.
I. K.
Dimov
,
L.
Basabe-Desmonts
,
J. L.
Garcia-Cordero
,
B. M.
Ross
,
A. J.
Ricco
, and
L. P.
Lee
, “
Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS)
,”
Lab Chip
11
(
5
),
845
850
(
2011
).
14.
E. C.
Yeh
,
C. C.
Fu
,
L.
Hu
,
R.
Thakur
,
J.
Feng
, and
L. P.
Lee
, “
Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip
,”
Sci. Adv.
3
(
3
),
e1501645
(
2017
).
15.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
(
16
),
2323
2347
(
2018
).
16.
B. B.
Nunna
,
Y.
Wang
,
N.
Talukder
, and
E. S.
Lee
, “
Capillary flow dynamics of blood with varied hematocrit in microfluidic platforms
,” in
2022 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT)
(
IEEE
,
2022
), pp.
1
4
.
17.
M. S.
Maria
,
P. E.
Rakesh
,
T. S.
Chandra
, and
A.
Sen
, “
Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation
,”
Sci. Rep.
7
(
1
),
43457
(
2017
).
18.
M. G.
Lee
,
J. H.
Shin
,
S.
Choi
, and
J. K.
Park
, “
Enhanced blood plasma separation by modulation of inertial lift force
,”
Sens. Actuators, B
190
,
311
317
(
2014
).
19.
M.
Rafeie
,
J.
Zhang
,
M.
Asadnia
,
W.
Li
, and
M. E.
Warkiani
, “
Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation
,”
Lab Chip
16
(
15
),
2791
2802
(
2016
).
20.
M.
Robinson
,
H.
Marks
,
T.
Hinsdale
,
K.
Maitland
, and
G.
Coté
, “
Rapid isolation of blood plasma using a cascaded inertial microfluidic device
,”
Biomicrofluidics
11
(
2
),
024109
(
2017
).
21.
P. M.
Ardhapurkar
,
A.
Sridharan
, and
M. D.
Atrey
, “
Investigation of pressure drop in capillary tube for mixed refrigerant joule-thomson cryocooler
,”
AIP Conf. Proc.
1573
(
1
),
155
162
(
2014
).
22.
J.
Cai
,
T.
Jin
,
J.
Kou
,
S.
Zou
,
J.
Xiao
, and
Q.
Meng
, “
Lucas–washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
(
5
),
1623
1636
(
2021
).
23.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
(
3
),
273
(
1921
).
24.
J.
Rivero-Rodriguez
and
B.
Scheid
, “
Bubble dynamics in microchannels: Inertial and capillary migration forces
,”
J. Fluid Mech.
842
,
215
247
(
2018
).
25.
Y.
Wang
,
B. B.
Nunna
,
N.
Talukder
,
E. E.
Etienne
, and
E. S.
Lee
, “
Blood plasma self-separation technologies during the self-driven flow in microfluidic platforms
,”
Bioengineering
8
(
7
),
94
(
2021
).
26.
Y.
Nam
,
M.
Kim
, and
T.
Kim
, “
Pneumatically controlled multi-level microchannel for separation and extraction of microparticles
,”
Sens. Actuators, B
190
,
86
92
(
2014
).
27.
T. F.
Didar
,
K.
Li
,
M.
Tabrizian
, and
T.
Veres
, “
High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping
,”
Lab Chip
13
(
13
),
2615
2622
(
2013
).
28.
S.
Karimi
,
M.
Mojaddam
,
S.
Majidi
,
P.
Mehrdel
,
J.
Farré-Lladós
, and
J.
Casals-Terré
, “
Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications
,”
Anal. Bioanal. Chem.
413
,
2867
2878
(
2021
).
29.
Y.
Yoon
,
J.
Lee
,
M.
Ra
,
H.
Gwon
,
S.
Lee
,
M. Y.
Kim
,
K. C.
Yoo
,
O.
Sul
,
C. G.
Kim
,
W. Y.
Kim
, and
J. G.
Park
, “
Continuous separation of circulating tumor cells from whole blood using a slanted weir microfluidic device
,”
Cancers
11
(
2
),
200
(
2019
).
30.
J.
Hauser
,
G.
Lenk
,
J.
Hansson
,
O.
Beck
,
G.
Stemme
, and
N.
Roxhed
, “
High-yield passive plasma filtration from human finger prick blood
,”
Anal. Chem.
90
(
22
),
13393
13399
(
2018
).
31.
L.
Spigarelli
,
V.
Bertana
,
D.
Marchisio
,
L.
Scaltrito
,
S.
Ferrero
,
M.
Cocuzza
,
S. L.
Marasso
,
G.
Canavese
, and
C. F.
Pirri
, “
A passive two-way microfluidic device for low volume blood-plasma separation
,”
Microelectron. Eng.
209
,
28
34
(
2019
).
32.
Z. T.
Al-Aqbi
,
S.
Albukhaty
,
A. M.
Zarzoor
,
G. M.
Sulaiman
,
K. A.
Khalil
,
T.
Belali
, and
M. T.
Soliman
, “
A novel microfluidic device for blood plasma filtration
,”
Micromachines
12
(
3
),
336
(
2021
).
33.
A. C.
Enten
,
M. P.
Leipner
,
M. C.
Bellavia
,
L. E.
King
, and
T. A.
Sulchek
, “
Optimizing flux capacity of dead-end filtration membranes by controlling flow with pulse width modulated periodic backflush
,”
Sci. Rep.
10
(
1
),
896
(
2020
).
34.
Y. Y.
Chiu
,
C. K.
Huang
, and
Y. W.
Lu
, “
Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing
,”
Biomicrofluidics
10
,
011906
(
2016
).
35.
D. M.
Eckmann
,
S.
Bowers
,
M.
Stecker
, and
A. T.
Cheung
, “
Hematocrit, volume expander, temperature, and shear rate effects on blood viscosity
,”
Anesth. Analg.
91
(
3
),
539
545
(
2000
).
36.
C.
Picart
,
J. M.
Piau
,
H.
Galliard
, and
P.
Carpentier
, “
Human blood shear yield stress and its hematocrit dependence
,”
J. Rheol.
42
(
1
),
1
12
(
1998
).
37.
D. J.
Weiss
,
O.
Evanson
, and
R. J.
Geor
, “
Filterability of equine erythrocytes and whole blood: Effects of haematocrit, pore size and flow rate
,”
Comp. Haematol. Int.
4
,
11
16
(
1994
).
38.
N. Z.
Piety
,
W. H.
Reinhart
,
J.
Stutz
, and
S. S.
Shevkoplyas
, “
Optimal hematocrit in an artificial microvascular network
,”
Transfusion
57
(
9
),
2257
2266
(
2017
).
39.
W. H.
Reinhart
,
N. Z.
Piety
, and
S. S.
Shevkoplyas
, “
Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network
,”
Microcirculation
24
(
8
),
e12396
(
2017
).
40.
K.
Aran
,
A.
Fok
,
L. A.
Sasso
,
N.
Kamdar
,
Y.
Guan
,
Q.
Sun
,
A.
Ündar
, and
J. D.
Zahn
, “
Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery
,”
Lab Chip
11
(
17
),
2858
2868
(
2011
).
41.
M. M. N.
Hossain
,
N. W.
Hu
,
M.
Abdelhamid
,
S.
Singh
,
W. L.
Murfee
, and
P.
Balogh
, “
Angiogenic microvascular wall shear stress patterns revealed through three-dimensional Red blood cell resolved modeling
,”
Function
4
(
6
),
zqad046
(
2023
).
42.
E.
Nader
,
S.
Skinner
,
M.
Romana
,
R.
Fort
,
N.
Lemonne
,
N.
Guillot
,
A.
Gauthier
,
S.
Antoine-Jonville
,
C.
Renoux
,
M. D.
Hardy-Dessources
, and
E.
Stauffer
, “
Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise
,”
Front. Physiol.
10
,
1329
(
2019
).
43.
A.
Ullah
,
R. G.
Holdich
,
M.
Naeem
, and
V. M.
Starov
, “
Shear enhanced microfiltration and rejection of crude oil drops through a slotted pore membrane including migration velocities
,”
J. Membr. Sci.
421
,
69
74
(
2012
).
44.
E. D.
Loong
, “
Microfiltration of stored blood
,”
Anaesth. Intens. Care
8
(
2
),
158
161
(
1980
).
45.
D.
Di Carlo
,
J. F.
Edd
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Equilibrium separation and filtration of particles using differential inertial focusing
,”
Anal. Chem.
80
(
6
),
2204
2211
(
2008
).
46.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
47.
L. M.
Lee
,
K. H.
Bhatt
,
D. W.
Haithcock
, and
B.
Prabhakarpandian
, “
Blood component separation in straight microfluidic channels
,”
Biomicrofluidics
17
,
054106
(
2023
).
48.
J.
Zhou
and
I.
Papautsky
, “
Fundamentals of inertial focusing in microchannels
,”
Lab Chip
13
(
6
),
1121
1132
(
2013
).
49.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N. T.
Nguyen
,
M. E.
Ebrahimi Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16
(
1
),
10
34
(
2016
).
50.
M.
Abbas
,
P.
Magaud
,
Y.
Gao
, and
S.
Geoffroy
, “
Migration of finite sized particles in a laminar square channel flow from low to high reynolds numbers
,”
Phys. Fluids
26
(
12
),
123301
(
2014
).
51.
J.
Zhou
,
Z.
Peng
, and
I.
Papautsky
, “
Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging
,”
Microsyst. Nanoeng.
6
(
1
),
105
(
2020
).
52.
J.
Cappello
,
J.
Rivero-Rodríguez
,
Y.
Vitry
,
A.
Dewandre
,
B.
Sobac
, and
B.
Scheid
, “
Beads, bubbles and drops in microchannels: Stability of centred position and equilibrium velocity
,”
J. Fluid Mech.
956
,
A21
(
2023
).
53.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Enhanced particle filtration in straight microchannels using shear-modulated inertial migration
,”
Phys. Fluids
20
,
101702
(
2008
).
54.
W. R.
Dean
, “
XVI. Note on the motion of fluid in a curved pipe
,”
London Edinb. Dublin Philos. Mag. J. Sci.
4
(
20
),
208
223
(
1927
).
55.
G.
Guan
,
L.
Wu
,
A. A.
Bhagat
,
Z.
Li
,
P. C.
Chen
,
S.
Chao
,
C. J.
Ong
, and
J.
Han
, “
Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation
,”
Sci. Rep.
3
(
1
),
1475
(
2013
).
56.
Y.
Wang
,
B. B.
Nunna
,
N.
Talukder
, and
E. S.
Lee
, “
Microfluidic-based novel optical quantification of red blood cell concentration in blood flow
,”
Bioengineering
9
(
6
),
247
(
2022
).
57.
M. G.
Rinsler
, “
Clinical diagnosis and management by laboratory methods
,”
J. Clin. Pathol.
34
(
2
),
228
(
1981
).
58.
P. W.
Thavasu
,
S.
Longhurst
,
S. P.
Joel
,
M. L.
Slevin
, and
F. R.
Balkwill
, “
Measuring cytokine levels in blood. Importance of anticoagulants, processing, and storage conditions
,”
J. Immunol. Methods
153
(
1–2
),
115
124
(
1992
).
59.
A. P.
Wong
,
M.
Gupta
,
S. S.
Shevkoplyas
, and
G. M.
Whitesides
, “
Egg beater as centrifuge: Isolating human blood plasma from whole blood in resource-poor settings
,”
Lab Chip
8
(
12
),
2032
2037
(
2008
).
60.
M.
Amasia
and
M.
Madou
, “
Large-volume centrifugal microfluidic device for blood plasma separation
,”
Bioanalysis
2
(
10
),
1701
1710
(
2010
).

Supplementary Material

You do not currently have access to this content.