Green energy conversion in aqueous systems has attracted considerable interest owing to the sustainable clean energy demand resulting from population and economic growth and urbanization, as well as the significant potential energy from water resources and other regenerative sources coupled with fluids. In particular, molecular motion based on intrinsic micro/nanofluidic phenomena at the liquid–solid interface (LSI) is crucial for efficient and sustainable green energy conversion. The electrical double layer is the main factor affecting transport, interaction between molecules and surfaces, non-uniform ion distribution, synthesis, stimulated reactions, and motion by external renewable resources in both closed nanoconfinement and open surfaces. In this review, we summarize the state-of-the-art progress in physical and chemical reaction-based green energy conversion in LSI, including nanoscale fabrication, key mechanisms, applications, and limitations for practical implementation. The prospects for resolving critical challenges in this field and inspiring other promising research areas in the infancy stage (studying chemical and biological dynamics at the single-molecule level and nanofluidic neuromorphic computing) are also discussed.

1.
A.
Rode
,
T.
Carleton
,
M.
Delgado
,
M.
Greenstone
,
T.
Houser
,
S.
Hsiang
,
A.
Hultgren
,
A.
Jina
,
R. E.
Kopp
, and
K. E.
McCusker
,
Nature
598
(
7880
),
308
314
(
2021
).
2.
G. Z.
Ramon
,
B. J.
Feinberg
, and
E. M. V.
Hoek
,
Energy Environ. Sci.
4
(
11
),
4423
4434
(
2011
).
3.
P. V.
Kamat
,
J. Phys. Chem. C
111
(
7
),
2834
2860
(
2007
).
4.
S.
Wang
,
X.
Wang
,
Z. L.
Wang
, and
Y.
Yang
,
ACS Nano
10
(
6
),
5696
5700
(
2016
).
5.
D.
Erickson
,
D.
Sinton
, and
D.
Psaltis
,
Nat. Photonics
5
(
10
),
583
590
(
2011
).
6.
W.
Sparreboom
,
A.
van den Berg
, and
J. C. T.
Eijkel
,
New J. Phys.
12
(
1
),
015004
(
2010
).
7.
J. C. T.
Eijkel
and
A. v. d.
Berg
,
Microfluid. Nanofluid.
1
(
3
),
249
267
(
2005
).
8.
Z.
Zhu
,
D.
Wang
,
Y.
Tian
, and
L.
Jiang
,
J. Am. Chem. Soc.
141
(
22
),
8658
8669
(
2019
).
9.
M.
Nazari
,
A.
Davoodabadi
,
D.
Huang
,
T.
Luo
, and
H.
Ghasemi
,
ACS Nano
14
(
12
),
16348
16391
(
2020
).
10.
J.
Li
,
D.
Stein
,
C.
McMullan
,
D.
Branton
,
M. J.
Aziz
, and
J. A.
Golovchenko
,
Nature
412
(
6843
),
166
169
(
2001
).
11.
A.
Storm
,
J.
Chen
,
X.
Ling
,
H.
Zandbergen
, and
C.
Dekker
,
Nat. Mater.
2
(
8
),
537
540
(
2003
).
12.
K.
Liu
,
J.
Feng
,
A.
Kis
, and
A.
Radenovic
,
ACS Nano
8
(
3
),
2504
2511
(
2014
).
13.
M.
Graf
,
M.
Lihter
,
M.
Thakur
,
V.
Georgiou
,
J.
Topolancik
,
B. R.
Ilic
,
K.
Liu
,
J.
Feng
,
Y.
Astier
, and
A.
Radenovic
,
Nat. Protoc.
14
(
4
),
1130
1168
(
2019
).
14.
S.
Garaj
,
S.
Liu
,
J. A.
Golovchenko
, and
D.
Branton
,
Proc. Natl. Acad. Sci. U.S.A.
110
(
30
),
12192
12196
(
2013
).
15.
P. Y.
Apel
,
Y. E.
Korchev
,
Z.
Siwy
,
R.
Spohr
, and
M.
Yoshida
,
Nucl. Instrum. Methods Phys. Res., Sect. B
184
(
3
),
337
346
(
2001
).
16.
M.
Ali
,
P.
Ramirez
,
H. Q.
Nguyen
,
S.
Nasir
,
J.
Cervera
,
S.
Mafe
, and
W.
Ensinger
,
ACS Nano
6
(
4
),
3631
3640
(
2012
).
17.
K.
Xiao
,
L.
Chen
,
Z.
Zhang
,
G.
Xie
,
P.
Li
,
X. Y.
Kong
,
L.
Wen
, and
L.
Jiang
,
Angew. Chem. Int. Ed.
56
(
28
),
8168
8172
(
2017
).
18.
J.-P.
Hsu
,
T.-C.
Su
,
P.-H.
Peng
,
S.-C.
Hsu
,
M.-J.
Zheng
, and
L.-H.
Yeh
,
ACS Nano
13
(
11
),
13374
13381
(
2019
).
19.
J.
Guan
,
P. E.
Boukany
,
O.
Hemminger
,
N. R.
Chiou
,
W.
Zha
,
M.
Cavanaugh
, and
L. J.
Lee
,
Adv. Mater.
22
(
36
),
3997
4001
(
2010
).
20.
R.
Chantiwas
,
S.
Park
,
S. A.
Soper
,
B. C.
Kim
,
S.
Takayama
,
V.
Sunkara
,
H.
Hwang
, and
Y.-K.
Cho
,
Chem. Soc. Rev.
40
(
7
),
3677
3702
(
2011
).
21.
P.
Kim
,
M.
Abkarian
, and
H. A.
Stone
,
Nat. Mater.
10
(
12
),
952
957
(
2011
).
22.
M.
Kim
,
D.
Ha
, and
T.
Kim
,
Nat. Commun.
6
(
1
),
6247
(
2015
).
23.
S.
Chung
,
J. H.
Lee
,
M. W.
Moon
,
J.
Han
, and
R. D.
Kamm
,
Adv. Mater.
20
(
16
),
3011
3016
(
2008
).
24.
Z.
Zhang
,
X.
Huang
,
Y.
Qian
,
W.
Chen
,
L.
Wen
, and
L.
Jiang
,
Adv. Mater.
32
(
4
),
1904351
(
2020
).
25.
T.
Kato
,
J.
Uchida
,
T.
Ichikawa
, and
T.
Sakamoto
,
Angew. Chem. Int. Ed.
57
(
16
),
4355
4371
(
2018
).
26.
B.
Hosseini Monjezi
,
K.
Kutonova
,
M.
Tsotsalas
,
S.
Henke
, and
A.
Knebel
,
Angew. Chem. Int. Ed.
60
(
28
),
15153
15164
(
2021
).
27.
J.
Gao
,
X.
Qian
,
R. B.
Lin
,
R.
Krishna
,
H.
Wu
,
W.
Zhou
, and
B.
Chen
,
Angew. Chem. Int. Ed.
59
(
11
),
4396
4400
(
2020
).
28.
Y.
Mo
,
T.
Chen
,
J.
Dai
,
K.
Wu
, and
D.
Wang
,
J. Am. Chem. Soc.
141
(
29
),
11378
11382
(
2019
).
29.
X.-C.
Chen
,
H.
Zhang
,
S.-H.
Liu
,
Y.
Zhou
, and
L.
Jiang
,
ACS Nano
16
(
11
),
17613
17640
(
2022
).
30.
E.
Choi
,
C.
Wang
,
G. T.
Chang
, and
J.
Park
,
Nano Lett.
16
(
4
),
2189
2197
(
2016
).
31.
C.
Wang
,
E.
Choi
, and
J.
Park
,
Nano Energy
43
,
291
299
(
2018
).
32.
J.
Kim
,
J.
Jeon
,
C.
Wang
,
G. T.
Chang
, and
J.
Park
,
ACS Nano
16
(
5
),
8253
8263
(
2022
).
33.
W.
Ouyang
,
J.
Han
, and
W.
Wang
,
Lab Chip
17
(
22
),
3772
3784
(
2017
).
34.
E.
Choi
,
K.
Kwon
,
D.
Kim
, and
J.
Park
,
Lab Chip
15
(
2
),
512
523
(
2015
).
35.
E.
Choi
,
K.
Kwon
,
D.
Kim
, and
J.
Park
,
Lab Chip
15
(
1
),
168
178
(
2015
).
36.
E.
Choi
,
K.
Kwon
,
S. J.
Lee
,
D.
Kim
, and
J.
Park
,
Lab Chip
15
(
8
),
1794
1798
(
2015
).
37.
J.
Lee
,
K.
Lee
,
C.
Wang
,
D.
Ha
,
G.-H.
Kim
,
J.
Park
, and
T.
Kim
,
Anal. Chem.
93
(
42
),
14169
14177
(
2021
).
38.
A.
Cipollina
and
G.
Micale
,
Sustainable Energy From Salinity Gradients
(Woodhead Publishing,
2016
).
39.
Z.
Zhang
,
L.
Wen
, and
L.
Jiang
,
Nat. Rev. Mater.
6
(
7
),
622
639
(
2021
).
40.
W.
Raza
,
F.
Ali
,
N.
Raza
,
Y.
Luo
,
K.-H.
Kim
,
J.
Yang
,
S.
Kumar
,
A.
Mehmood
, and
E. E.
Kwon
,
Nano Energy
52
,
441
473
(
2018
).
41.
W.
Guo
,
C.
Yu
,
S.
Li
, and
J.
Qiu
,
Energy Environ. Sci.
14
(
2
),
576
601
(
2021
).
42.
C.
Zheng
,
W.
Chu
,
S.
Fang
,
J.
Tan
,
X.
Wang
, and
W.
Guo
,
Interdiscip. Mater.
1
(
4
),
449
470
(
2022
).
43.
J.
Youm
,
S.-H.
Lee
,
I.
Cho
,
D.-W.
Jeong
,
J.
Bang
,
H.-H.
Park
, and
M.-S.
Kim
,
Surf. Interfaces
38
,
102853
(
2023
).
44.
J.
Yin
,
J.
Zhou
,
S.
Fang
, and
W.
Guo
,
Joule
4
(
9
),
1852
1855
(
2020
).
45.
W. H.
Lee
,
J.
Park
,
S. G.
Yoon
,
H.
Jin
,
J.
Han
, and
Y. S.
Kim
,
EcoMat
5
(
11
),
e12408
(
2023
).
46.
J.
Park
,
S.
Song
,
Y.
Yang
,
S.-H.
Kwon
,
E.
Sim
, and
Y. S.
Kim
,
J. Am. Chem. Soc.
139
(
32
),
10968
10971
(
2017
).
47.
S. G.
Yoon
,
Y.
Yang
,
H.
Jin
,
W. H.
Lee
,
A.
Sohn
,
S.-W.
Kim
,
J.
Park
, and
Y. S.
Kim
,
Adv. Mater.
31
(
3
),
1806268
(
2019
).
48.
J.
Han
,
S. G.
Yoon
,
W. H.
Lee
,
H.
Jin
,
Y. H.
Cho
, and
Y. S.
Kim
,
Adv. Sci.
9
(
1
),
2103038
(
2022
).
49.
Z.
Zhang
,
X.
Li
,
J.
Yin
,
Y.
Xu
,
W.
Fei
,
M.
Xue
,
Q.
Wang
,
J.
Zhou
, and
W.
Guo
,
Nat. Nanotechnol.
13
(
12
),
1109
1119
(
2018
).
50.
X.
Wang
,
F.
Lin
,
X.
Wang
,
S.
Fang
,
J.
Tan
,
W.
Chu
,
R.
Rong
,
J.
Yin
,
Z.
Zhang
, and
Y.
Liu
,
Chem. Soc. Rev.
51
(
12
),
4902
4927
(
2022
).
51.
Z. L.
Wang
,
J.
Chen
, and
L.
Lin
,
Energy Environ. Sci.
8
(
8
),
2250
2282
(
2015
).
52.
C.
Wu
,
A. C.
Wang
,
W.
Ding
,
H.
Guo
, and
Z. L.
Wang
,
Adv. Energy Mater.
9
(
1
),
1802906
(
2019
).
53.
Z.
Zhang
,
X.-Y.
Kong
,
G.
Xie
,
P.
Li
,
K.
Xiao
,
L.
Wen
, and
L.
Jiang
,
Sci. Adv.
2
(
10
),
e1600689
(
2016
).
54.
K.
Xiao
,
L.
Chen
,
R.
Chen
,
T.
Heil
,
S. D. C.
Lemus
,
F.
Fan
,
L.
Wen
,
L.
Jiang
, and
M.
Antonietti
,
Nat. Commun.
10
(
1
),
74
(
2019
).
55.
J.
Yang
,
X.
Hu
,
X.
Kong
,
P.
Jia
,
D.
Ji
,
D.
Quan
,
L.
Wang
,
Q.
Wen
,
D.
Lu
,
J.
Wu
,
L.
Jiang
, and
W.
Guo
,
Nat. Commun.
10
(
1
),
1171
(
2019
).
56.
C.
Wang
,
E.
Shim
,
H.-K.
Chang
,
N.
Lee
,
H. R.
Kim
, and
J.
Park
,
Biosens. Bioelectron.
169
,
112652
(
2020
).
57.
D.
Kang
,
J. I.
Lee
,
B.
Maeng
,
S.
Lee
,
Y.
Kwon
,
M. S.
Kang
,
J.
Park
, and
J.
Kim
,
ACS Nano
16
(
10
),
15827
15836
(
2022
).
58.
T.
Tsukahara
,
A.
Hibara
,
Y.
Ikeda
, and
T.
Kitamori
,
Angew. Chem. Int. Ed.
46
(
7
),
1180
1183
(
2007
).
59.
S.
Liu
,
Q.
Pu
,
L.
Gao
,
C.
Korzeniewski
, and
C.
Matzke
,
Nano Lett.
5
(
7
),
1389
1393
(
2005
).
60.
H.
Chinen
,
K.
Mawatari
,
Y.
Pihosh
,
K.
Morikawa
,
Y.
Kazoe
,
T.
Tsukahara
, and
T.
Kitamori
,
Angew. Chem. Int. Ed.
51
(
15
),
3573
3577
(
2012
).
61.
S. G.
Chalk
and
J. F.
Miller
,
J. Power Sources
159
(
1
),
73
80
(
2006
).
62.
I.
Jeerapan
,
J. R.
Sempionatto
, and
J.
Wang
,
Adv. Funct. Mater.
30
(
29
),
1906243
(
2020
).
63.
L.
Li
,
P. A.
Salvador
, and
G. S.
Rohrer
,
Nanoscale
6
(
1
),
24
42
(
2014
).
64.
C.
Hu
,
S.
Tu
,
N.
Tian
,
T.
Ma
,
Y.
Zhang
, and
H.
Huang
,
Angew. Chem. Int. Ed.
60
(
30
),
16309
16328
(
2021
).
65.
D.
Woermann
,
Nucl. Instrum. Methods Phys. Res., Sect. B
194
(
4
),
458
462
(
2002
).
66.
D.
Woermann
,
Phys. Chem. Chem. Phys.
5
(
9
),
1853
1858
(
2003
).
67.
D.
Woermann
,
Phys. Chem. Chem. Phys.
6
(
12
),
3130
3132
(
2004
).
68.
J.
Cervera
,
B.
Schiedt
, and
P.
Ramírez
,
Europhys. Lett.
71
(
1
),
35
(
2005
).
69.
Z.
Siwy
and
A.
Fuliński
,
Am. J. Phys.
72
(
5
),
567
574
(
2004
).
70.
Z.
Siwy
and
A.
Fuliński
,
Phys. Rev. Lett.
89
(
19
),
198103
(
2002
).
71.
Z. S.
Siwy
,
Adv. Funct. Mater.
16
(
6
),
735
746
(
2006
).
72.
J.
Gao
,
W.
Guo
,
D.
Feng
,
H.
Wang
,
D.
Zhao
, and
L.
Jiang
,
J. Am. Chem. Soc.
136
(
35
),
12265
12272
(
2014
).
73.
X.
Zhu
,
J.
Hao
,
B.
Bao
,
Y.
Zhou
,
H.
Zhang
,
J.
Pang
,
Z.
Jiang
, and
L.
Jiang
,
Sci. Adv.
4
(
10
),
eaau1665
(
2018
).
74.
Z.
Zhang
,
L.
He
,
C.
Zhu
,
Y.
Qian
,
L.
Wen
, and
L.
Jiang
,
Nat. Commun.
11
(
1
),
875
(
2020
).
75.
R.
Peng
,
T.
Li
,
H.
Song
,
S.
Wang
,
Y.
Song
,
J.
Wang
, and
M.
Xu
,
iScience
26
(
7
),
107184
(
2023
).
76.
L.
Cao
,
I. C.
Chen
,
X.
Liu
,
Z.
Li
,
Z.
Zhou
, and
Z.
Lai
,
ACS Nano
16
(
11
),
18910
18920
(
2022
).
77.
C.-W.
Chang
,
C.-W.
Chu
,
Y.-S.
Su
, and
L.-H.
Yeh
,
J. Mater. Chem. A
10
(
6
),
2867
2875
(
2022
).
78.
J.
Kim
,
C.
Wang
, and
J.
Park
,
Micromachines
14
(
7
),
1311
(
2023
).
79.
S.
Zhang
,
L.
Yang
,
D.
Ding
,
P.
Gao
,
F.
Xia
, and
M. L.
Bruening
,
Anal. Chem.
93
(
9
),
4291
4298
(
2021
).
80.
P.-C.
Tsai
,
Y.-S.
Su
,
M.
Gao
, and
L.-H.
Yeh
,
J. Mater. Chem. A
9
(
36
),
20502
20509
(
2021
).
81.
K.
Mathwig
,
B. D. B.
Aaronson
, and
F.
Marken
,
ChemElectroChem
5
(
6
),
897
901
(
2018
).
82.
Z.
Li
,
T.
Pang
,
J.
Shen
,
P. J.
Fletcher
,
K.
Mathwig
, and
F.
Marken
,
Micro Nano Eng.
16
,
100157
(
2022
).
83.
S.
Zhang
,
W.
Chen
,
L.
Song
,
X.
Wang
,
W.
Sun
,
P.
Song
,
G.
Ashraf
,
B.
Liu
, and
Y.-D.
Zhao
,
Sens. Actuators Rep.
3
,
100042
(
2021
).
84.
T.
Mei
,
H.
Zhang
, and
K.
Xiao
,
ACS Nano
16
(
9
),
13323
13338
(
2022
).
85.
Y.
Zhang
,
T.
Yang
,
K.
Shang
,
F.
Guo
,
Y.
Shang
,
S.
Chang
,
L.
Cui
,
X.
Lu
,
Z.
Jiang
,
J.
Zhou
,
C.
Fu
, and
Q.-C.
He
,
Nat. Commun.
13
(
1
),
3484
(
2022
).
86.
K.
Ni
,
B.
Xu
,
Z.
Wang
,
Q.
Ren
,
W.
Gu
,
B.
Sun
,
R.
Liu
, and
X.
Zhang
,
Adv. Mater.
35
(
40
),
2305438
(
2023
).
87.
M. C.
Hatzell
,
R. D.
Cusick
, and
B. E.
Logan
,
Energy Environ. Sci.
7
(
3
),
1159
1165
(
2014
).
88.
F.
Zhan
,
Z.
Wang
,
T.
Wu
,
Q.
Dong
,
C.
Zhao
,
G.
Wang
, and
J.
Qiu
,
J. Mater. Chem. A
6
(
12
),
4981
4987
(
2018
).
89.
C.
Liu
,
X.
Chang
,
H.
Mi
,
F.
Guo
,
C.
Ji
, and
J.
Qiu
,
Carbon
216,
118523
(
2023
).
90.
J.
Yin
,
X.
Li
,
J.
Yu
,
Z.
Zhang
,
J.
Zhou
, and
W.
Guo
,
Nat. Nanotechnol.
9
(
5
),
378
383
(
2014
).
91.
J.
Park
,
S.
Song
,
C.
Shin
,
Y.
Yang
,
S. A.
Weber
,
E.
Sim
, and
Y. S.
Kim
,
Angew. Chem. Int. Ed.
57
(
8
),
2091
2095
(
2018
).
92.
G.
Xue
,
Y.
Xu
,
T.
Ding
,
J.
Li
,
J.
Yin
,
W.
Fei
,
Y.
Cao
,
J.
Yu
,
L.
Yuan
, and
L.
Gong
,
Nat. Nanotechnol.
12
(
4
),
317
321
(
2017
).
93.
T. G.
Yun
,
J.
Bae
,
A.
Rothschild
, and
I.-D.
Kim
,
ACS Nano
13
(
11
),
12703
12709
(
2019
).
94.
X. J.
Zhao
,
G.
Zhu
,
Y. J.
Fan
,
H. Y.
Li
, and
Z. L.
Wang
,
ACS Nano
9
(
7
),
7671
7677
(
2015
).
95.
X. J.
Zhao
,
J. J.
Tian
,
S. Y.
Kuang
,
H.
Ouyang
,
L.
Yan
,
Z. L.
Wang
,
Z.
Li
, and
G.
Zhu
,
Adv. Mater. Interfaces
3
(
17
),
1600187
(
2016
).
96.
X. J.
Zhao
,
S. Y.
Kuang
,
Z. L.
Wang
, and
G.
Zhu
,
ACS Nano
12
(
5
),
4280
4285
(
2018
).
97.
F.
Zhan
,
A. C.
Wang
,
L.
Xu
,
S.
Lin
,
J.
Shao
,
X.
Chen
, and
Z. L.
Wang
,
ACS Nano
14
(
12
),
17565
17573
(
2020
).
98.
H.
Luo
,
H.
Wang
,
L.
Yang
,
H.
Wu
,
S.
Kang
,
S.
Yong
,
R.
Liao
,
J.
Wang
, and
Z. L.
Wang
,
Adv. Funct. Mater.
32
(
27
),
2200862
(
2022
).
99.
Q.
Zhou
,
K.
Lee
,
S.
Deng
,
S.
Seo
,
F.
Xia
, and
T.
Kim
,
Nano Energy
85
,
105980
(
2021
).
100.
C.
Wang
,
J.
Jeon
,
E.
Seo
, and
J.
Park
,
Lab Chip
22
(
16
),
2962
2970
(
2022
).
101.
H.
Kim
,
H.
Kwon
,
R.
Song
,
S.
Shin
,
S.-Y.
Ham
,
H.-D.
Park
,
J.
Lee
,
P.
Fischer
, and
E.
Bodenschatz
,
NPJ Clean Water
5
(
1
),
62
(
2022
).
102.
Q.
Zhang
,
T.
Xiao
,
N.
Yan
,
Z.
Liu
,
J.
Zhai
, and
X.
Diao
,
Nano Energy
28
,
188
194
(
2016
).
103.
S.
Hong
,
G.
Zou
,
H.
Kim
,
D.
Huang
,
P.
Wang
, and
H. N.
Alshareef
,
ACS Nano
14
(
7
),
9042
9049
(
2020
).
104.
E.
Ortiz-Ortega
,
M.-A.
Goulet
,
J. W.
Lee
,
M.
Guerra-Balcázar
,
N.
Arjona
,
E.
Kjeang
,
J.
Ledesma-García
, and
L.
Arriaga
,
Lab Chip
14
(
24
),
4596
4598
(
2014
).
105.
W.
Guo
,
L.
Cao
,
J.
Xia
,
F.-Q.
Nie
,
W.
Ma
,
J.
Xue
,
Y.
Song
,
D.
Zhu
,
Y.
Wang
, and
L.
Jiang
,
Adv. Funct. Mater.
20
(
8
),
1339
1344
(
2010
).
106.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
,
Nature
494
(
7438
),
455
458
(
2013
).
107.
J.
Feng
,
M.
Graf
,
K.
Liu
,
D.
Ovchinnikov
,
D.
Dumcenco
,
M.
Heiranian
,
V.
Nandigana
,
N. R.
Aluru
,
A.
Kis
, and
A.
Radenovic
,
Nature
536
(
7615
),
197
200
(
2016
).
108.
L.
Wang
,
Z.
Wang
,
S. K.
Patel
,
S.
Lin
, and
M.
Elimelech
,
ACS Nano
15
(
3
),
4093
4107
(
2021
).
109.
Y.
Xu
,
N.
Matsumoto
,
Q.
Wu
,
Y.
Shimatani
, and
H.
Kawata
,
Lab Chip
15
(
9
),
1989
1993
(
2015
).
110.
J.
Wang
,
L.
Wang
,
N.
Shao
,
M.
He
,
P.
Shang
,
Z.
Cui
,
S.
Liu
,
N.
Jiang
,
X.
Wang
, and
L.
Wang
,
Chem. Eng. J.
452
,
139531
(
2023
).
111.
J.
Gao
,
A. R.
Koltonow
,
K.
Raidongia
,
B.
Beckerman
,
N.
Boon
,
E.
Luijten
,
M.
Olvera de la Cruz
, and
J.
Huang
,
Mater. Chem. Front.
2
(
3
),
475
482
(
2018
).
112.
N.
Chantipmanee
and
Y.
Xu
,
TrAC, Trends Anal. Chem.
158
,
116877
(
2023
).
113.
T. M.
Kamsma
,
J.
Kim
,
K.
Kim
,
W. Q.
Boon
,
C.
Spitoni
,
J.
Park
and
R. e. v.
Roij
, arXiv:2309.11438 (
2023
).
114.
P.
Robin
,
T.
Emmerich
,
A.
Ismail
,
A.
Niguès
,
Y.
You
,
G.-H.
Nam
,
A.
Keerthi
,
A.
Siria
,
A. K.
Geim
,
B.
Radha
, and
L.
Bocquet
,
Science
379
(
6628
),
161
167
(
2023
).
115.
T.
Xiong
,
C.
Li
,
X.
He
,
B.
Xie
,
J.
Zong
,
Y.
Jiang
,
W.
Ma
,
F.
Wu
,
J.
Fei
,
P.
Yu
, and
L.
Mao
,
Science
379
(
6628
),
156
161
(
2023
).
You do not currently have access to this content.