Mixing within micro- and millichannels is a pivotal element across various applications, ranging from chemical synthesis to biomedical diagnostics and environmental monitoring. The inherent low Reynolds number flow in these channels often results in a parabolic velocity profile, leading to a broad residence time distribution. Achieving efficient mixing at such small scales presents unique challenges and opportunities. This review encompasses various techniques and strategies to evaluate and enhance mixing efficiency in these confined environments. It explores the significance of mixing in micro- and millichannels, highlighting its relevance for enhanced reaction kinetics, homogeneity in mixed fluids, and analytical accuracy. We discuss various mixing methodologies that have been employed to get a narrower residence time distribution. The role of channel geometry, flow conditions, and mixing mechanisms in influencing the mixing performance are also discussed. Various emerging technologies and advancements in microfluidic devices and tools specifically designed to enhance mixing efficiency are highlighted. We emphasize the potential applications of micro- and millichannels in fields of nanoparticle synthesis, which can be utilized for biological applications. Additionally, the prospects of machine learning and artificial intelligence are offered toward incorporating better mixing to achieve precise control over nanoparticle synthesis, ultimately enhancing the potential for applications in these miniature fluidic systems.

1.
L.
Gargiulo
,
Experimental Characterization of Axial Dispersion in Coiled Flow Inverters
(
University College London
,
2015
).
2.
D.
Rossi
,
L.
Gargiulo
,
G.
Valitov
,
A.
Gavriilidis
, and
L.
Mazzei
, “
Experimental characterization of axial dispersion in coiled flow inverters
,”
Chem. Eng. Res. Des.
120
,
159
170
(
2017
).
3.
E. Y.
Westerbeek
,
J. G.
Bomer
,
W.
Olthuis
,
J. C. T.
Eijkel
, and
W.
De Malsche
, “
Reduction of Taylor-Aris dispersion by lateral mixing for chromatographic applications
,”
Lab Chip
20
(
21
),
3938
3947
(
2020
).
4.
S.
Klutz
,
S. K.
Kurt
,
M.
Lobedann
, and
N.
Kockmann
, “
Narrow residence time distribution in tubular reactor concept for Reynolds number range of 10–100
,”
Chem. Eng. Res. Des.
95
,
22
33
(
2015
).
5.
V.
Hessel
,
H.
Löwe
, and
F.
Schönfeld
, “
Micromixers—A review on passive and active mixing principles
,”
Chem. Eng. Sci.
60
(
8–9
),
2479
2501
(
2005
).
6.
N. T.
Nguyen
and
Z.
Wu
, “
Micromixers—A review
,”
J. Micromech. Microeng.
15
(
2
),
R1
R16
(
2005
).
7.
H.
Song
,
D. L.
Chen
, and
R. F.
Ismagilov
, “
Reactions in droplets in microfluidic channels
,”
Angew. Chem. Int. Ed.
45
(
44
),
7336
7356
(
2006
).
8.
S. Y.
Teh
,
R.
Lin
,
L. H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
(
2
),
198
220
(
2008
).
9.
X.
Casadevall i Solvas
and
A.
De Mello
, “
Droplet microfluidics: Recent developments and future applications
,”
Chem. Commun.
47
(
7
),
1936
1942
(
2011
).
10.
C. Y.
Lee
,
C. L.
Chang
,
Y. N.
Wang
, and
L. M.
Fu
, “
Microfluidic mixing: A review
,”
Int. J. Mol. Sci.
12
(
5
),
3263
3287
(
2011
).
11.
J. T.
Wang
,
J.
Wang
, and
J. J.
Han
, “
Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics
,”
Small
7
(
13
),
1728
1754
(
2011
).
12.
S.
Badilescu
and
M.
Packirisamy
, “
Microfluidics-nano-integration for synthesis and sensing
,”
Polymers (Basel)
4
(
2
),
1278
1310
(
2012
).
13.
V.
Viktorov
,
M. R.
Mahmud
, and
C.
Visconte
, “
Comparative analysis of passive micromixers at a wide range of Reynolds numbers
,”
Micromachines (Basel)
6
(
8
),
1166
1179
(
2015
).
14.
K.
Ward
and
Z. H.
Fan
, “
Mixing in microfluidic devices and enhancement methods
,”
J. Micromech. Microeng.
25
(
9
),
094001
(
2015
).
15.
M.
Gonidec
and
J.
Puigmartí-Luis
, “
Continuous-versus segmented-flow microfluidic synthesis in materials science
,”
Crystals (Basel)
9
(
1
),
12
(
2019
).
16.
Y.
Gao
,
B.
Pinho
, and
L.
Torrente-Murciano
, “
Recent progress on the manufacturing of nanoparticles in multi-phase and single-phase flow reactors
,”
Curr. Opin. Chem. Eng.
29
,
26
33
(
2020
).
17.
Z.
Yang
,
S.
Matsumoto
,
H.
Goto
,
M.
Matsumoto
, and
R.
Maeda
, “
Ultrasonic micromixer for microfluidic systems
,”
Sensors Actuators
93
,
266
272
(
2001
).
18.
T.
Krishnaveni
,
T.
Renganathan
,
J. R.
Picardo
, and
S.
Pushpavanam
, “
Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field
,”
Phys. Rev. E
96
,
033117
(
2017
).
19.
I.
Glasgow
and
N.
Aubry
, “
Enhancement of microfluidic mixing using time pulsing
,”
Lab Chip
3
(
2
),
114
120
(
2003
).
20.
J.-H.
Tsai
and
L.
Lin
, “
Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump
,”
Sensors Actuators
97–98
,
665
671
(
2002
).
21.
K.
Sritharan
,
C. J.
Strobl
,
M. F.
Schneider
,
A.
Wixforth
, and
Z.
Guttenberg
, “
Acoustic mixing at low Reynold’s numbers
,”
Appl. Phys. Lett.
88
(
5
),
1
3
(
2006
).
22.
V.
Kumar
,
M.
Paraschivoiu
, and
K. D. P.
Nigam
, “
Single-phase fluid flow and mixing in microchannels
,”
Chem. Eng. Sci.
66
(
7
),
1329
1373
(
2011
).
23.
V. V.
Gande
,
R.
Savitha
, and
S.
Pushpavanam
, “
Continuous synthesis and separation of silver nanoparticles using an aqueous Two-phase system
,”
Ind. Eng. Chem. Res.
62
(
33
),
12904
12914
(
2023
).
24.
V.
Vikram Gande
,
H.
Nandini K
,
J.
Korukonda
, and
S.
Pushpavanam
, “
Hydrodynamics of aqueous two-phase systems (ATPS) in millichannels
,”
Chem. Eng. Sci.
266
,
118296
(
2023
).
25.
S.
Hardt
,
H.
Pennemann
, and
F.
Schönfeld
, “
Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer
,”
Microfluid. Nanofluidics
2
(
3
),
237
248
(
2006
).
26.
C.
Habchi
,
A.
Ghanem
,
T.
Lemenand
,
D.
Della Valle
, and
H.
Peerhossaini
, “
Mixing performance in split-and-recombine milli-static mixers—A numerical analysis
,”
Chem. Eng. Res. Des.
142
,
298
306
(
2019
).
27.
S. A.
Vagner
and
S. A.
Patlazhan
, “
Flow structure and mixing efficiency of viscous fluids in microchannel with a striped superhydrophobic wall
,”
Langmuir
35
(
49
),
16388
16399
(
2019
).
28.
M.
Nimafar
,
V.
Viktorov
, and
M.
Martinelli
, “
Experimental investigation of split and recombination micromixer in confront with basic T- and O- type micromixers
,”
Int. J. Mech. Appl.
2
(
5
),
61
69
(
2012
).
29.
Y.
Zhang
,
S. C.
Born
, and
K. F.
Jensen
, “
Scale-up investigation of the continuous phase-transfer-catalyzed hypochlorite oxidation of alcohols and aldehydes
,”
Org. Process Res. Dev.
18
(
11
),
1476
1481
(
2014
).
30.
N.
Mochizuki
,
A.
Kaide
, and
T.
Saeki
, “
Quantitative evaluation of mixing characteristics of static mixers by visualization experiments
,”
J. Flow Contr. Measure Visualization
06
(
01
),
27
38
(
2018
).
31.
A.
Choudhary
and
S.
Pushpavanam
, “
Process intensification by exploiting dean vortices in catalytic membrane microreactors
,”
Chem. Eng. Sci.
174
,
413
425
(
2017
).
32.
J.
Clark
,
M.
Kaufman
, and
P. S.
Fodor
, “
Mixing enhancement in serpentine micromixers with a non-rectangular cross-section
,”
Micromachines (Basel)
9
,
107
(
2018
).
33.
A.
Qamareen
,
M. A.
Ansari
,
S. S.
Alam
, and
A.
Alazzam
, “
Modulation of secondary flows in curved serpentine micromixers
,”
Chem. Eng. Commun.
209
(
5
),
648
667
(
2022
).
34.
J.
Wagner
,
T.
Kirner
,
G.
Mayer
,
J.
Albert
, and
J. M.
Köhler
, “
Generation of metal nanoparticles in a microchannel reactor
,”
Chem. Eng. J.
101
(
1–3
),
251
260
(
2004
).
35.
A.
Sahu
,
A. B.
Vir
,
L. N. S.
Molleti
,
S.
Ramji
, and
S.
Pushpavanam
, “
Comparison of liquid-liquid extraction in batch systems and micro-channels
,”
Chem. Eng. Process
104
,
190
200
(
2016
).
36.
S. S.
Wangikar
,
P. K.
Patowari
,
R. D.
Misra
,
R.
Gidde
,
S.
Jadhav
, and
S.
Sonawane
,
Next Generation Materials and Processing Technologies
(
Springer Nature
,
2021
), pp.
109
118
.
37.
S.
Ebrahimi
,
M.
Alishiri
,
A.
Shamloo
,
E.
Pishbin
,
P.
Hemmati
,
S.
Seifi
, and
H.
Shaygani
, “
Optimizing the design of a serpentine microchannel based on particles focusing and separation: A numerical study with experimental validation
,”
Sensors Actuators A
358
,
114432
(
2023
).
38.
M. U.
Javaid
,
T. A.
Cheema
, and
C. W.
Park
, “
Analysis of passive mixing in a serpentine microchannel with sinusoidal side walls
,”
Micromachines (Basel)
9
,
8
(
2018
).
39.
S.
Mishra
,
J.
Mukherjee
,
D.
Chaturvedi
,
R.
Jain
, and
P.
Dandekar
, “
The mechanisms and properties of inertial microfluidics: From fundamental models to biomedical applications
,”
Microfluid. Nanofluidics
27
,
84
(
2023
).
40.
V. V.
Gande
and
S.
Pushpavanam
, “
Continuous synthesis of copper nanoparticles using a polyol process in a milli-channel reactor
,”
J. Flow Chem.
11
,
661
674
(
2021
).
41.
P.
Bayat
and
P.
Rezai
, “
Semi-empirical estimation of dean flow velocity in curved microchannels
,”
Sci. Rep.
7
,
13655
(
2017
).
42.
N.
Nivedita
,
P.
Ligrani
, and
I.
Papautsky
, in
17th International Conference on Miniaturized Systems for Chemistry and Life Sciences
(Royal Society of Chemistry,
2013
), pp.
639
641
.
43.
P.
Tallapragada
,
N.
Hasabnis
,
K.
Katuri
,
S.
Sudarsanam
,
K.
Joshi
, and
M.
Ramasubramanian
, “
Scale invariant hydrodynamic focusing and sorting of inertial particles by size in spiral micro channels
,”
J. Micromech. Microeng.
25
,
084013
(
2015
).
44.
A. K.
Saxena
and
K. D. P.
Nigam
, “
Coiled configuration for flow inversion and its effect on residence time distribution
,”
AIChE J.
30
(
3
),
363
368
(
1984
).
45.
L.
Tang
,
Y.
Tang
, and
S.
Parameswaran
, “
A numerical study of flow characteristics in a helical pipe
,”
Adv. Mech. Eng.
8
(
7
),
1
8
(
2016
).
46.
S. K.
Pal
,
P.
Dhasmana
,
K. D. P.
Nigam
, and
V.
Singh
, “
Tuning of particle size in a helical coil reactor
,”
Ind. Eng. Chem. Res.
59
(
9
),
3962
3971
(
2020
).
47.
R.
Moll
,
P.
Moulin
,
D.
Veyret
, and
F.
Charbit
, “
Numerical simulation of dean vortices: Fluid trajectories
,”
J. Memb Sci.
197
,
157
172
(
2002
).
48.
K. J.
Wu
,
G. M.
De Varine Bohan
, and
L.
Torrente-Murciano
, “
Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors
,”
React. Chem. Eng.
2
(
2
),
116
128
(
2017
).
49.
D. V. R.
Kumar
,
M.
Kasture
,
A. A.
Prabhune
,
C. V.
Ramana
,
B. L. V.
Prasad
, and
A. A.
Kulkarni
, “
Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants
,”
Green Chem.
12
(
4
),
609
661
(
2010
).
50.
M.
Mansour
,
K.
Zähringer
,
K. D. P.
Nigam
,
D.
Thévenin
, and
G.
Janiga
, “
Multi-objective optimization of liquid-liquid mixing in helical pipes using genetic algorithms coupled with computational fluid dynamics
,”
Chem. Eng. J.
391
,
123570
(
2020
).
51.
M.
Mansour
,
P.
Khot
,
D.
Thévenin
,
K. D. P.
Nigam
, and
K.
Zähringer
, “
Optimal Reynolds number for liquid-liquid mixing in helical pipes
,”
Chem. Eng. Sci.
214
,
114522
(
2020
).
52.
M.
Mansour
,
D.
Thévenin
,
K. D. P.
Nigam
, and
K.
Zähringer
, “
Generally-valid optimal Reynolds and Dean numbers for efficient liquid-liquid mixing in helical pipes
,”
Chem. Eng. Sci.
201
,
382
385
(
2019
).
53.
M.
Mansour
,
Z.
Liu
,
G.
Janiga
,
K. D. P.
Nigam
,
K.
Sundmacher
,
D.
Thévenin
, and
K.
Zähringer
, “
Numerical study of liquid-liquid mixing in helical pipes
,”
Chem. Eng. Sci.
172
,
250
261
(
2017
).
54.
M. M.
Mandal
,
C.
Serra
,
Y.
Hoarau
, and
K. D. P.
Nigam
, “
Numerical modeling of polystyrene synthesis in coiled flow inverter
,”
Microfluid. Nanofluidics
10
(
2
),
415
423
(
2011
).
55.
P.
Khot
,
M.
Mansour
,
D.
Thévenin
,
K. D. P.
Nigam
, and
K.
Zähringer
, “
Improving the mixing characteristics of coiled configurations by early flow inversion
,”
Chem. Eng. Res. Des.
146
,
324
335
(
2019
).
56.
M. M.
Mandal
,
P.
Aggarwal
, and
K. D. P.
Nigam
, “
Liquid-liquid mixing in coiled flow inverter
,”
Ind. Eng. Chem. Res.
50
(
23
),
13230
13235
(
2011
).
57.
S. K.
Kurt
,
M.
Akhtar
,
K. D. P.
Nigam
, and
N.
Kockmann
, “
Continuous reactive precipitation in a coiled flow inverter: Inert particle tracking, modular design, and production of uniform CaCO3 particles
,”
Ind. Eng. Chem. Res.
56
(
39
),
11320
11335
(
2017
).
58.
P.
Kováts
,
C.
Velten
,
M.
Mansour
,
D.
Thévenin
, and
K.
Zähringer
, “
Mixing characterization in different helically coiled configurations by laser-induced fluorescence
,”
Exp. Fluids
61
(
203
), 1–17 (
2020
).
59.
C. P.
Tiwari
,
F.
Delgado-Licona
,
M.
Valencia-Llompart
,
S.
Nuñez-Correa
,
K. D. P.
Nigam
,
A.
Montesinos-Castellanos
,
E. A.
López-Guajardo
, and
A.
Aguirre-Soto
, “
Shining light on the coiled-flow inverter—Continuous-flow photochemistry in a static mixer
,”
Ind. Eng. Chem. Res.
59
(
9
),
3865
3872
(
2020
).
60.
K. J.
Wu
,
Y.
Gao
, and
L.
Torrente-Murciano
, “
Continuous synthesis of hollow silver-palladium nanoparticles for catalytic applications
,”
Faraday Discuss.
208
,
427
441
(
2018
).
61.
A.
Pophali
,
R.
Kajala
,
H.
Ali
,
N.
Verma
, and
K. D. P.
Nigam
, “
Coiled flow inverter mediated synthesis of activated carbon fiber-supported Ni nanoparticles
,”
React. Chem. Eng.
7
(
3
),
719
729
(
2022
).
62.
S.
Soni
,
L.
Sharma
,
P.
Meena
,
S.
Roy
, and
K. D. P.
Nigam
, “
Compact coiled flow inverter for process intensification
,”
Chem. Eng. Sci.
193
,
312
324
(
2019
).
63.
V. K.
Jha
,
L.
Sharma
,
S.
Roy
,
K. D. P.
Nigam
, and
S. K.
Bhaumik
, “
Comparative assessment of mixing in compact coiled flow inverters under diffusion free laminar flow condition
,”
Chem. Eng. Res. Des.
159
,
455
467
(
2020
).
64.
M.
Mansour
,
D.
Thévenin
, and
K.
Zähringer
, “
Numerical study of flow mixing and heat transfer in helical pipes, coiled flow inverters and a novel coiled configuration
,”
Chem. Eng. Sci.
221
,
115690
(
2020
).
65.
P.
Kováts
,
C.
Velten
,
M.
Mansour
,
D.
Thévenin
, and
K.
Zähringer
, “
Mixing characterization in different helically coiled configurations by laser-induced fluorescence
,”
Exp. Fluids
61
,
203
(
2020
).
66.
J. B.
Knight
,
A.
Vishwanath
,
J. P.
Brody
, and
R. H.
Austin
, “
Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds
,”
Phys. Rev. Lett.
80
(
17
),
3863
3866
(
1998
).
67.
S.
Vashisth
and
K. D. P.
Nigam
, “
Experimental investigation of void fraction and flow patterns in coiled flow inverter
,”
Chem. Eng. Process
47
(
8
),
1281
1291
(
2008
).
68.
S.
Vashisth
and
K. D. P.
Nigam
, “
Liquid-phase residence time distribution for two-phase flow in coiled flow inverter
,”
Ind. Eng. Chem. Res.
47
(
10
),
3630
3638
(
2008
).
69.
V.
Kumar
,
Vikash
, and
K. D. P.
Nigam
, “
Multiphase fluid flow and heat transfer characteristics in microchannels
,”
Chem. Eng. Sci.
169
,
34
66
(
2017
).
70.
J. D.
Tice
,
H.
Song
,
A. D.
Lyon
, and
R. F.
Ismagilov
, “
Formation of droplets and mixing in multiphase microfluidics at Low values of the Reynolds and the capillary numbers
,”
Langmuir
19
(
22
),
9127
9133
(
2003
).
71.
V.
Sebastian Cabeza
,
S.
Kuhn
,
A. A.
Kulkarni
, and
K. F.
Jensen
, “
Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform
,”
Langmuir
28
(
17
),
7007
7013
(
2012
).
72.
S. A.
Khan
,
A.
Günther
,
M. A.
Schmidt
, and
K. F.
Jensen
, “
Microfluidic synthesis of colloidal silica
,”
Langmuir
20
(
20
),
8604
8611
(
2004
).
73.
L.
Frenz
,
A.
El Harrak
,
M.
Pauly
,
S.
Bégin-Colin
,
A. D.
Griffiths
, and
J. C.
Baret
, “
Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles
,”
Angew. Chem. Int. Ed.
47
(
36
),
6817
6820
(
2008
).
74.
B. K. H.
Yen
,
A.
Günther
,
M. A.
Schmidt
,
K. F.
Jensen
, and
M. G.
Bawendi
, “
A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: The case of CdSe quantum dots
,”
Angew. Chem. Int. Ed.
44
(
34
),
5447
5451
(
2005
).
75.
S.
Ghorai
and
K. D. P.
Nigam
, “
CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes
,”
Chem. Eng. Process.
45
(
1
),
55
65
(
2006
).
76.
W. K.
Wong
,
S. K.
Yap
,
Y. C.
Lim
,
S. A.
Khan
,
F.
Pelletier
, and
E. C.
Corbos
, “
Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor
,”
React. Chem. Eng.
2
(
5
),
636
641
(
2017
).
77.
R. W.
Epps
,
K. C.
Felton
,
C. W.
Coley
, and
M.
Abolhasani
, “
Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: Towards continuous nano-manufacturing
,”
Lab Chip
17
(
23
),
4040
4047
(
2017
).
78.
A.
Durgadevi
and
S.
Pushpavanam
, “
An experimental and theoretical investigation of pure carbon dioxide absorption in aqueous sodium hydroxide in glass millichannels
,”
J. CO2 Util.
26
,
133
142
(
2018
).
79.
H.
Huang
,
H.
Du Toit
,
S.
Ben-Jaber
,
G.
Wu
,
L.
Panariello
,
N. T. K.
Thanh
,
I. P.
Parkin
, and
A.
Gavriilidis
, “
Rapid synthesis of gold nanoparticles with carbon monoxide in a microfluidic segmented flow system
,”
React. Chem. Eng.
4
(
5
),
884
890
(
2019
).
80.
K. J.
Hartlieb
,
M.
Saunders
,
R. J. J.
Jachuck
, and
C. L.
Raston
, “
Continuous flow synthesis of small silver nanoparticles involving hydrogen as the reducing agent
,”
Green Chem.
12
(
6
),
1012
1017
(
2010
).
81.
D. V.
Ravi Kumar
,
B. L. V.
Prasad
, and
A. A.
Kulkarni
, “
Segmented flow synthesis of Ag nanoparticles in spiral microreactor: Role of continuous and dispersed phase
,”
Chem. Eng. J.
192
,
357
368
(
2012
).
82.
M. N.
Siddiquee
,
A.
De Klerk
, and
N.
Nazemifard
, “
Application of microfluidics to control product selectivity during non-catalytic oxidation of naphthenic-aromatic hydrocarbons
,”
React. Chem. Eng.
1
(
4
),
418
435
(
2016
).
83.
S.
Schröter
and
K.
Schnitzlein
, “
Enzymatic hydrolysis of rapeseed oil by thermomyces lanuginosus lipase: Variation of continuous and dispersed phase in a slug flow reactor
,”
Appl. Microbiol. Biotechnol.
102
(
11
),
4799
4806
(
2018
).
84.
S.
Li
,
J.
Xu
,
Y.
Wang
, and
G.
Luo
, “
Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device
,”
Langmuir
24
(
8
),
4194
4199
(
2008
).
85.
S.
Duraiswamy
and
S. A.
Khan
, “
Droplet-based microfluidic synthesis of anisotropic metal nanocrystals
,”
Small
5
(
24
),
2828
2834
(
2009
).
86.
A.
Knauer
,
A.
Thete
,
S.
Li
,
H.
Romanus
,
A.
Csáki
,
W.
Fritzsche
, and
J. M.
Köhler
, “
Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis
,”
Chem. Eng. J.
166
(
3
),
1164
1169
(
2011
).
87.
Y.
Pan
,
J.
Yao
,
L.
Zhang
, and
N.
Xu
, “
Preparation of ultrafine zeolite A crystals with narrow particle size distribution using a Two-phase liquid segmented microfluidic reactor
,”
Ind. Eng. Chem. Res.
48
(
18
),
8471
8477
(
2009
).
88.
A. M.
Nightingale
and
J. C.
Demello
, “
Segmented flow reactors for nanocrystal synthesis
,”
Adv. Mater.
25
(
13
),
1813
1821
(
2013
).
89.
P.
Jaiswal
,
Y.
Kumar
,
R.
Shukla
,
K. D. P.
Nigam
,
D.
Panda
, and
K.
Guha Biswas
, “
Covalently immobilized nickel nanoparticles reinforce augmentation of mass transfer in millichannels for Two-phase flow systems
,”
Ind. Eng. Chem. Res.
61
(
10
),
3672
3684
(
2022
).
90.
Y.
Kumar
,
P.
Jaiswal
,
D.
Panda
,
K. D. P.
Nigam
, and
K. G.
Biswas
, “
A critical review on nanoparticle-assisted mass transfer and kinetic study of biphasic systems in millimeter-sized conduits
,”
Chem. Eng. Process
170
,
108675
(
2022
).
91.
A.
Ghaini
,
A.
Mescher
, and
D. W.
Agar
, “
Hydrodynamic studies of liquid-liquid slug flows in circular microchannels
,”
Chem. Eng. Sci.
66
(
6
),
1168
1178
(
2011
).
92.
S.
Hardt
and
T.
Hahn
, “
Microfluidics with aqueous two-phase systems
,”
Lab Chip
12
(
3
),
434
442
(
2012
).
93.
M.
Iqbal
,
Y.
Tao
,
S.
Xie
,
Y.
Zhu
,
D.
Chen
,
X.
Wang
,
L.
Huang
,
D.
Peng
,
A.
Sattar
,
M. A. B.
Shabbir
,
H. I.
Hussain
,
S.
Ahmed
, and
Z.
Yuan
, “
Aqueous two-phase system (ATPS): An overview and advances in its applications
,”
Biol. Proced. Online
18
(
1
),
1
18
(
2016
).
94.
V.
Karma
,
V. V.
Gande
, and
S.
Pushpavanam
, “
Simultaneous extraction and enrichment of sunset yellow dye in an aqueous two-phase system
,”
Dyes Pigm.
212
,
111100
(
2023
).
95.
Y. H.
Choi
,
Y. S.
Song
, and
D. H.
Kim
, “
Droplet-based microextraction in the aqueous two-phase system
,”
J. Chromatogr. A
1217
(
24
),
3723
3728
(
2010
).
96.
Y.
Huang
,
T.
Meng
,
T.
Guo
,
W.
Li
,
W.
Yan
,
X.
Li
,
S.
Wang
, and
Z.
Tong
, “
Aqueous two-phase extraction for bovine serum albumin (BSA) with co-laminar flow in a simple coaxial capillary microfluidic device
,”
Microfluid. Nanofluidics
16
(
3
),
483
491
(
2014
).
97.
K.
Vijayakumar
,
S.
Gulati
,
A. J.
Demello
, and
J. B.
Edel
, “
Rapid cell extraction in aqueous two-phase microdroplet systems
,”
Chem. Sci.
1
(
4
),
447
452
(
2010
).
98.
K. V.
Kinhal
,
S.
Sinha
,
A.
Ravisankar
,
N. P.
Bhatt
, and
S.
Pushpavanam
, “
Simultaneous synthesis and separation of nanoparticles using aqueous Two-phase systems
,”
ACS Sustain. Chem. Eng.
8
(
7
),
3013
3025
(
2020
).
99.
I.
Ziemecka
,
V.
Van Steijn
,
G. J. M.
Koper
,
M.
Rosso
,
A. M.
Brizard
,
J. H.
Van Esch
, and
M. T.
Kreutzer
, “
Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems
,”
Lab Chip
11
(
4
),
620
624
(
2011
).
100.
P.
Polezhaev
,
Z.
Slouka
,
J.
Lindner
, and
M.
Přibyl
, “
Characterization of slug flow of two aqueous phases by electrochemical impedance spectroscopy in a fluidic chip
,”
Microelectron. Eng.
194
,
89
95
(
2018
).
101.
F.
Mekki-Berrada
,
Z.
Ren
,
T.
Huang
,
W. K.
Wong
,
F.
Zheng
,
J.
Xie
,
I. P. S.
Tian
,
S.
Jayavelu
,
Z.
Mahfoud
,
D.
Bash
,
K.
Hippalgaonkar
,
S.
Khan
,
T.
Buonassisi
,
Q.
Li
, and
X.
Wang
, “
Two-step machine learning enables optimized nanoparticle synthesis
,”
NPJ Comput. Mater.
7
(
1
),
1
10
(
2021
).
102.
X.
Chen
and
H.
Lv
, “
Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning
,”
NPG Asia Mater.
14
,
69
(
2022
).
103.
B.
Pinho
and
L.
Torrente-Murciano
, “
Dial-A-particle precise manufacturing of plasmonic nanoparticles based on early growth information— redefining automation for slow material synthesis
,”
Adv. Energy Mater.
11
,
2100918
(
2021
).
104.
J. B.
Wolf
,
T. M.
Stawski
,
G. J.
Smales
,
A. F.
Thünemann
, and
F.
Emmerling
, “
Towards automation of the polyol process for the synthesis of silver nanoparticles
,”
Sci. Rep.
12
,
5769
(
2022
).
You do not currently have access to this content.