Chronic myelogenous/myeloid leukemia (CML) is a type of cancer of bone marrow that arises from hematopoietic stem cells and affects millions of people worldwide. Eighty-five percent of the CML cases are diagnosed during chronic phase, most of which are detected through routine tests. Leukocytes, micro-Ribonucleic Acids, and myeloid markers are the primary biomarkers for CML diagnosis and are mainly detected using real-time reverse transcription polymerase chain reaction, flow cytometry, and genetic testing. Though multiple therapies have been developed to treat CML, early detection still plays a pivotal role in the overall patient survival rate. The current technologies used for CML diagnosis are costly and are confined to laboratory settings which impede their application in the point-of-care settings for early-stage detection of CML. This study provides detailed analysis and insights into the significance of CML, patient symptoms, biomarkers used for testing, and best possible detection techniques responsible for the enhancement in survival rates. A critical and detailed review is provided around potential microfluidic devices that can be adapted to detect the biomarkers associated with CML while enabling point-of-care testing for early diagnosis of CML to improve patient survival rates.

1.
E.
Jabbour
and
H.
Kantarjian
, “
Chronic myeloid leukemia 2022 update on diagnosis, therapy, and monitoring
,”
Am. J. Hematol.
97
(
9
),
1236
1256
(
2022
).
2.
R. L.
Siegel
,
K. D.
Miller
,
H. E.
Fuchs
, and
A.
Jemal
, “
Cancer statistics, 2022
,”
CA Cancer J. Clin.
72
(
33
),
733
(
2022
).
3.
C.
Seer
, see https://seer.cancer.gov/statfacts/html/cmyl.html for “Chronic myeloid leukemia—Cancer stat facts” (2020) (last accessed December 12, 2022).
4.
Experts in Chronic Myeloid Leukemia
, “
The price of drugs for chronic myeloid leukemia (CML) is a reflection of the unsustainable prices of cancer drugs: From the perspective of a large group of CML experts
,”
Blood
121
(
22
),
4439
4442
(
2013
).
5.
MedlinePlus [Internet]
, Bethesda (MD): National Library of Medicine (US); [updated 2020 Jun 24]. Noonan syndrome; [updated 2020 Jun 18; reviewed 2018 Jun 01; cited 2020 Jul 1]; [about 5 p.], see https://medlineplus.gov/genetics/chromosome/22/#conditions.
6.
National Center for Biotechnology Information (US)
,
Genes and Disease [Internet]
(
National Center for Biotechnology Information (US)
,
Bethesda (MD)
,
1998
), see https://www.ncbi.nlm.nih.gov/books/NBK22266/ for “Chromosome Map.”
7.
N.
Kamada
and
H.
Uchino
, “
Chronologic sequence in appearance of clinical and laboratory findings characteristic of chronic myelocytic leukemia
,”
Blood
51
(
5
),
843
850
(
1978
).
8.
MedlinePlus [Internet]
, Bethesda (MD): National Library of Medicine (US); [updated 2020 Jun 24]. Noonan syndrome; [updated 2020 Jun 18; reviewed 2018 Jun 01; cited 2020 Jul 1]; [about 5 p.], see https://medlineplus.gov/genetics/chromosome/9/#conditions.
9.
G. A.
Koretzky
, “
The legacy of the Philadelphia chromosome
,”
J. Clin. Invest.
117
(
8
),
2030
2032
(
2007
).
10.
S.
Li
,
R. L.
Ilaria
Jr
,
R. P.
Million
,
G. Q.
Daley
, and
R. A.
Van Etten
, “
The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity
,”
J. Exp. Med.
189
(
9
),
1399
1412
(
1999
).
11.
E.
De Braekeleer
,
N.
Douet-Guilbert
,
D.
Rowe
,
N.
Bown
,
F.
Morel
,
C.
Berthou
, and
M.
De Braekeleer
, “
ABL1 fusion genes in hematological malignancies: A review
,”
Eur. J. Haematol.
86
(
5
),
361
371
(
2011
).
12.
B.
Abdulmawjood
,
B.
Costa
,
C.
Roma-Rodrigues
,
P. V.
Baptista
, and
A. R.
Fernandes
, “
Genetic biomarkers in chronic myeloid leukemia: What have we learned so far?
,”
Int. J. Mol. Sci.
22
(
22
),
12516
(
2021
).
13.
Mayo Clinic
, see https://www.mayoclinic.org/diseases-conditions/chronic-myelogenous-leukemia/symptoms-causes/syc-20352417 for “Chronic myelogenous leukemia” (2021) (last accessed November 16, 2022).
14.
Douglas.Kale@propath.com
, see https://propath.com/early-blood-findings-in-chronic-myeloid-leukemia/ for “Early blood findings in chronic myeloid leukemia” (2020) (last accessed November 16, 2022).
15.
H. M.
Kantarjian
,
A.
Deisseroth
,
R.
Kurzrock
,
Z.
Estrov
, and
M.
Talpaz
, “
Chronic myelogenous leukemia: A concise update
,”
Blood
82
(
3
),
691
703
(
1993
).
16.
E.
Vuelta
,
I.
García-Tuñón
,
P.
Hernández-Carabias
,
L.
Méndez
, and
M.
Sánchez-Martín
, “
Future approaches for treating chronic myeloid leukemia: CRISPR therapy
,”
Biology
10
,
118
(
2021
).
17.
American Society of Clinical Oncology (ASCO)
, see https://www.cancer.net/cancer-types/leukemia-chronic-myeloid-cml/phases for “Leukemia—Chronic myeloid—CML-phases” (2018) (last accessed January 6, 2023).
19.
B.
Chereda
and
J. V.
Melo
, “
Natural course and biology of CML
,”
Ann. Hematol.
94
(
Suppl. 2
),
107
121
(
2015
).
20.
D.
Perrotti
,
C.
Jamieson
,
J.
Goldman
, and
T.
Skorski
, “
Chronic myeloid leukemia: Mechanisms of blastic transformation
,”
J. Clin. Invest.
120
(
7
),
2254
2264
(
2010
).
21.
T.
Skorski
, “
Genetic mechanisms of chronic myeloid leukemia blastic transformation
,”
Curr. Hematol. Malig. Rep.
7
(
2
),
87
93
(
2012
).
22.
J. V.
Melo
and
D. J.
Barnes
, “
Chronic myeloid leukemia as a model of disease evolution in human cancer
,”
Nat. Rev. Cancer
7
(
6
),
441
453
(
2007
).
23.
J. M.
Cruse
,
R. E.
Lewis
,
C. M.
Sanders
,
R. N.
Webb
,
K. L.
Beason
,
J.
Lam
, and
J.
Koehler
, “
Diminished CD10, CD13, and CD15 expression in a differentiated granulocyte population in CML
,”
Exp. Mol. Pathol.
83
(
2
),
274
276
(
2007
).
24.
S.
Banavali
,
F.
Silvestri
,
B.
Hulette
,
P.
Hurtubise
,
A.
Srivastava
,
C. I.
Civin
, and
H. D.
Preisler
, “
Expression of hematopoietic progenitor cell-associated antigen CD34 in chronic myeloid leukemia
.”
Leukemia Research
15
(
7
),
603
608
(
1991
).
25.
S. A.
Cannistra
,
F.
Herrmann
,
R.
Davis
,
K.
Nichols
, and
J. D.
Griffin
, “
Relationship between HLA-DR expression by normal myeloid progenitor cells and inhibition of colony growth by prostaglandin E. Implications for prostaglandin E resistance in chronic myeloid leukemia
,”
J. Clin. Invest.
77
(
1
),
13
20
(
1986
).
26.
Y. C.
Hsieh
,
K.
Kirschner
, and
M.
Copland
, “
Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape
,”
Leukemia
35
,
1229
1242
(
2021
).
27.
M.
Shipp
,
G.
Stefano
,
S.
Switzer
,
J.
Griffin
, and
E.
Reinherz
, “
CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation
,”
Blood
78
(
7
),
1834
1841
(
1991
).
28.
H.
Herrmann
,
S.
Cerny-Reiterer
,
K. V.
Gleixner
,
K.
Blatt
,
S.
Herndlhofer
,
W.
Rabitsch
,
E.
Jäger
,
G.
Mitterbauer-Hohendanner
,
B.
Streubel
,
E.
Selzer
,
I.
Schwarzinger
,
W. R.
Sperr
, and
P.
Valent
, “
CD34(+)/CD38(−) stem cells in chronic myeloid leukemia express Siglec-3 (CD33) and are responsive to the CD33-targeting drug gemtuzumab/ozogamicin
,”
Haematologica
97
(
2
),
219
226
(
2012
).
29.
S.
Sopper
,
S.
Mustjoki
,
D.
White
,
T.
Hughes
,
P.
Valent
,
A.
Burchert
,
B. T.
Gjertsen
,
G.
Gastl
,
M.
Baldauf
,
Z.
Trajanoski
,
F.
Giles
,
A.
Hochhaus
,
T.
Ernst
,
T.
Schenk
,
J. J.
Janssen
,
G. J.
Ossenkoppele
,
K.
Porkka
, and
D.
Wolf
, “
Reduced CD62L expression on T cells and increased soluble CD62L levels predict molecular response to tyrosine kinase inhibitor therapy in early chronic-phase chronic myelogenous leukemia
,”
J. Clin. Oncol.
35
(
2
),
175
184
(
2017
).
30.
U.
Testa
,
E.
Pelosi
, and
A.
Frankel
, “
CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies
,”
Biomark. Res.
2
(
1
),
4
(
2014
).
31.
E.
Nievergall
,
H. S.
Ramshaw
,
A. S.
Yong
,
M.
Biondo
,
S. J.
Busfield
,
G.
Vairo
, and
D. K.
Hiwase
, “
Monoclonal antibody targeting of IL-3 receptor α with CSL362 effectively depletes CML progenitor and stem cells
,”
Blood
123
(
8
),
1218
1228
(
2014
).
32.
G.
Aljabal
and
B. K.
Yap
, “
14-3-3σ and its modulators in cancer
,”
Pharmaceuticals
13
(
12
),
441
(
2020
).
33.
R. E.
Eden
and
J. M.
Coviello
, “
Chronic myelogenous leukemia. [updated 2023 Jan 16]
,” in
StatPearls [Internet]
[
StatPearls Publishing
,
Treasure Island (FL)
,
2023
], see https://www.ncbi.nlm.nih.gov/books/NBK531459/
34.
Z.
Sheng
,
L.
Ma
,
J. E.
Sun
,
L. J.
Zhu
, and
M. R.
Green
, “
BCR-ABL suppresses autophagy through ATF5-mediated regulation of mTOR transcription
,”
Blood
118
(
10
),
2840
2848
(
2011
).
35.
N. R.
Neuendorff
,
T.
Burmeister
,
B.
Dörken
, and
J.
Westermann
, “
BCR-ABL-positive acute myeloid leukemia: A new entity? Analysis of clinical and molecular features
,”
Ann. Hematol.
95
,
1211
1221
(
2016
).
36.
D.
Jurkovicova
,
R.
Lukackova
,
M.
Magyerkova
,
L.
Kulcsar
,
M.
Krivjanska
,
V.
Krivjansky
, and
M.
Chovanec
, “
microRNA expression profiling as supportive diagnostic and therapy prediction tool in chronic myeloid leukemia
,”
Neoplasma
62
(
6
),
949
958
(
2015
).
37.
Q.
Fernandes
, “
MicroRNA: Defining a new niche in leukemia
,”
Blood Rev.
31
(
3
),
129
138
(
2017
).
38.
J. R.
Martins
,
L. N.
Moraes
,
S. S.
Cury
,
J.
Dadalto
,
J.
Capannacci
,
R. F.
Carvalho
, and
P. D.
Hokama
, “
Comparison of microRNA expression profile in chronic myeloid leukemia patients newly diagnosed and treated by allogeneic hematopoietic stem cell transplantation
,”
Front. Oncol.
10
,
1544
(
2020
).
39.
K.
Kotagama
,
Y.
Chang
, and
M.
Mangone
, “
miRNAs as biomarkers in chronic myelogenous leukemia
,”
Drug Dev. Res.
76
(
6
),
278
85
(
2015
).
40.
X.
Agirre
,
A.
Jiménez-Velasco
,
E.
San José-Enériz
,
L.
Garate
,
E.
Bandrés
,
L.
Cordeu
,
O.
Aparicio
,
B.
Saez
,
G.
Navarro
,
A.
Vilas-Zornoza
,
I.
Pérez-Roger
,
J.
García-Foncillas
,
A.
Torres
,
A.
Heiniger
,
M. J.
Calasanz
,
P.
Fortes
,
J.
Román-Gómez
, and
F.
Prósper
, “
Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34 + cells increases USF2-mediated cell growth
,”
Mol. Cancer Res.
6
(
12
),
1830
1840
(
2008
).
41.
L.
Venturini
,
K.
Battmer
,
M.
Castoldi
,
B.
Schultheis
,
A.
Hochhaus
,
M. U.
Muckenthaler
, and
M.
Scherr
, “
Expression of the MIR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells
,”
Blood
109
(
10
),
4399
4405
(
2007
).
42.
F.
Keramati
,
A.
Jafarian
,
A.
Soltani
,
E.
Javandoost
,
M.
Mollaei
, and
P.
Fallah
, “
Circulating miRNAs can serve as potential diagnostic biomarkers in chronic myelogenous leukemia patients
,”
Leuk. Res. Rep.
16
,
100257
(
2021
).
43.
J.
Zhang
,
J.
Yawen
,
H.
Xu
,
R.
Mridul
,
L.
Wenen
,
Z.
Xielan
, and
L.
Jing
, “
Differential expression profiles and functional analysis of plasma miRNAs associated with chronic myeloid leukemia phases
.”
Future Oncology
15
(
7
),
763
–776 (
2019
).
44.
Y.
Feng
and
C.
Tsao
, “
Emerging role of microRNA-21 in cancer
,”
Biomed. Rep.
5
(
4
),
395
402
(
2016
).
45.
M. A. B.
Mirza
,
S. A.
Guru
,
S. M.
Abdullah
,
A.
Rizvi
, and
A.
Saxena
, “
microRNA-21 expression as prognostic and therapeutic response marker in chronic myeloid leukaemia patients
,”
Asian Pac. J. Cancer Prev.
20
(
8
),
2379
2383
(
2019
).
46.
H.
Seca
,
R.
Lima
,
V.
Lopes-Rodrigues
,
J.
Guimaraes
,
G.
Gabriela
, and
M.
Vasconcelos
, “
Targeting Mir-21 induces autophagy and chemosensitivity of leukemia cells
,”
Curr. Drug Targets
14
(
10
),
1135
1143
(
2013
).
47.
R.
Alves
,
A. C.
Gonçalves
,
J.
Jorge
,
G.
Marques
,
D.
Luís
,
A. B.
Ribeiro
, and
A. B.
Sarmento-Ribeiro
, “
MicroRNA signature refine response prediction in CML
,”
Sci. Rep.
9
(
1
),
9666
(
2019
).
48.
Y.
Li
,
H.
Wang
,
K.
Tao
,
Q.
Xiao
,
Z.
Huang
,
L.
Zhong
, and
W.
Feng
, “
Mir-29B suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein
,”
Exp. Cell Res.
319
(
8
),
1094
1101
(
2013
).
49.
N. A.
Khalil
,
M. N.
Desouky
,
I. H.
Diab
,
N. A.
Hamed
, and
H. F.
Mannaa
, “
MicroRNA 30a mediated autophagy and imatinib response in Egyptian chronic myeloid leukemia patients
,”
Indian J. Hematol. Blood Transfus
36
(
3
),
491
497
(
2020
).
50.
Y.
Yu
,
L.
Yang
,
M.
Zhao
et al, “
Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells
,”
Leukemia
26
,
1752
1760
(
2012
).
51.
Y.
Liu
,
Y.
Song
,
W.
Ma
,
W.
Zheng
, and
H.
Yin
, “
Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia
,”
Leuk. Res.
37
(
3
),
349
356
(
2013
).
52.
C.
Xu
,
H.
Fu
,
L.
Gao
et al, “
BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia
,”
Oncogene
33
,
44
54
(
2014
).
53.
M. J.
Bueno
,
I.
Pérez de Castro
,
M.
Gómez de Cedrón
,
J.
Santos
,
G. A.
Calin
,
J.
Cigudosa
, and
M.
Malumbres
, “
Genetic and epigenetic silencing of MicroRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression
,”
Cancer Cell
13
(
6
),
496
506
(
2008
).
54.
T.
Shibuta
,
E.
Honda
,
H.
Shiotsu
,
Y.
Tanaka
,
S.
Vellasamy
,
M.
Shiratsuchi
, and
T.
Umemura
, “
Imatinib induces demethylation of Mir-203 gene: An epigenetic mechanism of anti-tumor effect of imatinib
,”
Leuk. Res.
37
(
10
),
1278
1286
(
2013
).
55.
Z.
Xishan
,
L.
Ziying
,
D.
Jing
et al, “
MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia
,”
Sci. Rep.
5
,
12460
(
2015
).
56.
A.
Ninawe
,
S. A.
Guru
,
P.
Yadav
,
M.
Masroor
,
A.
Samadhiya
,
N.
Bhutani
, and
A.
Saxena
, “
Mir-486-5p: A prognostic biomarker for chronic myeloid leukemia
,”
ACS Omega
6
(
11
),
7711
7718
(
2021
).
57.
R. G.
Kessel
, Basic Medical Histology: The Biology of Cells, Tissues, and Organs (Oxford University Press, 1998).
58.
M. L.
Turgeon
,
Clinical Hematology: Theory and Procedures
(
Lippincott Williams & Wilkins
,
2005
).
59.
B.
Bellwood
and
M.
Andrasik-Catton
,
Veterinary Technician's Handbook of Laboratory Procedures
(
John Wiley & Sons
,
2022
).
60.
J.
Chung
,
X.
Ou
,
R. P.
Kulkarni
, and
C.
Yang
, “
Counting white blood cells from a blood smear using Fourier ptychographic microscopy
,”
PloS One
10
(
7
),
e0133489
(
2015
).
61.
H. M.
Shapiro
,
Practical Flow Cytometry
(
John Wiley & Sons
,
2005
).
62.
D.
Huh
,
W.
Gu
,
Y.
Kamotani
,
J. B.
Grotberg
, and
S.
Takayama
, “
Microfluidics for flow cytometric analysis of cells and particles
,”
Physiol. Meas.
26
(
3
),
R73
(
2005
).
63.
K.
Vijayasekharan
,
G.
Chatterjee
,
S.
Ramanathan
,
G.
Narula
,
P.
Tembhare
,
P. G.
Subramanian
,
N.
Patkar
,
S.
Gujral
,
D.
Shetty
, and
S.
Banavali
, S. “
Sudden blast phase in pediatric chronic myeloid leukemia-chronic phase with abnormal lymphoid blasts detected by flow cytometry at diagnosis: Can it be considered a warning sign
?”
Cytometry Part B: Clinical Cytometry 100
,
345
351
(
2021
).
64.
E.
Weisberg
,
P. W.
Manley
,
W.
Breitenstein
,
J.
Brüggen
,
S. W.
Cowan-Jacob
,
A.
Ray
, and
J. D.
Griffin
, “
Characterization of AMN107, a selective inhibitor of native and mutant BCR-ABL
,”
Cancer Cell
7
(
2
),
129
141
(
2005
).
65.
C. C. B.
Kockerols
,
P. J. M.
Valk
,
M. D.
Levin
,
N.
Pallisgaard
,
J. J.
Cornelissen
, and
P. E.
Westerweel
, “
Digital PCR for BCR-ABL1 quantification in CML: Current applications in clinical practice
,”
Hemasphere
4
(
6
),
e496
(
2020
).
66.
S.
Faderl
,
M.
Talpaz
,
Z.
Estrov
,
S.
O'Brien
,
R.
Kurzrock
, and
H. M.
Kantarjian
, “
The biology of chronic myeloid leukemia
,”
N. Engl. J. Med.
341
,
164
172
(
1999
).
67.
Lexi-Comp Inc.,
see https://www.labcorp.com/tests/480481/i-bcr-abl1-i-transcript-detection-for-chronic-myelogenous-leukemia-cml-and-acute-lymphocytic-leukemia-all-quantitative for “BCR-ABL1 transcript detection for chronic myelogenous leukemia (CML) and Acute Lymphocytic Leukemia (ALL), quantitative” (2021) (last accessed January 5, 2023).
68.
P. A. C.
't Hoen
,
Y.
Ariyurek
,
H. H.
Thygesen
,
E.
Vreugdenhil
,
R. H. A. M.
Vossen
,
R. X.
De Menezes
, and
J. T.
Den Dunnen
, “
Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms
,”
Nucleic Acids Res.
36
,
e141
(
2008
).
69.
J. H.
Malone
and
B.
Oliver
, “
Microarrays, deep sequencing and the true measure of the transcriptome
,”
BMC Biol.
9
,
34
(
2011
).
70.
L.
Moldovan
,
K. E.
Batte
,
J.
Trgovcich
,
J.
Wisler
,
C. B.
Marsh
, and
M.
Piper
, “
Methodological challenges in utilizing miRNAs as circulating biomarkers
,”
J. Cell. Mol. Med.
18
,
371
390
(
2014
).
71.
N. N.
Watkins
et al, “
Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood
,”
Sci. Transl. Med.
5
,
214ra170
(
2013
).
72.
U.
Hassan
,
T.
Ghonge
,
B.
Reddy
, Jr.
et al, “
A point-of-care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification
,”
Nat. Commun.
8
,
15949
(
2017
);
[PubMed]
C. B.
Lozzio
and
B. B.
Lozzio
, “
Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome
,”
Blood
45
(
3
),
321
334
(
1975
).
[PubMed]
73.
B. K.
Ashley
,
J.
Sui
,
M.
Javanmard
, and
U.
Hassan
, “
Multi-modal sensing with integrated machine learning to differentiate specific leukocytes targeted by electrically sensitive hybrid particles
,”
Biosens. Bioelectron.
241
,
115661
(
2023
).
74.
P. U.
Alves
,
R.
Vinhas
,
A. R.
Fernandes
,
S. Z.
Birol
,
L.
Trabzon
,
I.
Bernacka-Wojcik
,
R.
Igreja
,
P.
Lopes
,
P. V.
Baptista
,
H.
Águas
,
E.
Fortunato
, and
R.
Martins
, “
Multifunctional microfluidic chip for optical nanoprobe based RNA detection—Application to chronic myeloid leukemia
,”
Sci. Rep.
8
(
1
),
381
(
2018
).
75.
H.
Wang
,
H.
Wang
,
Y.
Jia
,
R.
Sun
,
W.
Hong
,
M.
Zhang
, and
Z.
Li
, “
Visual detection of fusion genes by ligation-triggered isothermal exponential amplification: A point-of-care testing method for highly specific and sensitive quantitation of fusion genes with a smartphone
,”
Anal. Chem.
91
,
12428
12434
(
2019
).
76.
A. K.
White
,
K. A.
Heyries
,
C.
Doolin
,
M.
Vaninsberghe
, and
C. L.
Hansen
, “
High-throughput microfluidic single-cell digital polymerase chain reaction
,”
Anal. Chem.
85
,
7182
7190
(
2013
).
77.
X.
Cai
,
H.
Zhang
,
X.
Yu
, and
W.
Wang
, “
A microfluidic paper-based laser-induced fluorescence sensor based on duplex-specific nuclease amplification for selective and sensitive detection of miRNAs in cancer cells
,”
Talanta
216
,
120996
(
2020
).
78.
Y.
Chu
,
Y.
Gao
,
W.
Tang
,
L.
Qiang
,
Y.
Han
,
J.
Gao
,
Y.
Zhang
,
H.
Liu
, and
L.
Han
, “
Attomolar-level ultrasensitive and multiplex microRNA detection enabled by a nanomaterial locally assembled microfluidic biochip for cancer diagnosis
,”
Anal. Chem.
93
,
5129
5136
(
2021
).
79.
R.
Bruch
,
J.
Baaske
,
C.
Chatelle
,
M.
Meirich
,
S.
Madlener
,
W.
Weber
,
C.
Dincer
, and
G. A.
Urban
, “
CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free MIRNA diagnostics
,”
Adv. Mater.
31
(
51
),
1905311
(
2019
).
80.
R.
Bruch
,
M.
Johnston
,
A.
Kling
,
T.
Mattmüller
,
J.
Baaske
,
S.
Partel
,
S.
Madlener
,
W.
Weber
,
G. A.
Urban
, and
C.
Dincer
, “
CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics
,”
Biosens. Bioelectron.
177
,
112887
(
2021
).
81.
S.
Feng
,
H.
Chen
,
Z.
Hu
,
T.
Wu
, and
Z.
Liu
, “
Ultrasensitive detection of MIRNA via CRISPR/Cas12a coupled with strand displacement amplification reaction
,”
ACS Appl. Mater. Interfaces
15
(
24
),
28933
28940
(
2023
).
You do not currently have access to this content.