The efficient breakage of one cell or a concentration of cells for releasing intracellular material such as DNA, without damaging it, is the first step for several diagnostics or treatment processes. As the cell membrane is easy to bend but resistant to stretching, the exposure of the cell to a shear rate during a short period of time can be sufficient to damage the membrane and facilitate the extraction of DNA. However, how to induce high shear stresses on cells in small microliter volumes samples has remained an elusive problem. Surface acoustic waves operating at high frequencies can induce acoustic streaming leading to shear rates sufficient to cell lysis. Lysis induced by acoustic streaming in sessile droplets has been investigated in the past from the lysis efficiency point of view. However, the effects of the velocity field and shear rate induced by acoustic streaming on the lysis process remain unexplored. Here, we study the lysis of AC16 human cardiomyocytes in microliter droplets under the effect of the shear rate induced by acoustic streaming. It is identified that for a given shear rate, the extracted DNA is also affected by the actuation period which can be attributed to a cycling process that leads to an accumulation of damage on the cell membrane.

1.
E.
Grigorov
,
B.
Kirov
,
M. B.
Marinov
, and
V.
Galabov
, “
Review of microfluidic methods for cellular lysis
,”
Micromachines
12
,
498
(
2021
).
2.
M.
Danaeifar
, “
New horizons in developing cell lysis methods: A review
,”
Biotechnol. Bioeng.
119
,
3007
3021
(
2022
).
3.
H. H.
Lai
,
P. A.
Quinto-Su
,
C. E.
Sims
,
M.
Bachman
,
G. P.
Li
,
V.
Venugopalan
, and
N. L.
Allbritton
, “
Characterization and use of laser-based lysis for cell analysis on-chip
,”
J. R. Soc. Interface
5
,
S113
(
2008
).
4.
P. A.
Quinto-Su
,
H. H.
Lai
,
H. H.
Yoon
,
C. E.
Sims
,
N. L.
Allbritton
, and
V.
Venugopalan
, “
Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging
,”
Lab Chip
8
,
408
414
(
2008
).
5.
B. I.
Morshed
,
M.
Shams
, and
T.
Mussivand
, “
Electrical lysis: Dynamics revisited and advances in on-chip operation
,”
Crit. Rev. Biotechnol. Eng.
41
,
37
50
(
2013
).
6.
H.
Jeon
,
S.
Kim
, and
G.
Lim
, “
Electrical force-based continuous cell lysis and sample separation techniques for development of integrated microfluidic cell analysis system: A review
,”
Microelectron. Eng.
198
,
55
72
(
2018
).
7.
K.
Pandian
,
M.
Ajanth Praveen
,
S. Z.
Hoque
,
A.
Sudeepthi
, and
A. K.
Sen
, “
Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes
,”
Biomicrofluidics
14
,
1
14
(
2020
).
8.
S. S.
Yun
,
S. Y.
Yoon
,
M. K.
Song
,
S. H.
Im
,
S.
Kim
,
J. H.
Lee
, and
S.
Yang
, “
Handheld mechanical cell lysis chip with ultra-sharp silicon nano-blade arrays for rapid intracellular protein extraction
,”
Lab Chip
10
,
1442
1446
(
2010
).
9.
Z.
Wang
,
P. H.
Huang
,
C.
Chen
,
H.
Bachman
,
S.
Zhao
,
S.
Yang
, and
T. J.
Huang
, “
Cell lysis: Via acoustically oscillating sharp edges
,”
Lab Chip
19
,
4021
4032
(
2019
).
10.
A. M.
Kaba
,
H.
Jeon
,
A.
Park
,
K.
Yi
,
S.
Baek
,
A.
Park
, and
D.
Kim
, “
Cavitation-microstreaming-based lysis and DNA extraction using a laser-machined polycarbonate microfluidic chip
,”
Sens. Actuators B
346
,
130511
(
2021
).
11.
Y.
Chisti
, “Hydrodynamic Damage to Animal Cells,”
Crit. Rev. Biotech
.
21
(
2
),
67
110
(
2001
).
12.
J.
Reboud
,
Y.
Bourquin
,
R.
Wilson
,
G. S.
Pall
,
M.
Jiwaji
,
A. R.
Pitt
,
A.
Graham
,
A. P.
Waters
, and
J. M.
Cooper
, “
Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
15162
15167
(
2012
).
13.
R. J.
Shilton
,
M.
Travagliati
,
F.
Beltram
, and
M.
Cecchini
, “
Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves
,”
Adv. Mater.
26
,
4941
4946
(
2014
).
14.
A.
Salehi-Reyhani
,
F.
Gesellchen
,
D.
Mampallil
,
R.
Wilson
,
J.
Reboud
,
O.
Ces
,
K. R.
Willison
,
J. M.
Cooper
, and
D. R.
Klug
, “
Chemical-free lysis and fractionation of cells by use of surface acoustic waves for sensitive protein assays
,”
Anal. Chem.
87
,
2161
2169
(
2015
).
15.
S.
Wang
,
X.
Lv
,
Y.
Su
,
Z.
Fan
,
W.
Fang
,
J.
Duan
,
S.
Zhang
,
B.
Ma
,
F.
Liu
,
H.
Chen
,
Z.
Geng
, and
H.
Liu
, “
Piezoelectric microchip for cell lysis through cell–microparticle collision within a microdroplet driven by surface acoustic wave oscillation
,”
Small
15
,
e1804593
(
2019
).
16.
U.
Farooq
,
X.
Liu
,
W.
Zhou
,
M.
Hassan
,
L.
Niu
, and
L.
Meng
, “
Cell lysis induced by nanowire collision based on acoustic streaming using surface acoustic waves
,”
Sens. Actuators B
345
,
130335
(
2021
).
17.
T. J.
Lyford
,
P. J.
Millard
, and
M. P.
Da Cunha
, “
Cell Lysis using surface acoustic wave devices for sensor applications
,” in
2012 IEEE International Ultrasonics Symposium
, Dresden, Germany (IEEE, Piscataway, NJ, 2012), pp. 1216–1219.
18.
J. A.
Rooney
, “
Shear as a mechanism for sonically induced biological effects
,”
J. Acoust. Soc. Am.
52
,
1718
1724
(
1972
).
19.
R.
Paul
,
J.
Apel
,
S.
Klaus
,
F.
Schügner
,
P.
Schwindke
, and
H.
Reul
, “
Shear stress related blood damage in laminar Couette flow
,”
Artif. Organs
27
,
517
529
(
2003
).
20.
J. T.
Horobin
,
S.
Sabapathy
, and
M. J.
Simmonds
, “
Repetitive supra-physiological shear stress impairs red blood cell deformability and induces hemolysis
,”
Artif. Organs
41
,
1017
1025
(
2017
).
21.
D. C.
Augenstein
,
A. J.
Sinskey
, and
D. I.
Wang
, “
Effect of shear on the death of two strains of mammalian tissue cells
,”
Biotechnol. Bioeng.
13
,
409
418
(
1971
).
22.
D.
Gonzalez-Rodriguez
,
L.
Guillou
,
F.
Cornat
,
J.
Lafaurie-Janvore
,
A.
Babataheri
,
E.
de Langre
,
A. I.
Barakat
, and
J.
Husson
, “
Mechanical criterion for the rupture of a cell membrane under compression
,”
Biophys. J.
111
,
2711
2721
(
2016
).
23.
X.
Liu
,
J.
Li
,
L.
Zhang
,
X.
Huang
,
U.
Farooq
,
N.
Pang
,
W.
Zhou
,
L.
Qi
,
L.
Xu
,
L.
Niu
, and
L.
Meng
, “
Cell lysis based on an oscillating microbubble array
,”
Micromachines
11
,
288
(
2020
).
24.
J. T.
Horobin
,
S.
Sabapathy
, and
M. J.
Simmonds
, “
Red blood cell tolerance to shear stress above and below the subhemolytic threshold
,”
Biomech. Model. Mechanobiol.
19
,
851
860
(
2020
).
25.
O. K.
Baskurt
and
H. J.
Meiselman
, “
Red blood cell mechanical stability test
,”
Clin. Hemorheol. Microcirc.
55
,
55
62
(
2013
).
26.
G.
Destgeer
,
B.
Ha
,
J.
Park
, and
H. J.
Sung
, “
Lamb wave-based acoustic radiation force-driven particle ring formation inside a sessile droplet
,”
Anal. Chem.
88
,
3976
3981
(
2016
).
27.
S.
Shiokawa
,
Y.
Matsui
, and
T.
Ueda
, “
Liquid streaming and droplet formation caused by leaky Rayleigh waves
,”
Ultrason. Symp. Proc.
1
,
643
646
(
1989
).
28.
M. K.
Tan
,
J. R.
Friend
,
O. K.
Matar
, and
L. Y.
Yeo
, “
Capillary wave motion excited by high frequency surface acoustic waves
,”
Phys. Fluids
22
,
112112
(
2010
).
29.
A.
Riaud
,
M.
Baudoin
,
O.
Bou Matar
,
J. L.
Thomas
, and
P.
Brunet
, “
On the influence of viscosity and caustics on acoustic streaming in sessile droplets: An experimental and a numerical study with a cost-effective method
,”
J. Fluid Mech.
821
,
384
420
(
2017
).
30.
D. M.
Hallow
,
R. A.
Seeger
,
P. P.
Kamaev
,
G. R.
Prado
,
M. C.
LaPlaca
, and
M. R.
Prausnitz
, “
Shear-induced intracellular loading of cells with molecules by controlled microfluidics
,”
Biotechnol. Bioeng.
99
,
846
854
(
2008
).
31.
V. G.
Zarnitsyn
,
J. M.
Meacham
,
M. J.
Varady
,
C.
Hao
,
F. L.
Degertekin
, and
A. G.
Fedorov
, “
Electrosonic ejector microarray for drug and gene delivery
,”
Biomed. Microdevices
10
,
299
308
(
2008
).
32.
M.
Lokhandwalla
and
B.
Sturtevant
, “
Mechanical haemolysis in shock wave lithotripsy (SWL): I. Analysis of cell deformation due to SWL flow-fields
,”
Phys. Med. Biol.
46
,
413
437
(
2001
).
You do not currently have access to this content.