Microfluidic chips that can sort mixtures of cells and other particles have important applications in research and healthcare. However, designing a sorter chip for a given application is a slow and difficult process, especially when we extend the design space from 2D into a 3D scenario. Compared to the 2D scenario, we need to explore more geometries to derive the appropriate design due to the extra dimension. To evaluate sorting performance, the simulation of the particle trajectory is needed. The 3D scenario brings particle trajectory simulation more challenges of runtime and collision handling with irregular obstacle shapes. In this paper, we propose a framework to design a 3D microfluidic particle sorter for a given application with an efficient 3D particle trajectory simulator. The efficient simulator enables us to simulate more samples to ensure the robustness of the sorting performance. Our experimental result shows that the sorter designed by our framework successfully separates the particles with the targeted size.

1.
C. W.
Shields IV
,
C. D.
Reyes
, and
G. P.
López
, “
Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
,”
Lab Chip
15
,
1230
1249
(
2015
).
2.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
3.
C.-H.
Hsu
,
D.
Di Carlo
,
C.
Chen
,
D.
Irimia
, and
M.
Toner
, “
Microvortex for focusing, guiding and sorting of particles
,”
Lab Chip
8
,
2128
2134
(
2008
).
4.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
,
2369
2376
(
2012
).
5.
P.
Preira
,
V.
Grandne
,
J.-M.
Forel
,
S.
Gabriele
,
M.
Camara
, and
O.
Theodoly
, “
Passive circulating cell sorting by deformability using a microfluidic gradual filter
,”
Lab Chip
13
,
161
170
(
2013
).
6.
E. P.
Furlani
, “
Magnetophoretic separation of blood cells at the microscale
,”
Appl. Phys.
40
,
1313
(
2007
).
7.
A.
Kumar
and
A.
Srivastava
, “
Cell separation using cryogel-based affinity chromatography
,”
Nat. Protoc.
5
,
1737
1747
(
2010
).
8.
W.
Bonner
,
H.
Hulett
,
R.
Sweet
, and
L.
Herzenberg
, “
Fluorescence activated cell sorting
,”
Rev. Sci. Instrum.
43
,
404
409
(
1972
).
9.
H. M.
Shapiro
,
Practical Flow Cytometry
(
John Wiley & Sons
,
2005
).
10.
S.
Nagrath
,
L. V.
Sequist
,
S.
Maheswaran
,
D. W.
Bell
,
D.
Irimia
,
L.
Ulkus
,
M. R.
Smith
,
E. L.
Kwak
,
S.
Digumarthy
,
A.
Muzikansky
et al., “
Isolation of rare circulating tumour cells in cancer patients by microchip technology
,”
Nature
450
,
1235
1239
(
2007
).
11.
N. M.
Karabacak
,
P. S.
Spuhler
,
F.
Fachin
,
E. J.
Lim
,
V.
Pai
,
E.
Ozkumur
,
J. M.
Martel
,
N.
Kojic
,
K.
Smith
,
P.-I.
Chen
et al., “
Microfluidic, marker-free isolation of circulating tumor cells from blood samples
,”
Nat. Protoc.
9
,
694
710
(
2014
).
12.
W.
Jung
,
J.
Han
,
J.-W.
Choi
, and
C. H.
Ahn
, “
Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
,”
Microelectron. Eng.
132
,
46
57
(
2015
).
13.
N.
Norouzi
,
H. C.
Bhakta
, and
W. H.
Grover
, “
Sorting cells by their density
,”
PLoS One
12
,
0180520
(
2017
).
14.
F.
Su
,
K.
Chakrabarty
, and
R. B.
Fair
, “
Microfluidics-based biochips: Technology issues, implementation platforms, and design-automation challenges
,”
IEEE Trans. Computer-Aided Des. Integrated Circuits Syst.
25
,
211
223
(
2006
).
15.
J.
Wang
,
N.
Zhang
,
J.
Chen
,
V. G.
Rodgers
,
P.
Brisk
, and
W. H.
Grover
, “
Finding the optimal design of a passive microfluidic mixer
,”
Lab Chip
19
,
3618
3627
(
2019
).
16.
J.
Wang
,
P.
Brisk
, and
W. H.
Grover
, “
Random design of microfluidics
,”
Lab Chip
16
,
4212
4219
(
2016
).
17.
W.
Tang
,
D.
Jiang
,
Z.
Li
,
L.
Zhu
,
J.
Shi
,
J.
Yang
, and
N.
Xiang
, “
Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles
,”
Electrophoresis
40
,
930
954
(
2019
).
18.
M.
Yamada
,
M.
Nakashima
, and
M.
Seki
, “
Pinched flow fractionation: Continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel
,”
Anal. Chem.
76
,
5465
5471
(
2004
).
19.
X.
Huang
,
T.-Y.
Ho
,
W.
Guo
,
B.
Li
,
K.
Chakrabarty
, and
U.
Schlichtmann
, “
Computer-aided design techniques for flow-based microfluidic lab-on-a-chip systems
,”
ACM Computing Surveys (CSUR)
54
,
1
29
(
2021
).
20.
M.
Ibrahim
,
Z.
Li
, and
K.
Chakrabarty
, “Advances in design automation techniques for digital-microfluidic biochips,” Formal Modeling and Verification of Cyber-Physical Systems: 1st International Summer School on Methods and Tools for the Design of Digital Systems (Springer, 2015), pp. 190–223.
21.
A.
Lashkaripour
,
C.
Rodriguez
,
N.
Mehdipour
,
R.
Mardian
,
D.
McIntyre
,
L.
Ortiz
,
J.
Campbell
, and
D.
Densmore
, “
Machine learning enables design automation of microfluidic flow-focusing droplet generation
,”
Nat. Commun.
12
,
25
(
2021
).
22.
L.
Chen
,
W. H.
Grover
,
M.
Sridharan
, and
P.
Brisk
, “
Multi-objective design automation for microfluidic capture chips
,”
IEEE Trans. NanoBiosci.
22
,
467
–479 (
2022
).
23.
X.
Huang
,
Y.
Pan
,
G. L.
Zhang
,
B.
Li
,
W.
Guo
,
T.-Y.
Ho
, and
U.
Schlichtmann
, “Pathdriver: A path-driven architectural synthesis flow for continuous-flow microfluidic biochips,” in
Proceedings of the 39th International Conference on Computer-Aided Design
(Association for Computing Machinery, 2020), pp. 1–8.
24.
X.
Huang
,
Y.
Pan
,
G. L.
Zhang
,
B.
Li
,
W.
Guo
,
T.-Y.
Ho
, and
U.
Schlichtmann
, “
Pathdriver+: Enhanced path-driven architecture design for flow-based microfluidic biochips
,”
IEEE Trans. Computer-Aided Des. Integrated Circuits Syst.
41
,
2185
2198
(
2021
).
25.
X.
Huang
,
Y.
Pan
,
Z.
Chen
,
W.
Guo
,
L.
Wang
,
Q.
Li
,
R.
Wille
,
T.-Y.
Ho
, and
U.
Schlichtmann
, “
Design automation for continuous-flow lab-on-a-chip systems: A one-pass paradigm
,”
IEEE Trans. Computer-Aided Des. Integrated Circuits Syst.
42
,
327
331
(
2022
).
26.
G.
Liu
,
H.
Huang
,
Z.
Chen
,
H.
Lin
,
H.
Liu
,
X.
Huang
, and
W.
Guo
, “
Design automation for continuous-flow microfluidic biochips: A comprehensive review
,”
Integration
82
,
48
66
(
2022
).
27.
N.
Bhattacharjee
,
A.
Urrios
,
S.
Kang
, and
A.
Folch
, “
The upcoming 3d-printing revolution in microfluidics
,”
Lab Chip
16
,
1720
1742
(
2016
).
28.
J.
Wang
,
K.
Liang
,
N.
Zhang
,
H.
Yao
,
T.-Y.
Ho
, and
L.
Sun
, “
Automated calibration of 3D-printed microfluidic devices based on computer vision
,”
Biomicrofluidics
15
,
024102
(
2021
).
29.
G.
Weisgrab
,
A.
Ovsianikov
, and
P. F.
Costa
, “
Functional 3D printing for microfluidic chips
,”
Adv. Mater. Technol.
4
,
1900275
(
2019
).
30.
P.
Jusková
,
L.
Matthys
,
J.-L.
Viovy
, and
L.
Malaquin
, “
3D deterministic lateral displacement (3D-DLD) cartridge system for high throughput particle sorting
,”
Chem. Commun.
56
,
5190
5193
(
2020
).
31.
J.
Wang
,
V. G.
Rodgers
,
P.
Brisk
, and
W. H.
Grover
, “
MOPSA: A microfluidics-optimized particle simulation algorithm
,”
Biomicrofluidics
11
,
034121
(
2017
).
You do not currently have access to this content.