We present a design and a fabrication method for devices designed for rapid collection of nanoparticles in a fluid. The design uses nanofluidic channels as a passive size-based barrier trap to isolate particles near a central point in the channel, which is also covered by a thin membrane. Particles that enter the collection region are trapped with 100% efficiency within a 6–12 m radius from a central point. Flow rates for particle-free fluid range from 1.88 to 3.69 nl/s for the pressure and geometries tested. Particle trapping tests show that high trapped particle counts significantly impact flow rates. For suspensions as dilute as 30–300 aM (20–200 particles/ l), 8–80 particles are captured within 500 s.
REFERENCES
1.
H.
Yamaguchi
and M.
Miyazaki
, “Enzyme-immobilized microfluidic devices for biomolecule detection
,” TrAC Trends Anal. Chem.
159
, 116908
(2023
). 2.
T. W.
Murphy
, Q.
Zhang
, L. B.
Naler
, S.
Ma
, and C.
Lu
, “Recent advances in the use of microfluidic technologies for single cell analysis
,” Analyst
143
, 60
–80
(2018
). 3.
L.
Restrepo-Pérez
, C.
Joo
, and C.
Dekker
, “Paving the way to single-molecule protein sequencing
,” Nat. Nanotechnol.
13
, 786
–796
(2018
).4.
J. L.
Garcia-Cordero
and S. J.
Maerkl
, “Microfluidic systems for cancer diagnostics
,” Curr. Opin. Biotechnol.
65
, 37
–44
(2020
). 5.
A.
Arima
, M.
Tsutsui
, T.
Washio
, Y.
Baba
, and T.
Kawai
, “Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection
,” Anal. Chem.
93
, 215
–227
(2020
). 6.
K.
Yamamoto
, N.
Ota
, and Y.
Tanaka
, “Nanofluidic devices and applications for biological analyses
,” Anal. Chem.
93
, 332
–349
(2020
). 7.
O. A.
Saleh
and L. L.
Sohn
, “An artificial nanopore for molecular sensing
,” Nano Lett.
3
, 37
–38
(2003
). 8.
D.
Jin
, B.
Deng
, J.
Li
, W.
Cai
, L.
Tu
, J.
Chen
, Q.
Wu
, and W.
Wang
, “A microfluidic device enabling high-efficiency single cell trapping
,” Biomicrofluidics
9
, 014101
(2015
). 9.
Z. J.
Walker
, T.
Wells
, E.
Belliston
, S. B.
Walker
, C.
Zeller
, M. J. N.
Sampad
, S.
Saiduzzaman
, H.
Schmidt
, and A. R.
Hawkins
, “Optofluidic particle manipulation: Optical trapping in a thin-membrane microchannel
,” Biosensors
12
, 690
(2022
). 10.
M.
Tanyeri
, M.
Ranka
, N.
Sittipolkul
, and C. M.
Schroeder
, “A microfluidic-based hydrodynamic trap: Design and implementation
,” Lab Chip
11
, 1786
–1794
(2011
). 11.
J. A.
Black
, E.
Hamilton
, R. A. R.
Hueros
, J. W.
Parks
, A. R.
Hawkins
, and H.
Schmidt
, “Enhanced detection of single viruses on-chip via hydrodynamic focusing
,” IEEE J. Sel. Top. Quantum Electron.
25
, 1
–6
(2018
). 12.
W.
Tonomura
, M.
Tsutsui
, A.
Arima
, K.
Yokota
, M.
Taniguchi
, T.
Washio
, and T.
Kawai
, “High-throughput single-particle detections using a dual-height-channel-integrated pore
,” Lab Chip
19
, 1352
–1358
(2019
). 13.
V. H.
Perez-Gonzalez
, “Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics
,” Electrophoresis
42
, 2445
–2464
(2021
).14.
T.
Müller
, A.
Gerardino
, T.
Schnelle
, S. G.
Shirley
, F.
Bordoni
, G.
De Gasperis
, R.
Leoni
, and G.
Fuhr
, “Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces
,” J. Phys. D: Appl. Phys.
29
, 340
(1996
).15.
M.
Rahman
, M. A.
Stott
, Y.
Li
, A. R.
Hawkins
, and H.
Schmidt
, “Single-particle analysis with 2D electro-optical trapping on an integrated optofluidic device
,” Optica
5
, 1311
–1314
(2018
). 16.
M. N.
Hamblin
, J.
Xuan
, D.
Maynes
, H. D.
Tolley
, D. M.
Belnap
, A. T.
Woolley
, M. L.
Lee
, and A. R.
Hawkins
, “Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels
,” Lab Chip
10
, 173
–178
(2010
). 17.
S.
Kumar
, J.
Xuan
, M. L.
Lee
, H. D.
Tolley
, A. R.
Hawkins
, and A. T.
Woolley
, “Thin-film microfabricated nanofluidic arrays for size-selective protein fractionation
,” Lab Chip
13
, 4591
–4598
(2013
). 18.
C.
Rathnayaka
, C. A.
Amarasekara
, K.
Akabirov
, M. C.
Murphy
, S.
Park
, M. A.
Witek
, and S. A.
Soper
, “Nanofluidic devices for the separation of biomolecules
,” J. Chromatogr. A
1683
, 463539
(2022
). 19.
Q.
Liu
, H.
Wu
, L.
Wu
, X.
Xie
, J.
Kong
, X.
Ye
, L.
Liu
, and M.
Wanunu
, “Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore
,” PLoS One
7
, e46014
(2012
). 20.
Z.
Yuan
, Y.
Liu
, M.
Dai
, X.
Yi
, and C.
Wang
, “Controlling DNA translocation through solid-state nanopores
,” Nanoscale Res. Lett.
15
, 1
–9
(2020
). 21.
M. J. N.
Sampad
, H.
Zhang
, T. D.
Yuzvinsky
, M. A.
Stott
, A. R.
Hawkins
, and H.
Schmidt
, “Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor
,” Biosens. Bioelectron.
194
, 113588
(2021
). 22.
23.
Z.
Walker
, T.
Wells
, K.
Lay
, M. J. N.
Sampad
, H.
Schmidt
, and A.
Hawkins
, “Solid-state membranes formed on natural menisci
,” Nanotechnology
31
, 445303
(2020
). 24.
R. P.
Chapuis
and M.
Aubertin
, Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation
(École Polytechnique de Montréal
, Montréal
, 2003
).25.
A.
Attou
and G.
Ferschneider
, “A simple model for pressure drop and liquid hold-up in packed-bed bubble reactors
,” Chem. Eng. Sci.
54
, 5139
–5144
(1999
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.