We present a design and a fabrication method for devices designed for rapid collection of nanoparticles in a fluid. The design uses nanofluidic channels as a passive size-based barrier trap to isolate particles near a central point in the channel, which is also covered by a thin membrane. Particles that enter the collection region are trapped with 100% efficiency within a 6–12  μm radius from a central point. Flow rates for particle-free fluid range from 1.88 to 3.69 nl/s for the pressure and geometries tested. Particle trapping tests show that high trapped particle counts significantly impact flow rates. For suspensions as dilute as 30–300 aM (20–200 particles/ μl), 8–80 particles are captured within 500 s.

1.
H.
Yamaguchi
and
M.
Miyazaki
, “
Enzyme-immobilized microfluidic devices for biomolecule detection
,”
TrAC Trends Anal. Chem.
159
,
116908
(
2023
).
2.
T. W.
Murphy
,
Q.
Zhang
,
L. B.
Naler
,
S.
Ma
, and
C.
Lu
, “
Recent advances in the use of microfluidic technologies for single cell analysis
,”
Analyst
143
,
60
80
(
2018
).
3.
L.
Restrepo-Pérez
,
C.
Joo
, and
C.
Dekker
, “
Paving the way to single-molecule protein sequencing
,”
Nat. Nanotechnol.
13
,
786
796
(
2018
).
4.
J. L.
Garcia-Cordero
and
S. J.
Maerkl
, “
Microfluidic systems for cancer diagnostics
,”
Curr. Opin. Biotechnol.
65
,
37
44
(
2020
).
5.
A.
Arima
,
M.
Tsutsui
,
T.
Washio
,
Y.
Baba
, and
T.
Kawai
, “
Solid-state nanopore platform integrated with machine learning for digital diagnosis of virus infection
,”
Anal. Chem.
93
,
215
227
(
2020
).
6.
K.
Yamamoto
,
N.
Ota
, and
Y.
Tanaka
, “
Nanofluidic devices and applications for biological analyses
,”
Anal. Chem.
93
,
332
349
(
2020
).
7.
O. A.
Saleh
and
L. L.
Sohn
, “
An artificial nanopore for molecular sensing
,”
Nano Lett.
3
,
37
38
(
2003
).
8.
D.
Jin
,
B.
Deng
,
J.
Li
,
W.
Cai
,
L.
Tu
,
J.
Chen
,
Q.
Wu
, and
W.
Wang
, “
A microfluidic device enabling high-efficiency single cell trapping
,”
Biomicrofluidics
9
,
014101
(
2015
).
9.
Z. J.
Walker
,
T.
Wells
,
E.
Belliston
,
S. B.
Walker
,
C.
Zeller
,
M. J. N.
Sampad
,
S.
Saiduzzaman
,
H.
Schmidt
, and
A. R.
Hawkins
, “
Optofluidic particle manipulation: Optical trapping in a thin-membrane microchannel
,”
Biosensors
12
,
690
(
2022
).
10.
M.
Tanyeri
,
M.
Ranka
,
N.
Sittipolkul
, and
C. M.
Schroeder
, “
A microfluidic-based hydrodynamic trap: Design and implementation
,”
Lab Chip
11
,
1786
1794
(
2011
).
11.
J. A.
Black
,
E.
Hamilton
,
R. A. R.
Hueros
,
J. W.
Parks
,
A. R.
Hawkins
, and
H.
Schmidt
, “
Enhanced detection of single viruses on-chip via hydrodynamic focusing
,”
IEEE J. Sel. Top. Quantum Electron.
25
,
1
6
(
2018
).
12.
W.
Tonomura
,
M.
Tsutsui
,
A.
Arima
,
K.
Yokota
,
M.
Taniguchi
,
T.
Washio
, and
T.
Kawai
, “
High-throughput single-particle detections using a dual-height-channel-integrated pore
,”
Lab Chip
19
,
1352
1358
(
2019
).
13.
V. H.
Perez-Gonzalez
, “
Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics
,”
Electrophoresis
42
,
2445
2464
(
2021
).
14.
T.
Müller
,
A.
Gerardino
,
T.
Schnelle
,
S. G.
Shirley
,
F.
Bordoni
,
G.
De Gasperis
,
R.
Leoni
, and
G.
Fuhr
, “
Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces
,”
J. Phys. D: Appl. Phys.
29
,
340
(
1996
).
15.
M.
Rahman
,
M. A.
Stott
,
Y.
Li
,
A. R.
Hawkins
, and
H.
Schmidt
, “
Single-particle analysis with 2D electro-optical trapping on an integrated optofluidic device
,”
Optica
5
,
1311
1314
(
2018
).
16.
M. N.
Hamblin
,
J.
Xuan
,
D.
Maynes
,
H. D.
Tolley
,
D. M.
Belnap
,
A. T.
Woolley
,
M. L.
Lee
, and
A. R.
Hawkins
, “
Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels
,”
Lab Chip
10
,
173
178
(
2010
).
17.
S.
Kumar
,
J.
Xuan
,
M. L.
Lee
,
H. D.
Tolley
,
A. R.
Hawkins
, and
A. T.
Woolley
, “
Thin-film microfabricated nanofluidic arrays for size-selective protein fractionation
,”
Lab Chip
13
,
4591
4598
(
2013
).
18.
C.
Rathnayaka
,
C. A.
Amarasekara
,
K.
Akabirov
,
M. C.
Murphy
,
S.
Park
,
M. A.
Witek
, and
S. A.
Soper
, “
Nanofluidic devices for the separation of biomolecules
,”
J. Chromatogr. A
1683
,
463539
(
2022
).
19.
Q.
Liu
,
H.
Wu
,
L.
Wu
,
X.
Xie
,
J.
Kong
,
X.
Ye
,
L.
Liu
, and
M.
Wanunu
, “
Voltage-driven translocation of DNA through a high throughput conical solid-state nanopore
,”
PLoS One
7
,
e46014
(
2012
).
20.
Z.
Yuan
,
Y.
Liu
,
M.
Dai
,
X.
Yi
, and
C.
Wang
, “
Controlling DNA translocation through solid-state nanopores
,”
Nanoscale Res. Lett.
15
,
1
9
(
2020
).
21.
M. J. N.
Sampad
,
H.
Zhang
,
T. D.
Yuzvinsky
,
M. A.
Stott
,
A. R.
Hawkins
, and
H.
Schmidt
, “
Optical trapping assisted label-free and amplification-free detection of SARS-CoV-2 RNAs with an optofluidic nanopore sensor
,”
Biosens. Bioelectron.
194
,
113588
(
2021
).
22.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
2007
), Vol. 18.
23.
Z.
Walker
,
T.
Wells
,
K.
Lay
,
M. J. N.
Sampad
,
H.
Schmidt
, and
A.
Hawkins
, “
Solid-state membranes formed on natural menisci
,”
Nanotechnology
31
,
445303
(
2020
).
24.
R. P.
Chapuis
and
M.
Aubertin
,
Predicting the Coefficient of Permeability of Soils Using the Kozeny-Carman Equation
(
École Polytechnique de Montréal
,
Montréal
,
2003
).
25.
A.
Attou
and
G.
Ferschneider
, “
A simple model for pressure drop and liquid hold-up in packed-bed bubble reactors
,”
Chem. Eng. Sci.
54
,
5139
5144
(
1999
).
You do not currently have access to this content.