As one of the hot spots in the field of microfluidic chip research, micromixers have been widely used in chemistry, biology, and medicine due to their small size, fast response time, and low reagent consumption. However, at low Reynolds numbers, the fluid motion relies mainly on the diffusive motion of molecules under laminar flow conditions. The detrimental effect of laminar flow leads to difficulties in achieving rapid and efficient mixing of fluids in microchannels. Therefore, it is necessary to enhance fluid mixing by employing some external means. In this paper, the classification and mixing principles of passive (T-type, Y-type, obstructed, serpentine, three-dimensional) and active (acoustic, electric, pressure, thermal, magnetic field) micromixers are reviewed based on the presence or absence of external forces in the micromixers, and some experiments and applications of each type of micromixer are briefly discussed. Finally, the future development trends of micromixers are summarized.

1.
G. T.
Vladisavljević
,
N.
Khalid
,
M. A.
Neves
,
T.
Kuroiwa
,
M.
Nakajima
,
K.
Uemura
,
S.
Ichikawa
, and
I.
Kobayashi
,
Adv. Drug Delivery Rev.
65
(
11
),
1626
(
2013
).
2.
C.-Y.
Lee
and
L.-M.
Fu
,
Sens. Actuators, B
259
,
677
(
2018
).
3.
C.
Liu
,
Y.
Li
, and
B.-F.
Liu
,
Talanta
205
,
120136
(
2019
).
4.
Y.
Guan
,
F.
Xu
,
B.
Sun
,
X.
Meng
,
Y.
Liu
, and
M.
Bai
,
Biomed. Microdevices
22
(
3
),
47
(
2020
).
5.
A.
Haghighinia
,
S.
Movahedirad
,
A. K.
Rezaei
, and
N.
Mostoufi
,
Int. J. Heat Mass Transfer
158
,
119967
(
2020
).
6.
M. H.
Biroun
,
M.
Rahmati
,
M.
Jangi
,
B.
Chen
, and
Y. Q.
Fu
,
Int. J. Multiphase Flow
136
,
103545
(
2021
).
7.
J.
Jin
and
N.-T.
Nguyen
,
Microelectron. Eng.
197
,
87
(
2018
).
8.
M.
Dundi
,
V. R. K.
Raju
, and
V. P.
Chandramohan
,
Asia-Pac. J. Chem. Eng.
16
(
4
),
e2667
(
2021
).
9.
W.
Raza
,
S.
Hossain
, and
K.-Y.
Kim
,
Micromachines
11
,
455
(
2020
).
10.
S.
Xiong
,
X.
Chen
, and
Y.
Ma
,
J. Braz. Soc. Mech. Sci. Eng.
43
(
7
),
332
(
2021
).
11.
X.
Shi
,
L.
Wang
,
S.
Huang
, and
F.
Li
,
J. Dispersion Sci. Technol.
42
(
2
),
236
(
2021
).
12.
A.
Haghighinia
and
S.
Movahedirad
,
Anal. Chim. Acta
1098
,
75
(
2020
).
13.
I.
Shah
,
S. W.
Kim
,
K.
Kim
,
Y. H.
Doh
, and
K. H.
Choi
,
Chem. Eng. J.
358
,
691
(
2019
).
14.
H.
Bachman
,
C.
Chen
,
J.
Rufo
,
S.
Zhao
,
S.
Yang
,
Z.
Tian
,
N.
Nama
,
P.-H.
Huang
, and
T. J.
Huang
,
Lab Chip
20
(
7
),
1238
(
2020
).
15.
M.
Nazari
,
S.
Rashidi
, and
J. A.
Esfahani
,
Chem. Eng. Sci.
212
,
115335
(
2020
).
16.
A. S.
Lobasov
,
A. V.
Minakov
,
V. V.
Kuznetsov
,
V. Ya.
Rudyak
, and
A. A.
Shebeleva
,
Chem. Eng. Process. Process Intensif.
134
,
105
(
2018
).
17.
M.
Bayareh
,
M. N.
Ashani
, and
A.
Usefian
,
Chem. Eng. Process. Process Intensif.
147
,
107771
(
2020
).
18.
N.
Kimura
,
M.
Maeki
,
Y.
Sato
,
Y.
Note
,
A.
Ishida
,
H.
Tani
,
H.
Harashima
, and
M.
Tokeshi
,
ACS Omega
3
(
5
),
5044
(
2018
).
19.
D.
Bahrami
and
M.
Bayareh
,
Chem. Eng. Technol.
45
(
1
),
100
(
2022
).
20.
X.
Dong
,
K.
Yaji
, and
X.
Liu
,
Chem. Eng. J.
428
,
131367
(
2022
).
21.
X.
Wang
,
Z.
Liu
,
B.
Wang
,
Y.
Cai
, and
Q.
Song
,
Anal. Chim. Acta
1279
,
341685
(
2023
).
22.
Y.
Zhai
,
A.
Wang
,
D.
Koh
,
P.
Schneider
, and
K. W.
Oh
,
Lab Chip
18
(
2
),
276
(
2018
).
23.
K.
Ishii
,
E.
Hihara
, and
T.
Munakata
,
Appl. Therm. Eng.
174
,
115291
(
2020
).
24.
K.
Nan
,
Y.
Shi
,
T.
Zhao
,
X.
Tang
,
Y.
Zhu
,
K.
Wang
,
J.
Bai
, and
W.
Zhao
,
Anal. Chem.
94
(
35
),
12231
(
2022
).
25.
B.
Liu
,
N.
Sun
,
Z.
Jin
,
Y.
Zhang
, and
B.
Sunden
,
Ind. Eng. Chem. Res.
58
(
49
),
22376
(
2019
).
26.
C. P.
Fonte
,
D. F.
Fletcher
,
P.
Guichardon
, and
J.
Aubin
,
Chem. Eng. Sci.
222
,
115706
(
2020
).
27.
A. A.
Araoye
,
A.
Abdelhafez
,
R.
Ben-Mansour
,
M. A.
Nemitallah
, and
M. A.
Habib
,
Chem. Eng. Process. Process Intensif.
162
,
108336
(
2021
).
28.
P.
Hermann
,
J.
Timmermann
,
M.
Hoffmann
,
M.
Schlüter
,
C.
Hofmann
,
P.
Löb
, and
D.
Ziegenbalg
,
Chem. Eng. J.
334
,
1996
(
2018
).
29.
M.
Turkyilmazoglu
,
Comput. Methods Programs Biomed.
187
,
105171
(
2020
).
30.
A. S.
Lobasov
and
A. V.
Minakov
,
Chem. Eng. Process. Process Intensif.
124
,
11
(
2018
).
31.
C.
Galletti
,
A.
Mariotti
,
L.
Siconolfi
,
R.
Mauri
, and
E.
Brunazzi
,
Can. J. Chem. Eng.
97
(
2
),
528
(
2019
).
32.
E.
Karvelas
,
C.
Liosis
,
L.
Benos
,
T.
Karakasidis
, and
I.
Sarris
,
Water
11
,
1135
, (
2019
).
33.
V.
Khaydarov
,
E. S.
Borovinskaya
, and
W.
Reschetilowski
,
Appl. Sci.
8
,
2458
(
2018
).
34.
C.-Y.
Huang
,
Y.-H.
Hu
,
S.-A.
Wan
, and
H.
Nagai
,
Int. J. Heat Mass Transfer
156
,
119710
(
2020
).
35.
D.
Bothe
,
C.
Stemich
, and
H.-J.
Warnecke
,
Chem. Eng. Sci.
61
(
9
),
2950
(
2006
).
36.
K.
Karthikeyan
and
L.
Sujatha
,
Int. J. Chem. React. Eng.
17
(
1
), 20180047 (
2019
).
37.
S.-S.
Hsieh
,
J.-W.
Lin
, and
J.-H.
Chen
,
Int. J. Heat Fluid Flow
44
,
130
(
2013
).
38.
G.
Liu
,
M.
Wang
,
L.
Dong
,
D.
Zhu
,
C.
Wang
,
Y.
Jia
,
X.
Li
, and
J.
Wang
,
Sens. Actuators, A
341
,
113569
(
2022
).
39.
J.
Xu
and
X.
Chen
,
Int. J. Heat Mass Transfer
141
,
346
(
2019
).
40.
S. Y.
Jung
,
J. E.
Park
,
T. G.
Kang
, and
J. D.
Park
,
Int. J. Heat Mass Transfer
184
,
122310
(
2022
).
41.
M.
Okuducu
and
M.
Aral
,
Processes
7
,
121
(
2019
).
42.
S.
Chen
,
Q.
Lin
,
N.
Pan
,
M.
Hao
,
Y.
Jiang
,
Y.
Xie
,
Y.
Ba
,
X.
Bian
, and
K.
Liu
,
Ind. Eng. Chem. Res.
62
(
39
),
16113
(
2023
).
43.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezić
,
H. A.
Stone
, and
G. M.
Whitesides
,
Science
295
(
5555
),
647
(
2002
).
44.
S.
Hossain
,
A.
Fuwad
,
K.-Y.
Kim
,
T.-J.
Jeon
, and
S. M.
Kim
,
Ind. Eng. Chem. Res.
59
(
9
),
3636
(
2020
).
45.
X.
Luo
,
Y.
Cheng
,
W.
Zhang
,
K.
Li
,
P.
Wang
, and
W.
Zhao
,
Int. J. Heat Mass Transfer
178
,
121638
(
2021
).
46.
X.
Feng
,
Y.
Ren
, and
H.
Jiang
,
Biomicrofluidics
7
(
5
),
054121
(
2013
).
47.
X.
Feng
,
Y.
Ren
, and
H.
Jiang
,
Biomicrofluidics
8
(
3
),
034106
(
2014
).
48.
S.
Akar
,
A.
Taheri
,
R.
Bazaz
,
E.
Warkiani
, and
M.
Shaegh
,
Chem. Eng. Process. Process Intensif.
160
,
108251
(
2021
).
49.
S.
Rampalli
,
T.
Manoj Dundi
,
S.
Chandrasekhar
,
V. R. K.
Raju
, and
V. P.
Chandramohan
,
Chem. Prod. Process Model.
15
(
2
), 20190071 (
2020
).
50.
J.
Clark
,
M.
Kaufman
, and
P.
Fodor
,
Micromachines
9
(
3
),
107
(
2018
).
51.
Z.
Wang
,
X.
Yan
,
Q.
Zhou
,
Q.
Wang
,
D.
Zhao
, and
H.
Wu
,
Anal. Chem.
95
(
23
),
8850
(
2023
).
52.
K.
Guo
,
Y.
Chen
,
Z.
Zhou
,
S.
Zhu
,
Z.
Ni
, and
N.
Xiang
,
Electrophoresis
43
(
21–22
),
2184
(
2022
).
53.
C.-S.
Shin
,
P. L.
Baldeck
,
Y.-M.
Nie
,
Y.-H.
Lee
,
Z.-D.
Lin
,
C.-C.
Chiang
, and
C.-L.
Lin
,
J. Taiwan Inst. Chem. Eng.
120
,
59
(
2021
).
54.
L.
Ding
,
S. R.
Bazaz
,
J.
Shrestha
,
H. A.
Amiri
,
S.
Mas-hafi
,
B.
Banerjee
,
G.
Vesey
,
M.
Miansari
, and
M. E.
Warkiani
,
Micromachines
13
,
1516
(
2022
).
55.
Z.
Chen
,
L.
Shen
,
X.
Zhao
,
H.
Chen
,
Y.
Xiao
,
Y.
Zhang
,
X.
Yang
,
J.
Zhang
,
J.
Wei
, and
N.
Hao
,
Appl. Mater. Today
26
,
101356
(
2022
).
56.
S.
Mohanty
,
J.
Zhang
,
J. M.
McNeill
,
T.
Kuenen
,
F. P.
Linde
,
J.
Rouwkema
, and
S.
Misra
,
Sens. Actuators, B
347
,
130589
(
2021
).
57.
C.
Zhang
,
X.
Guo
,
L.
Royon
, and
P.
Brunet
,
Phys. Rev. E
102
(
4
),
043110
(
2020
).
58.
Y.
Lu
,
W.
Tan
,
S.
Mu
, and
G.
Zhu
,
Anal. Chim. Acta
1239
,
340742
(
2023
).
59.
M.
Mazalan
,
A.
Noor
,
Y.
Wahab
,
S.
Yahud
, and
W.
Zaman
,
Micromachines
13
,
30
(
2022
).
60.
A. K.
Sarin Kumar
,
P.
Paruch
,
J. M.
Triscone
,
W.
Daniau
,
S.
Ballandras
,
L.
Pellegrino
,
D.
Marré
, and
T.
Tybell
,
Appl. Phys. Lett.
85
(
10
),
1757
(
2004
).
61.
H.
Lv
and
X.
Chen
,
Ind. Eng. Chem. Res.
61
(
28
),
10264
(
2022
).
62.
J.-C.
Hsu
and
C.-Y.
Chang
,
Sens. Actuators, A
336
,
113401
(
2022
).
63.
V. R.
Faradonbeh
,
S.
Rabiei
,
H.
Rabiei
,
M.
Goodarzi
,
M. R.
Safaei
, and
C.-X.
Lin
,
J. Mol. Liq.
347
,
117978
(
2022
).
64.
Y.
Xue
,
Y.
Zhou
, and
Y.
Yin
,
J. Phys. Conf. Series
1549
(
5
),
052079
(
2020
).
65.
S.
Xiong
and
X.
Chen
,
J. Chem. Technol. Biotechnol.
96
(
7
),
1909
(
2021
).
66.
Y.
Ren
,
W.
Liu
,
Y.
Tao
,
M.
Hui
, and
Q.
Wu
,
Micromachines
9
,
102
(
2018
).
67.
Z.
Chen
,
Y.
Wang
, and
S.
Zhou
,
Micromachines
13
,
143
(
2022
).
68.
Y.
Cheng
,
Y.
Jiang
, and
W.
Wang
,
Chem. Eng. Process. Process Intensif.
127
,
93
(
2018
).
69.
Q.
Hu
,
J.
Guo
,
Z.
Cao
, and
H.
Jiang
,
Micromachines
9
,
391
(
2018
).
70.
Q.
Feng
,
X.
Chen
,
X.
Wang
,
X.
Yu
,
X.
Zeng
,
Y.
Ma
, and
Q.
Wang
,
Int. Commun. Heat Mass Transfer
127
,
105482
(
2021
).
71.
H.
Jo
,
M.
Sim
,
S.
Kim
,
S.
Yang
,
Y.
Yoo
,
J.-H.
Park
,
T. H.
Yoon
,
M.-G.
Kim
, and
J. Y.
Lee
,
Acta Biomater.
48
,
100
(
2017
).
72.
A.
Nejat
,
F.
Kowsary
,
A.
Hasanzadeh-Barforoushi
, and
S.
Ebrahimi
,
Microfluid. Nanofluid.
17
,
623
(
2014
).
73.
M.
Madadelahi
and
A.
Shamloo
,
J. Non-Newtonian Fluid Mech.
251
,
88
(
2018
).
74.
G.
Liu
,
M.
Wang
,
P.
Li
,
X.
Sun
,
L.
Dong
, and
P.
Li
,
Sens. Actuators, A
333
,
113225
(
2022
).
75.
J.
Huang
,
L.
Zou
,
P.
Tian
,
Y.
Wang
, and
Q.
Zhang
,
J. Micromech. Microeng.
29
(
12
),
125006
(
2019
).
76.
Y.
Ouyang
,
M. N.
Manzano
,
K.
Beirnaert
,
G. J.
Heynderickx
, and
K. M.
Van Geem
,
AIChE J.
67
(
7
),
e17264
(
2021
).
77.
Y.
Ouyang
,
M. N.
Manzano
,
R.
Wetzels
,
S.
Chen
,
X.
Lang
,
G. J.
Heynderickx
, and
K. M.
Van Geem
,
Chem. Eng. Sci.
246
,
116970
(
2021
).
78.
T. S.
Sheu
,
S. J.
Chen
, and
J. J.
Chen
,
Chem. Eng. Sci.
71
,
321
(
2012
).
79.
S.
Bai
,
W.-S.
Li
,
W.
Liu
,
Y.
Luo
,
G.-W.
Chu
, and
J.-F.
Chen
,
Chem. Eng. Sci.
251
,
117407
(
2022
).
80.
A.
Afzal
and
K.-Y.
Kim
,
Chem. Eng. J.
203
,
182
(
2012
).
81.
A.
Shamloo
,
P.
Vatankhah
, and
A.
Akbari
,
Chem. Eng. Process. Process Intensif.
116
,
9
(
2017
).
82.
H.
Lv
and
X.
Chen
,
Int. J. Heat Mass Transfer
181
,
121902
(
2021
).
83.
F.
Mahmud
,
K. F.
Tamrin
,
S.
Mohamaddan
, and
N.
Watanabe
,
Processes
9
,
891
(
2021
).
84.
R.-J.
Wang
,
J.-W.
Wang
,
B.-Q.
Lijin
, and
Z.-F.
Zhu
,
Appl. Thermal Eng.
133
,
428
(
2018
).
85.
F.
Luo
,
J.
Yang
,
R.
Zhou
,
Y.
Li
,
T.
Luan
,
Z.
Li
,
J.
Wu
,
Q.
Shou
, and
X.
Xing
,
Phys. Fluids
34
(
7
),
072011
(
2022
).
86.
C.
Bai
,
W.
Zhou
,
S.
Yu
,
T.
Zheng
, and
C.
Wang
,
Sens. Actuators, A
346
,
113833
(
2022
).
87.
R.
Zhou
,
A.
Surendran
, and
J.
Wang
,
Sens. Actuators, A
326
,
112733
(
2021
).
88.
D.
Owen
,
M.
Ballard
,
A.
Alexeev
, and
P. J.
Hesketh
,
Sens. Actuators, A
251
,
84
(
2016
).
89.
R. E.
Pawinanto
,
J.
Yunas
, and
A. M.
Hashim
,
Microelectron. Eng.
234
,
111452
(
2020
).
90.
S.
Broeren
,
I. F.
Pereira
,
T.
Wang
,
J.
den Toonders
, and
Y.
Wang
,
Lab Chip
23
(
6
),
1524
(
2023
).
91.
B.
Dong
,
H.
Qian
,
C.
Xue
,
X.
Yang
,
G.
Li
, and
G. Z.
Chen
,
Adv. Powder Technol.
31
(
10
),
4292
(
2020
).
92.
F.
Mahmud
,
K. F.
Tamrin
, and
N. A.
Sheikh
, in
Advances in Waste Processing Technology
, edited by
A. Z.
Yaser
(
Springer Singapore
,
Singapore
,
2020
), p.
1
.
93.
L.
Li
,
C.
Yang
,
H.
Shi
,
W.-C.
Liao
,
H.
Huang
,
L.
James Lee
,
J. M.
Castro
, and
A. Y.
Yi
,
Polym. Eng. Sci.
50
(
8
),
1594
(
2010
).
94.
K. K.
Gill
,
Z.
Liu
, and
N. M.
Reis
,
Chem. Eng. J.
429
,
132266
(
2022
).
95.
J.
Wang
,
X.
Chen
,
H.
Liu
,
Y.
Li
,
T.
Lang
,
R.
Wang
,
B.
Cui
, and
W.
Zhu
,
ACS Omega
7
(
1
),
1527
(
2022
).
96.
M. N.
Sabry
,
S. H.
El-Emam
,
M. H.
Mansour
, and
M. A.
Shouman
,
Chem. Eng. Process. Process Intensif.
128
,
162
(
2018
).
97.
S.
Xiong
and
X.
Chen
,
Microfluid. Nanofluidics
25
(
11
),
92
(
2021
).
98.
X.
Chen
,
J.
Shen
, and
Z.
Hu
,
Sens. Rev.
38
(
3
),
321
(
2018
).
99.
B.
Mondal
,
S.
Pati
, and
P. K.
Patowari
,
Mater. Today Proc.
26
,
1271
(
2020
).
100.
Y.
Wang
,
C.
Weng
,
Z.
Deng
,
H.
Sun
, and
B.
Jiang
,
Appl. Surf. Sci.
615
,
156417
(
2023
).
101.
H.
Salmon
,
M.
Reza Rasouli
,
N.
Distasio
, and
M.
Tabrizian
,
Eng. Rep.
3
(
7
),
e12361
(
2021
).
102.
Y.
Lin
,
C.
Gao
,
D.
Gritsenko
,
R.
Zhou
, and
J.
Xu
,
Microfluid. Nanofluidics
22
(
9
),
97
(
2018
).
103.
H. D.
Lynh
and
C.
Pin-Chuan
,
Sens. Actuators, A
280
,
350
(
2018
).
104.
M.
Lee
,
M. J.
Lopez-Martinez
,
A.
Baraket
,
N.
Zine
,
J.
Esteve
,
J. A.
Plaza
,
N.
Jaffrezic-Renault
, and
A.
Errachid
,
J. Polym. Sci. Part A Polym. Chem.
51
(
1
),
59
(
2013
).
105.
A.
Lavrentieva
,
T.
Fleischhammer
,
A.
Enders
,
H.
Pirmahboub
,
J.
Bahnemann
, and
I.
Pepelanova
,
Macromol. Biosci.
20
(
7
),
2000107
(
2020
).
106.
E. J.
Roberts
,
L. R.
Karadaghi
,
L.
Wang
,
N.
Malmstadt
, and
R. L.
Brutchey
,
ACS Appl. Mater. Interfaces
11
(
31
),
27479
(
2019
).
107.
Y.
Khan
,
H.
Sadia
,
S. Z.
Ali Shah
,
M. N.
Khan
,
A. A.
Shah
,
N.
Ullah
,
M. F.
Ullah
,
H.
Bibi
,
O. T.
Bafakeeh
,
N. B.
Khedher
,
S. M.
Eldin
,
B. M.
Fadhl
, and
M. I.
Khan
,
Catalysts
12
,
1386
(
2022
).
108.
D.
Desai
,
Y. A.
Guerrero
,
V.
Balachandran
,
A.
Morton
,
L.
Lyon
,
B.
Larkin
, and
D. E.
Solomon
,
Nanomed. Nanotechnol. Biol. Med.
35
,
102402
(
2021
).
109.
I. S. L.
Abdul Hamid
,
B. K.
Khim
,
S. S.
Hamid
,
M. F.
Abd Rahman
, and
A. A.
Manaf
,
Micromachines
11
,
548
(
2020
).
110.
B.
Gale
,
A.
Jafek
,
C.
Lambert
,
B.
Goenner
,
H.
Moghimifam
,
U.
Nze
, and
S. K.
Kamarapu
,
Inventions
3
,
60
(
2018
).
111.
E.
Nady
,
G.
Nagy
, and
R.
Huszánk
,
Vacuum
190
,
110295
(
2021
).
112.
S. A.
Vasilescu
,
S. R.
Bazaz
,
D.
Jin
,
O.
Shimoni
, and
M. E.
Warkiani
,
Appl. Mater. Today
20
,
100726
(
2020
).
113.
X.
Wang
,
Z.
Liu
,
Y.
Cai
,
B.
Wang
, and
X.
Luo
,
Anal. Chim. Acta
1155
,
338355
(
2021
).
114.
Z.
Babaie
,
D.
Bahrami
, and
M.
Bayareh
,
Meccanica
57
(
1
),
73
(
2022
).
115.
S.
Najjaran
,
S.
Rashidi
, and
M. S.
Valipour
,
Int. Commun. Heat Mass Transfer
114
,
104564
(
2020
).
116.
S. K.
Mehta
and
S.
Pati
,
Ind. Eng. Chem. Res.
61
(
7
),
2904
(
2022
).
117.
L.-L.
Shen
,
G.-R.
Zhang
, and
B. J. M.
Etzold
,
ChemElectroChem
7
(
1
),
10
(
2020
).
118.
A. W.
Martinez
,
S. T.
Phillips
,
M. J.
Butte
, and
G. M.
Whitesides
,
Angew. Chem.
119
(
8
),
1340
(
2007
).
119.
P. B.
Deroco
,
D. W.
Junior
, and
L. T.
Kubota
,
Electroanalysis
35
(
1
),
e202200177
(
2023
).
You do not currently have access to this content.