Droplet microfluidics is an attractive technology to run parallel experiments with high throughput and scalability while maintaining the heterogeneous features of individual samples or reactions. Droplet sorting is utilized to collect the desired droplets based on droplet characterization and in-droplet content evaluation. A proper monitoring method is critical in this process, which governs the accuracy and maximum frequency of droplet handling. Until now, numerous monitoring methods have been integrated in the microfluidic devices for identifying droplets, such as optical spectroscopy, mass spectroscopy, electrochemical monitoring, and nuclear magnetic resonance spectroscopy. In this review, we summarize the features of various monitoring methods integrated into droplet sorting workflow and discuss their suitable condition and potential obstacles in use. We aim to provide a systematic introduction and an application guide for choosing and building a droplet monitoring platform.

1.
Y.
Ota
,
K.
Saito
,
T.
Takagi
,
S.
Matsukura
,
M.
Morita
,
S.
Tsuneda
, and
N.
Noda
, “
Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates
,”
PLoS One
14
(
4
),
e0214533
(
2019
).
2.
K. K.
Brower
,
C.
Carswell-Crumpton
,
S.
Klemm
,
B.
Cruz
,
G.
Kim
,
S. G. K.
Calhoun
,
L.
Nichols
, and
P. M.
Fordyce
, “
Double emulsion flow cytometry with high-throughput single droplet isolation and nucleic acid recovery
,”
Lab Chip
20
(
12
),
2062
2074
(
2020
).
3.
R.
Utharala
,
A.
Grab
,
V.
Vafaizadeh
,
N.
Peschke
,
M.
Ballinger
,
D.
Turei
,
N.
Tuechler
,
W.
Ma
,
O.
Ivanova
,
A. G.
Ortiz
,
J.
Saez-Rodriguez
, and
C. A.
Merten
, “
A microfluidic Braille valve platform for on-demand production, combinatorial screening and sorting of chemically distinct droplets
,”
Nat. Protoc.
17
(
12
),
2920
2965
(
2022
).
4.
D.
Vallejo
,
A.
Nikoomanzar
,
B. M.
Paegel
, and
J. C.
Chaput
, “
Fluorescence-activated droplet sorting for single-cell directed evolution
,”
ACS Synth. Biol.
8
(
6
),
1430
1440
(
2019
).
5.
H.
Yuan
,
R.
Tu
,
X.
Tong
,
Y.
Lin
,
Y.
Zhang
, and
Q.
Wang
, “
Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system
,”
J. Ind. Microbiol. Biotechnol.
49
(
3
),
806
813
(
2022
).
6.
L.
Mazutis
,
J.
Gilbert
,
W. L.
Ung
,
D. A.
Weitz
,
A. D.
Griffiths
, and
J. A.
Heyman
, “
Single-cell analysis and sorting using droplet-based microfluidics
,”
Nat. Protoc.
8
(
5
),
870
891
(
2013
).
7.
Z.
Yu
,
K.
Geisler
,
T.
Leontidou
,
R. E. B.
Young
,
S. E.
Vonlanthen
,
S.
Purton
,
C.
Abell
, and
A. G.
Smith
, “
Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications
,”
Algal Res.
56
,
102293
(
2021
).
8.
J.
Rutkauskaite
,
S.
Berger
,
S.
Stavrakis
,
O.
Dressler
,
J.
Heyman
,
I. S. X.
Casadevall
,
A.
deMello
, and
L.
Mazutis
, “
High-throughput single-cell antibody secretion quantification and enrichment using droplet microfluidics-based FRET assay
,”
iScience
25
(
7
),
104515
(
2022
).
9.
Y.
Zhang
and
Y.
Liu
, “
A digital microfluidic device integrated with electrochemical impedance spectroscopy for cell-based immunoassay
,”
Biosensors
12
(
5
),
330
(
2022
).
10.
A. C.
Sun
,
D. J.
Steyer
,
A. R.
Allen
,
E. M.
Payne
,
R. T.
Kennedy
, and
C. R. J.
Stephenson
, “
A droplet microfluidic platform for high-throughput photochemical reaction discovery
,”
Nat. Commun.
11
(
1
),
6202
(
2020
).
11.
K.
Eyer
,
R. C. L.
Doineau
,
C. E.
Castrillon
,
L.
Briseno-Roa
,
V.
Menrath
,
G.
Mottet
,
P.
England
,
A.
Godina
,
E.
Brient-Litzler
,
C.
Nizak
,
A.
Jensen
,
A. D.
Griffiths
,
J.
Bibette
,
P.
Bruhns
, and
J.
Baudry
, “
Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring
,”
Nat. Biotechnol.
35
(
10
),
977
982
(
2017
).
12.
X.
Fu
,
Y.
Zhang
,
Q.
Xu
,
X.
Sun
, and
F.
Meng
, “
Recent advances on sorting methods of high-throughput droplet-based microfluidics in enzyme directed evolution
,”
Front. Chem.
9
,
666867
(
2021
).
13.
P.
Li
,
Z.
Ma
,
Y.
Zhou
,
D. J.
Collins
,
Z.
Wang
, and
Y.
Ai
, “
Detachable acoustophoretic system for fluorescence-activated sorting at the single-droplet level
,”
Anal. Chem.
91
(
15
),
9970
9977
(
2019
).
14.
Y.
Qiao
,
R.
Hu
,
D.
Chen
,
L.
Wang
,
Z.
Wang
,
H.
Yu
,
Y.
Fu
,
C.
Li
,
Z.
Dong
,
Y. X.
Weng
, and
W.
Du
, “
Fluorescence-activated droplet sorting of PET degrading microorganisms
,”
J. Hazard. Mater.
424
(
Pt B
),
127417
(
2022
).
15.
M. E.
Blaha
,
S.
Hasan
,
C.
Dusny
, and
D.
Belder
, “
Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of Synechocystis sp. PCC6803
,”
Lab Chip
22
(
8
),
1604
1614
(
2022
).
16.
X.
Wang
,
Y.
Xin
,
L.
Ren
,
Z.
Sun
,
P.
Zhu
,
Y.
Ji
,
C.
Li
,
J.
Xu
, and
B.
Ma
, “
Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo
,”
Sci. Adv.
6
(
32
),
eabb3521
(
2020
).
17.
J.
Jeon
,
N.
Choi
,
H.
Chen
,
J. I.
Moon
,
L.
Chen
, and
J.
Choo
, “
SERS-based droplet microfluidics for high-throughput gradient analysis
,”
Lab Chip
19
(
4
),
674
681
(
2019
).
18.
V.
Anagnostidis
,
B.
Sherlock
,
J.
Metz
,
P.
Mair
,
F.
Hollfelder
, and
F.
Gielen
, “
Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures
,”
Lab Chip
20
(
5
),
889
900
(
2020
).
19.
M.
Girault
,
H.
Kim
,
H.
Arakawa
,
K.
Matsuura
,
M.
Odaka
,
A.
Hattori
,
H.
Terazono
, and
K.
Yasuda
, “
An on-chip imaging droplet-sorting system: A real-time shape recognition method to screen target cells in droplets with single cell resolution
,”
Sci. Rep.
7
,
40072
(
2017
).
20.
D. A.
Holland-Moritz
,
M. K.
Wismer
,
B. F.
Mann
,
I.
Farasat
,
P.
Devine
,
E. D.
Guetschow
,
I.
Mangion
,
C. J.
Welch
,
J. C.
Moore
,
S.
Sun
, and
R. T.
Kennedy
, “
Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale
,”
Angew. Chem., Int. Ed.
59
(
11
),
4470
4477
(
2020
).
21.
X.
Niu
,
M.
Zhang
,
S.
Peng
,
W.
Wen
, and
P.
Sheng
, “
Real-time detection, control, and sorting of microfluidic droplets
,”
Biomicrofluidics
1
(
4
),
44101
(
2007
).
22.
I.
Swyer
,
S.
von der Ecken
,
B.
Wu
,
A.
Jenne
,
R.
Soong
,
F.
Vincent
,
D.
Schmidig
,
T.
Frei
,
F.
Busse
,
H. J.
Stronks
,
A. J.
Simpson
, and
A. R.
Wheeler
, “
Digital microfluidics and nuclear magnetic resonance spectroscopy for in situ diffusion measurements and reaction monitoring
,”
Lab Chip
19
(
4
),
641
653
(
2019
).
23.
S.
Hasan
,
D.
Geissler
,
K.
Wink
,
A.
Hagen
,
J. J.
Heiland
, and
D.
Belder
, “
Fluorescence lifetime-activated droplet sorting in microfluidic chip systems
,”
Lab Chip
19
(
3
),
403
409
(
2019
).
24.
E. J.
Medcalf
,
M.
Gantz
,
T. S.
Kaminski
, and
F.
Hollfelder
, “
Ultra-high-throughput absorbance-activated droplet sorting for enzyme screening at kilohertz frequencies
,”
Anal. Chem.
95
(
10
),
4597
4604
(
2023
).
25.
T.
Yang
,
S.
Stavrakis
, and
A.
deMello
, “
A high-sensitivity, integrated absorbance and fluorescence detection scheme for probing picoliter-volume droplets in segmented flows
,”
Anal. Chem.
89
(
23
),
12880
12887
(
2017
).
26.
P. K.
Dasgupta
,
R. P.
Bhawal
,
Y. H.
Li
, and
A.
Ibraguimov
, “
Cavity-enhanced absorption measurements across broad absorbance and reflectivity ranges
,”
Anal. Chem.
86
(
8
),
3727
3734
(
2014
).
27.
I. J.
Hidi
,
M.
Jahn
,
K.
Weber
,
D.
Cialla-May
, and
J.
Popp
, “
Droplet based microfluidics: Spectroscopic characterization of levofloxacin and its SERS detection
,”
Phys. Chem. Chem. Phys.
17
(
33
),
21236
21242
(
2015
).
28.
Y.
Gu
,
A. C.
Zhang
,
Y.
Han
,
J.
Li
,
C.
Chen
, and
Y. H.
Lo
, “
Machine learning based real-time image-guided cell sorting and classification
,”
Cytometry, Part A
95
(
5
),
499
509
(
2019
).
29.
T.
Lombardo
,
L.
Lancellotti
,
C.
Souprayen
,
C.
Sella
, and
L.
Thouin
, “
Electrochemical detection of droplets in microfluidic devices: Simultaneous determination of velocity, size and content
,”
Electroanalysis
31
(
11
),
2103
2111
(
2019
).
30.
L. C.
Duarte
,
F.
Figueredo
,
L. E. B.
Ribeiro
,
E.
Corton
, and
W. K. T.
Coltro
, “
Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection
,”
Anal. Chim. Acta
1071
,
36
43
(
2019
).
31.
A.
Habicht
,
W.
Schmolke
,
G.
Goerigk
,
F.
Lange
,
K.
Saalwächter
,
M.
Ballauff
, and
S.
Seiffert
, “
Critical fluctuations and static inhomogeneities in polymer gel volume phase transitions
,”
J. Polym. Sci., Part B: Polym. Phys.
53
(
16
),
1112
1122
(
2015
).
32.
A.
Jenne
,
S.
von der Ecken
,
V.
Moxley-Paquette
,
R.
Soong
,
I.
Swyer
,
M.
Bastawrous
,
F.
Busse
,
W.
Bermel
,
D.
Schmidig
,
T.
Kuehn
,
R.
Kuemmerle
,
D.
Al Adwan-Stojilkovic
,
S.
Graf
,
T.
Frei
,
M.
Monette
,
A. R.
Wheeler
, and
A. J.
Simpson
, “
Integrated digital microfluidics NMR spectroscopy: A key step toward automated in vivo metabolomics
,”
Anal. Chem.
95
(
14
),
5858
5866
(
2023
).
33.
L.
Guo
,
W.
Zeng
,
S.
Xu
, and
J.
Zhou
, “
Fluorescence-activated droplet sorting for enhanced pyruvic acid accumulation by Candida glabrata
,”
Bioresour. Technol.
318
,
124258
(
2020
).
34.
G.
Sun
,
Y.
Teng
,
Z.
Zhao
,
L. F.
Cheow
,
H.
Yu
, and
C. H.
Chen
, “
Functional stem cell sorting via integrative droplet synchronization
,”
Anal. Chem.
92
(
11
),
7915
7923
(
2020
).
35.
A.
Dagkesamanskaya
,
K.
Langer
,
A. S.
Tauzin
,
C.
Rouzeau
,
D.
Lestrade
,
G.
Potocki-Veronese
,
L.
Boitard
,
J.
Bibette
,
J.
Baudry
,
D.
Pompon
, and
V.
Anton-Leberre
, “
Use of photoswitchable fluorescent proteins for droplet-based microfluidic screening
,”
J. Microbiol. Methods
147
,
59
65
(
2018
).
36.
O.
Caen
,
S.
Schutz
,
M. S. S.
Jammalamadaka
,
J.
Vrignon
,
P.
Nizard
,
T. M.
Schneider
,
J. C.
Baret
, and
V.
Taly
, “
High-throughput multiplexed fluorescence-activated droplet sorting
,”
Microsyst. Nanoeng.
4
,
33
(
2018
).
37.
R. H.
Cole
,
N.
de Lange
,
Z. J.
Gartner
, and
A. R.
Abate
, “
Compact and modular multicolour fluorescence detector for droplet microfluidics
,”
Lab Chip
15
(
13
),
2754
2758
(
2015
).
38.
R. H.
Cole
,
Z. J.
Gartner
, and
A. R.
Abate
, “
Multicolor fluorescence detection for droplet microfluidics using optical fibers
,”
J. Visualized Exp.
(
111
),
54010
(
2016
).
39.
S.
Vyawahare
,
M.
Brundage
,
A.
Kijac
,
M.
Gutierrez
,
M.
de Geus
,
S.
Sinha
, and
A.
Homyk
, “
Sorting droplets into many outlets
,”
Lab Chip
21
(
21
),
4262
4273
(
2021
).
40.
S.
Hasan
,
M. E.
Blaha
,
S. K.
Piendl
,
A.
Das
,
D.
Geissler
, and
D.
Belder
, “
Two-photon fluorescence lifetime for label-free microfluidic droplet sorting
,”
Anal. Bioanal. Chem.
414
(
1
),
721
730
(
2022
).
41.
A. M.
Nightingale
,
S. U.
Hassan
,
K.
Makris
,
W. T.
Bhuiyan
,
T. J.
Harvey
, and
X.
Niu
, “
Easily fabricated monolithic fluoropolymer chips for sensitive long-term absorbance measurement in droplet microfluidics
,”
RSC Adv.
10
(
51
),
30975
30981
(
2020
).
42.
T.
Lieske
,
W.
Uhring
,
N.
Dumas
,
A. I.
Skilitski
,
J.
Léonard
, and
D.
Fey
, “
Embedded fluorescence lifetime determination for high-throughput, low-photon-number applications
,”
J. Signal Process. Syst.
91
(
7
),
819
831
(
2018
).
43.
X.
Casadevall i Solvas
,
X.
Niu
,
K.
Leeper
,
S.
Cho
,
S. I.
Chang
,
J. B.
Edel
, and
A. J.
deMello
, “
Fluorescence detection methods for microfluidic droplet platforms
,”
J. Visualized Exp.
(
58
),
3791
3437
(
2011
).
44.
A. I.
Skilitsi
,
T.
Turko
,
D.
Cianfarani
,
S.
Barre
,
W.
Uhring
,
U.
Hassiepen
, and
J.
Leonard
, “
Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime
,”
Methods Appl. Fluoresc.
5
(
3
),
034002
(
2017
).
45.
W.
Khaddour
,
W.
Uhring
,
F.
Dadouche
,
V.
Frick
, and
M.
Madec
, “
Time-Resolved fluorescence measurement system for real-time high-throughput microfluidic droplet sorting
, in
2020 18th IEEE International New Circuits and Systems Conference (NEWCAS)
16
19 June 2020
(IEEE,
2020
), pp.
246
249
.
46.
S.
Abalde-Cela
,
A.
Gould
,
X.
Liu
,
E.
Kazamia
,
A. G.
Smith
, and
C.
Abell
, “
High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform
,”
J. R. Soc., Interface
12
(
106
),
20150216
(
2015
).
47.
S. J.
Mun
,
D.
Ko
,
H. U.
Kim
,
Y.
Han
,
Y. H.
Roh
,
B. G.
Kim
,
H. B.
Na
, and
K. W.
Bong
, “
Photopolymerization-based synthesis of uniform magnetic hydrogels and colorimetric glucose detection
,”
Materials
13
(
19
),
4401
(
2020
).
48.
F.
Gielen
,
R.
Hours
,
S.
Emond
,
M.
Fischlechner
,
U.
Schell
, and
F.
Hollfelder
, “
Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS)
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
47
),
E7383
E7389
(
2016
).
49.
T. A.
Duncombe
,
A.
Ponti
,
F. P.
Seebeck
, and
P. S.
Dittrich
, “
UV-Vis spectra-activated droplet sorting for label-free chemical identification and collection of droplets
,”
Anal. Chem.
93
(
38
),
13008
13013
(
2021
).
50.
J.
Probst
,
P.
Howes
,
P.
Arosio
,
S.
Stavrakis
, and
A.
deMello
, “
Broad-band spectrum, high-sensitivity absorbance spectroscopy in picoliter volumes
,”
Anal. Chem.
93
(
21
),
7673
7681
(
2021
).
51.
C. M.
Rushworth
,
G.
Jones
,
M.
Fischlechner
,
E.
Walton
, and
H.
Morgan
, “
On-chip cavity-enhanced absorption spectroscopy using a white light-emitting diode and polymer mirrors
,”
Lab Chip
15
(
3
),
711
717
(
2015
).
52.
E. S.
Richter
,
A.
Link
,
J. S.
McGrath
,
R. W.
Sparrow
,
M.
Gantz
,
E. J.
Medcalf
,
F.
Hollfelder
, and
T.
Franke
, “
Acoustic sorting of microfluidic droplets at kHz rates using optical absorbance
,”
Lab Chip
23
(
1
),
195
202
(
2022
).
53.
R. M.
Maceiczyk
,
D.
Hess
,
F. W. Y.
Chiu
,
S.
Stavrakis
, and
A. J.
deMello
, “
Differential detection photothermal spectroscopy: Towards ultra-fast and sensitive label-free detection in picoliter & femtoliter droplets
,”
Lab Chip
17
(
21
),
3654
3663
(
2017
).
54.
C.
Song
,
T.
Jin
,
R.
Yan
,
W.
Qi
,
T.
Huang
,
H.
Ding
,
S. H.
Tan
,
N. T.
Nguyen
, and
L.
Xi
, “
Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels
,”
Lab Chip
18
(
9
),
1292
1297
(
2018
).
55.
M.
Yu
,
Y.
Okawachi
,
A. G.
Griffith
,
M.
Lipson
, and
A. L.
Gaeta
, “
Microfluidic mid-infrared spectroscopy via microresonator-based dual-comb source
,”
Opt. Lett.
44
(
17
),
4259
4262
(
2019
).
56.
P. J.
Zurek
,
R.
Hours
,
U.
Schell
,
A.
Pushpanath
, and
F.
Hollfelder
, “
Growth amplification in ultrahigh-throughput microdroplet screening increases sensitivity of clonal enzyme assays and minimizes phenotypic variation
,”
Lab Chip
21
(
1
),
163
173
(
2021
).
57.
X.
Wang
,
L.
Ren
,
Y.
Su
,
Y.
Ji
,
Y.
Liu
,
C.
Li
,
X.
Li
,
Y.
Zhang
,
W.
Wang
,
Q.
Hu
,
D.
Han
,
J.
Xu
, and
B.
Ma
, “
Raman-activated droplet sorting (RADS) for label-free high-throughput screening of microalgal single-cells
,”
Anal. Chem.
89
(
22
),
12569
12577
(
2017
).
58.
C.
Zhai
,
C.
Hu
,
S.
Li
,
Y.
Ma
,
Y.
Zhang
,
T.
Guo
,
H.
Li
, and
X.
Hu
, “
The formation principle of micro-droplets induced by using optical tweezers
,”
Nanoscale Adv.
3
(
1
),
279
286
(
2021
).
59.
T.
Xu
,
Y.
Gong
,
X.
Su
,
P.
Zhu
,
J.
Dai
,
J.
Xu
, and
B.
Ma
, “
Phenome-genome profiling of single bacterial cell by Raman-activated gravity-driven encapsulation and sequencing
,”
Small
16
(
30
),
e2001172
(
2020
).
60.
X.
Jing
,
H.
Gou
,
Y.
Gong
,
X.
Su
,
Y.
Xu; Ji
,
Y.
Song
,
I. P.
Thompson
,
J.
Xu
, and
W. E.
Huang
, “
Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean
,”
Environ. Microbiol.
20
(
6
),
2241
2255
(
2018
).
61.
P.
Zhang
,
L.
Ren
,
X.
Zhang
,
Y.
Shan
,
Y.
Wang
,
Y.
Ji
,
H.
Yin
,
W. E.
Huang
,
J.
Xu
, and
B.
Ma
, “
Raman-activated cell sorting based on dielectrophoretic single-cell trap and release
,”
Anal. Chem.
87
(
4
),
2282
2289
(
2015
).
62.
N.
Nitta
,
T.
Iino
,
A.
Isozaki
,
M.
Yamagishi
,
Y.
Kitahama
,
S.
Sakuma
,
Y.
Suzuki
,
H.
Tezuka
,
M.
Oikawa
,
F.
Arai
,
T.
Asai
,
D.
Deng
,
H.
Fukuzawa
,
M.
Hase
,
T.
Hasunuma
,
T.
Hayakawa
,
K.
Hiraki
,
K.
Hiramatsu
,
Y.
Hoshino
,
M.
Inaba
,
Y.
Inoue
,
T.
Ito
,
M.
Kajikawa
,
H.
Karakawa
,
Y.
Kasai
,
Y.
Kato
,
H.
Kobayashi
,
C.
Lei
,
S.
Matsusaka
,
H.
Mikami
,
A.
Nakagawa
,
K.
Numata
,
T.
Ota
,
T.
Sekiya
,
K.
Shiba
,
Y.
Shirasaki
,
N.
Suzuki
,
S.
Tanaka
,
S.
Ueno
,
H.
Watarai
,
T.
Yamano
,
M.
Yazawa
,
Y.
Yonamine
,
D.
Di Carlo
,
Y.
Hosokawa
,
S.
Uemura
,
T.
Sugimura
,
Y.
Ozeki
, and
K.
Goda
, “
Raman image-activated cell sorting
,”
Nat. Commun.
11
(
1
),
3452
(
2020
).
63.
M. P.
Cecchini
,
J.
Hong
,
C.
Lim
,
J.
Choo
,
T.
Albrecht
,
A. J.
Demello
, and
J. B.
Edel
, “
Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic systems
,”
Anal. Chem.
83
(
8
),
3076
3081
(
2011
).
64.
K.
Kant
and
S.
Abalde-Cela
, “
Surface-enhanced Raman scattering spectroscopy and microfluidics: Towards ultrasensitive label-free sensing
,”
Biosensors
8
(
3
),
62
(
2018
).
65.
Y.
Sun
,
X.
Chen
,
Y.
Zheng
,
Y.
Song
,
H.
Zhang
, and
S.
Zhang
, “
Surface-enhanced Raman scattering trace-detection platform based on continuous-rolling-assisted evaporation on superhydrophobic surfaces
,”
ACS Appl. Nano Mater.
3
(
5
),
4767
4776
(
2020
).
66.
J.
Song
,
W.
Cheng
,
M.
Nie
,
X.
He
,
W.
Nam
,
J.
Cheng
, and
W.
Zhou
, “
Partial Leidenfrost evaporation-assisted ultrasensitive surface-enhanced Raman spectroscopy in a Janus water droplet on hierarchical plasmonic micro-/nanostructures
,”
ACS Nano
14
(
8
),
9521
9531
(
2020
).
67.
R.
Li
,
B.
Gui
,
H.
Mao
,
Y.
Yang
,
D.
Chen
, and
J.
Xiong
, “
Self-concentrated surface-enhanced Raman scattering-active droplet sensor with three-dimensional Hot spots for highly sensitive molecular detection in complex liquid environments
,”
ACS Sensors
5
(
11
),
3420
3431
(
2020
).
68.
D. J.
Steyer
and
R. T.
Kennedy
, “
High-throughput nanoelectrospray ionization-mass spectrometry analysis of microfluidic droplet samples
,”
Anal. Chem.
91
(
10
),
6645
6651
(
2019
).
69.
X. W.
Diefenbach
,
I.
Farasat
,
E. D.
Guetschow
,
C. J.
Welch
,
R. T.
Kennedy
,
S.
Sun
, and
J. C.
Moore
, “
Enabling biocatalysis by high-throughput protein engineering using droplet microfluidics coupled to mass spectrometry
,”
ACS Omega
3
(
2
),
1498
1508
(
2018
).
70.
R. L.
Ross
,
A. D.
Sauter
, Jr.
, and
P. A.
Limbach
, “
Induction based fluidics (IBF) for droplet-based mass spectrometric analysis of oligonucleotides
,”
J. Mass Spectrom.
50
(
10
),
1175
1179
(
2015
).
71.
L.
Zhou
,
Q.
Zhang
,
X.
Xu
,
X.
Huo
,
Q.
Zhou
,
X.
Wang
, and
Q.
Yu
, “
Fabricating an electrospray ionization chip based on induced polarization and liquid splitting
,”
Micromachines
12
(
9
),
1034
(
2021
).
72.
Y.
Zhang
,
S.
Kim
,
W.
Shi
,
Y.
Zhao
,
I.
Park
,
C.
Brenden
,
H.
Iyer
,
P.
Jha
,
R.
Bashir
,
J. V.
Sweedler
, and
Y.
Vlasov
, “
Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform
,”
Lab Chip
22
(
1
),
40
46
(
2021
).
73.
D.
Sun
,
K. F.
Bohringer
,
M.
Sorensen
,
E.
Nilsson
,
J. S.
Edgar
, and
D. R.
Goodlett
, “
Droplet delivery and nebulization system using surface acoustic wave for mass spectrometry
,”
Lab Chip
20
(
17
),
3269
3277
(
2020
).
74.
W.
Zhang
,
N.
Li
,
L.
Lin
,
Q.
Huang
,
K.
Uchiyama
, and
J. M.
Lin
, “
Concentrating single cells in picoliter droplets for phospholipid profiling on a microfluidic system
,”
Small
16
(
9
),
e1903402
(
2020
).
75.
F.
Chen
,
L.
Lin
,
J.
Zhang
,
Z.
He
,
K.
Uchiyama
, and
J. M.
Lin
, “
Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry
,”
Anal. Chem.
88
(
8
),
4354
4360
(
2016
).
76.
D.
Haidas
,
M.
Napiorkowska
,
S.
Schmitt
, and
P. S.
Dittrich
, “
Parallel sampling of nanoliter droplet arrays for noninvasive protein analysis in discrete yeast cultivations by MALDI-MS
,”
Anal. Chem.
92
(
5
),
3810
3818
(
2020
).
77.
S.
Srikanth
,
J. M.
Mohan
,
S.
Raut
,
S. K.
Dubey
,
I.
Ishii
,
A.
Javed
, and
S.
Goel
, “
Droplet based microfluidic device integrated with ink jet printed three electrode system for electrochemical detection of ascorbic acid
,”
Sens. Actuators, A
325
,
112685
(
2021
).
78.
J.
Zhong
,
M.
Liang
,
Q.
Tang
, and
Y.
Ai
, “
Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting
,”
Mater. Today Bio
19
,
100594
(
2023
).
79.
A.
Leroy
,
J.
Teixidor
,
A.
Bertsch
, and
P.
Renaud
, “
In-flow electrochemical detection of chemicals in droplets with pyrolysed photoresist electrodes: Application as a module for quantification of microsampled dopamine
,”
Lab Chip
21
(
17
),
3328
3337
(
2021
).
80.
K. J.
Klunder
,
K. M.
Clark
,
C.
McCord
,
K. E.
Berg
,
S. D.
Minteer
, and
C. S.
Henry
, “
Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics
,”
Lab Chip
19
(
15
),
2589
2597
(
2019
).
81.
H.
Goto
,
Y.
Kanai
,
A.
Yotsui
,
S.
Shimokihara
,
S.
Shitara
,
R.
Oyobiki
,
K.
Fujiwara
,
T.
Watanabe
,
Y.
Einaga
,
Y.
Matsumoto
,
N.
Miki
, and
N.
Doi
, “
Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases
,”
Lab Chip
20
(
4
),
852
861
(
2020
).
82.
J.
Panwar
,
R.
Utharala
,
L.
Fennelly
,
D.
Frenzel
, and
C. A.
Merten
, “
iSort enables automated complex microfluidic droplet sorting in an effort to democratize technology
,”
Cell Rep. Methods
3
(
5
),
100478
(
2023
).
83.
W.
Hale
,
G.
Rossetto
,
R.
Greenhalgh
,
G.
Finch
, and
M.
Utz
, “
High-resolution nuclear magnetic resonance spectroscopy in microfluidic droplets
,”
Lab Chip
18
(
19
),
3018
3024
(
2018
).
84.
M.
Wanselius
,
A.
Rodler
,
S. S.
Searle
,
S.
Abrahmsen-Alami
, and
P.
Hansson
, “
Responsive hyaluronic acid-ethylacrylamide microgels fabricated using microfluidics technique
,”
Gels
8
(
9
),
588
(
2022
).
85.
R.
Lu
,
P.
Lei
,
Q.
Yang
,
Z.
Ni
, and
H.
Yi
, “
Development of a microfluidic NMR device for rapid and quantitative detection of tumor markers
,”
Appl. Magn. Reson.
50
(
1–3
),
357
370
(
2019
).
86.
A.
Isozaki
,
H.
Mikami
,
H.
Tezuka
,
H.
Matsumura
,
K.
Huang
,
M.
Akamine
,
K.
Hiramatsu
,
T.
Iino
,
T.
Ito
,
H.
Karakawa
,
Y.
Kasai
,
Y.
Li
,
Y.
Nakagawa
,
S.
Ohnuki
,
T.
Ota
,
Y.
Qian
,
S.
Sakuma
,
T.
Sekiya
,
Y.
Shirasaki
,
N.
Suzuki
,
E.
Tayyabi
,
T.
Wakamiya
,
M.
Xu
,
M.
Yamagishi
,
H.
Yan
,
Q.
Yu
,
S.
Yan
,
D.
Yuan
,
W.
Zhang
,
Y.
Zhao
,
F.
Arai
,
R. E.
Campbell
,
C.
Danelon
,
D.
Di Carlo
,
K.
Hiraki
,
Y.
Hoshino
,
Y.
Hosokawa
,
M.
Inaba
,
A.
Nakagawa
,
Y.
Ohya
,
M.
Oikawa
,
S.
Uemura
,
Y.
Ozeki
,
T.
Sugimura
,
N.
Nitta
, and
K.
Goda
, “
Intelligent image-activated cell sorting 2.0
,”
Lab Chip
20
(
13
),
2263
2273
(
2020
).
87.
R.
Utharala
,
Q.
Tseng
,
E. E. M.
Furlong
, and
C. A.
Merten
, “
A versatile, low-cost, multiway microfluidic sorter for droplets, cells, and embryos
,”
Anal. Chem.
90
(
10
),
5982
5988
(
2018
).
88.
W. J.
Watterson
,
M.
Tanyeri
,
A. R.
Watson
,
C. M.
Cham
,
Y.
Shan
,
E. B.
Chang
,
A. M.
Eren
, and
S.
Tay
, “
Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes
,”
eLife
9
,
e56998
(
2020
).
89.
B. Y.
Yu
,
C.
Elbuken
,
C.
Shen
,
J. P.
Huissoon
, and
C. L.
Ren
, “
An integrated microfluidic device for the sorting of yeast cells using image processing
,”
Sci. Rep.
8
(
1
),
3550
(
2018
).
90.
R.
Kebriaei
and
A. S.
Basu
, “
Microfluidic protein detection and quantification using droplet morphology
,”
Microfluid. Nanofluid.
25
(
5
),
44
(
2021
).
91.
M.
Sesen
and
G.
Whyte
, “
Image-based single cell sorting automation in droplet microfluidics
,”
Sci. Rep.
10
(
1
),
8736
(
2020
).
You do not currently have access to this content.