Separation of blood components is required in many diagnostic applications and blood processes. In laboratories, blood is usually fractionated by manual operation involving a bulk centrifugation equipment, which significantly increases logistic burden. Blood sample processing in the field and resource-limited settings cannot be readily implemented without the use of microfluidic technology. In this study, we developed a small footprint, rapid, and passive microfluidic channel device that relied on margination and inertial focusing effects for blood component separation. No blood dilution, lysis, or labeling step was needed as to preserve sample integrity. One main innovation of this work was the insertion of fluidic restrictors at outlet ports to divert the separation interface into designated outlet channels. Thus, separation efficiency was significantly improved in comparison to previous works. We demonstrated different operation modes ranging from platelet or plasma extraction from human whole blood to platelet concentration from platelet-rich plasma through the manipulation of outlet port fluidic resistance. Using straight microfluidic channels with a high aspect ratio rectangular cross section, we demonstrated 95.4% platelet purity extracted from human whole blood. In plasma extraction, 99.9% RBC removal rate was achieved. We also demonstrated 2.6× concentration of platelet-rich plasma solution to produce platelet concentrate. The extraction efficiency and throughput rate are scalable with continuous and clog-free recirculation operation, in contrast to other blood fractionation approaches using filtration membranes or affinity-based purification methods. Our microfluidic blood separation method is highly tunable and versatile, and easy to be integrated into multi-step blood processing and advanced sample preparation workflows.

1.
W. S.
Mielczarek
,
E. A.
Obaje
,
T. T.
Bachmann
, and
M.
Kersaudy-Kerhoas
, “
Microfluidic blood plasma separation for medical diagnostics: Is it worth it?
,”
Lab Chip
16
,
3441
3448
(
2016
).
2.
G.
Cheng
, “
Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy
,”
Adv. Drug Delivery Rev.
81
,
75
93
(
2015
).
3.
T. D.
Johnson-Wimbley
and
D. Y.
Graham
, “
Diagnosis and management of iron deficiency anemia in the 21st century
,”
Ther. Adv. Gastroenterol.
4
,
177
184
(
2011
).
4.
S.
Neugebauer
et al, “
Metabolite profiles in sepsis: Developing prognostic tools based on the type of infection
,”
Crit. Care Med.
44
,
1649
1662
(
2016
).
5.
A.
Bettini
,
D.
Lapa
, and
A. R.
Garbuglia
, “
Diagnostics of Ebola virus
,”
Front. Public Health
11
,
1123024
(
2023
).
6.
M.
Stone
et al, “
Standardized evaluation of Zika nucleic acid tests used in clinical settings and blood screening
,”
PLoS Negl. Trop. Dis.
17
,
e0011157
(
2023
).
7.
H.
Wang
et al, “
SARS-CoV-2 nucleocapsid plasma antigen for diagnosis and monitoring of COVID-19
,”
Clin. Chem.
68
,
204
213
(
2021
).
8.
D. F.
Stroncek
and
P.
Rebulla
, “
Platelet transfusions
,”
Lancet
370
,
427
438
(
2007
).
9.
E. J.
Freireich
, “
Origins of platelet transfusion therapy
,”
Transfus. Med. Rev.
25
,
252
256
(
2011
).
10.
J. B.
Holcomb
et al, “
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial
,”
JAMA
313
,
471
482
(
2015
).
11.
A. D.
Fisher
,
E. A.
Miles
,
A. P.
Cap
,
G.
Strandenes
, and
S. F.
Kane
, “
Tactical damage control resuscitation
,”
Mil. Med.
180
,
869
875
(
2015
).
12.
B. L.
Eppley
,
J. E.
Woodell
, and
J.
Higgins
, “
Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing
,”
Plast. Reconstr. Surg.
114
,
1502
1508
(
2004
).
13.
E.
Anitua
,
A.
Pino
, and
G.
Orive
, “
Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity
,”
J. Wound Care
25
,
680
687
(
2016
).
14.
A.
Barbieri
et al, “
The effects of the use of platelet-rich plasma gel on local recurrence in an animal model of human fibrosarcoma
,”
Infect. Agents Cancer
14
,
21
(
2019
).
15.
A.
Greist
, “
The role of blood component removal in essential and reactive thrombocytosis
,”
Ther. Apher.
6
,
36
44
(
2002
).
16.
F.
Cui
,
M.
Rhee
,
A.
Singh
, and
A.
Tripathi
, “
Microfluidic sample preparation for medical diagnostics
,”
Annu. Rev. Biomed. Eng.
17
,
267
286
(
2015
).
17.
H.
Shimizu
,
M.
Kumagai
,
E.
Mori
,
K.
Mawatari
, and
T.
Kitamori
, “
Whole blood analysis using microfluidic plasma separation and enzyme-linked immunosorbent assay devices
,”
Anal. Methods
8
,
7597
7602
(
2016
).
18.
J.
Hauser
,
G.
Lenk
,
J.
Hansson
,
O.
Beck
,
G.
Stemme
, and
N.
Roxhed
, “
High-yield passive plasma filtration from human finger prick blood
,”
Anal. Chem.
90
,
13393
13399
(
2018
).
19.
F.
Lopresti
,
I.
Keraite
,
A. E.
Ongaro
,
N. M.
Howarth
,
V.
La Carrubba
, and
M.
Kersaudy-Kerhoas
, “
Engineered membranes for residual cell trapping on microfluidic blood plasma separation systems. A comparison between porous and nanofibrous membranes
,”
Membranes
11
,
680
(
2021
).
20.
K. R.
Baillargeon
,
J. R.
Bricknell
, and
C. R.
Mace
, “
In situ hemolysis in a three-dimensional paper-based device for quantification of intraerythrocytic analytes
,”
Anal. Methods
12
,
281
287
(
2020
).
21.
G.
Lippi
,
G. L.
Salvagno
,
M.
Montagnana
,
G.
Brocco
, and
G. C.
Guidi
, “
Influence of hemolysis on routine clinical chemistry testing
,”
Clin. Chem. Lab. Med.
44
,
311
316
(
2006
).
22.
F.
Marques-Garcia
, “
Methods for hemolysis interference study in laboratory medicine—A critical review
,”
EJIFCC
31
,
85
97
(
2020
).
23.
M. B.
Kirschner
et al, “
Haemolysis during sample preparation alters microRNA content of plasma
,”
PLoS ONE
6
,
e24145
(
2011
).
24.
N.
Lu
et al, “
Label-free microfluidic cell sorting and detection for rapid blood analysis
,”
Lab Chip
23
,
1226
1257
(
2023
).
25.
R.
Fåhræus
and
T.
Lindqvist
, “
The viscosity of the blood in narrow capillary tubes
,”
Am. J. Physiol. Legacy Content
96
,
562
568
(
1931
).
26.
H. W.
Hou
,
H. Y.
Gan
,
A. A. S.
Bhagat
,
L. D.
Li
,
C. T.
Lim
, and
J.
Han
, “
A microfluidics approach towards high-throughput pathogen removal from blood using margination
,”
Biomicrofluidics
6
,
024115
(
2012
).
27.
H. W.
Hou
et al, “
Broad spectrum immunomodulation using biomimetic blood cell margination for sepsis therapy
,”
Lab Chip
16
,
688
699
(
2016
).
28.
H. W.
Hou
et al, “
Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation
,”
Lab Chip
10
,
2605
2613
(
2010
).
29.
Y.
Chen
,
Y.
Feng
,
J.
Wan
, and
H.
Chen
, “
Enhanced separation of aged RBCs by designing channel cross section
,”
Biomicrofluidics
12
,
024106
(
2018
).
30.
S. S.
Shevkoplyas
,
T.
Yoshida
,
L. L.
Munn
, and
M. W.
Bitensky
, “
Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device
,”
Anal. Chem.
77
,
933
937
(
2005
).
31.
A.
Jain
and
L. L.
Munn
, “
Determinants of leukocyte margination in rectangular microchannels
,”
PLoS One
4
,
e7104
(
2009
).
32.
V.
Laxmi
,
S.
Tripathi
,
S. S.
Joshi
, and
A.
Agrawal
, “
Separation and enrichment of platelets from whole blood using a PDMS-based passive microdevice
,”
Ind. Eng. Chem. Res.
59
,
4792
4801
(
2020
).
33.
S.
Yang
,
A.
Undar
, and
J. D.
Zahn
, “
A microfluidic device for continuous, real time blood plasma separation
,”
Lab Chip
6
,
871
880
(
2006
).
34.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
, “
Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma
,”
Biorheology
43
,
147
159
(
2006
).
35.
V.
Laxmi
,
S. S.
Joshi
, and
A.
Agrawal
, “
Biophysical phenomenon-based separation of platelet-poor plasma from blood
,”
Ind. Eng. Chem. Res.
60
,
7464
7473
(
2021
).
36.
A. J.
Mach
and
D.
Di Carlo
, “
Continuous scalable blood filtration device using inertial microfluidics
,”
Biotechnol. Bioeng.
107
,
302
311
(
2010
).
37.
Z.
Wu
,
B.
Willing
,
J.
Bjerketorp
,
J. K.
Jansson
, and
K.
Hjort
, “
Soft inertial microfluidics for high throughput separation of bacteria from human blood cells
,”
Lab Chip
9
,
1193
1199
(
2009
).
38.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
18892
18897
(
2007
).
39.
J.
Zhang
,
S.
Yan
,
W.
Li
,
G.
Alici
, and
N.-T.
Nguyen
, “
High throughput extraction of plasma using a secondary flow-aided inertial microfluidic device
,”
RSC Adv.
4
,
33149
33159
(
2014
).
40.
Y.
Zhou
,
Z.
Ma
, and
Y.
Ai
, “
Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures
,”
Microsyst. Nanoeng.
4
,
5
(
2018
).
41.
E.
Sollier
et al, “
Size-selective collection of circulating tumor cells using vortex technology
,”
Lab Chip
14
,
63
77
(
2014
).
42.
M.
Dhar
et al, “
High efficiency vortex trapping of circulating tumor cells
,”
Biomicrofluidics
9
,
064116
(
2015
).
43.
J.
Che
et al, “
Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic vortex technology
,”
Oncotarget
7
,
12748
12760
(
2016
).
44.
M. G.
Lee
,
J. H.
Shin
,
C. Y.
Bae
,
S.
Choi
, and
J.-K.
Park
, “
Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress
,”
Anal. Chem.
85
,
6213
6218
(
2013
).
45.
X.
Wang
,
X.
Yang
, and
I.
Papautsky
, “
An integrated inertial microfluidic vortex sorter for tunable sorting and purification of cells
,”
Technology
04
,
88
97
(
2016
).
46.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumarb
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle separation in spiral microchannels
,”
Lab Chip
9
,
2973
2980
(
2009
).
47.
N.
Nivedita
and
I.
Papautsky
, “
Continuous separation of blood cells in spiral microfluidic devices
,”
Biomicrofluidics
7
,
054101
(
2013
).
48.
B.-W.
Li
et al, “
Enhanced separation efficiency and purity of circulating tumor cells based on the combined effects of double sheath fluids and inertial focusing
,”
Front. Bioeng. Biotechnol.
9
,
750444
(
2021
).
49.
A.
Rodríguez-Pena
et al, “
Design and validation of a tunable inertial microfluidic system for the efficient enrichment of circulating tumor cells in blood
,”
Bioeng. Transl. Med.
7
,
e10331
(
2022
).
50.
H.
Ryu
,
K.
Choi
,
Y.
Qu
,
T.
Kwon
,
J. S.
Lee
, and
J.
Han
, “
Patient-derived airway secretion dissociation technique to isolate and concentrate immune cells using closed-loop inertial microfluidics
,”
Anal. Chem.
89
,
5549
5556
(
2017
).
51.
H. M.
Tay
,
W. H.
Yeap
,
R.
Dalan
,
S. C.
Wong
, and
H. W.
Hou
, “
Multiplexed label-free fractionation of peripheral blood mononuclear cells for identification of monocyte-platelet aggregates
,”
Anal. Chem.
90
,
14535
14542
(
2018
).
52.
S.
Zhu
,
D.
Wu
,
Y.
Han
,
C.
Wang
,
N.
Xiang
, and
Z.
Ni
, “
Inertial microfluidic cube for automatic and fast extraction of white blood cells from whole blood
,”
Lab Chip
20
,
244
252
(
2020
).
53.
H.
Jeon
et al, “
Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics
,”
Lab Chip
20
,
3612
3624
(
2020
).
54.
A.
Sarkar
,
H. W.
Hou
,
A. E.
Mahan
,
J.
Han
, and
G.
Alter
, “
Multiplexed affinity-based separation of proteins and cells using inertial microfluidics
,”
Sci. Rep.
6
,
23589
(
2016
).
55.
K.
Choi
et al, “
Negative selection by spiral inertial microfluidics improves viral recovery and sequencing from blood
,”
Anal. Chem.
90
,
4657
4662
(
2018
).
56.
H. M.
Tay
et al, “
Direct isolation of circulating extracellular vesicles from blood for vascular risk profiling in type 2 diabetes mellitus
,”
Lab Chip
21
,
2511
2523
(
2021
).
57.
N.
Xiang
and
Z.
Ni
, “
High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices
,”
Biomed. Microdevices
17
,
110
(
2015
).
58.
M.
Rafeie
,
J.
Zhang
,
M.
Asadnia
,
W.
Li
, and
M. E.
Warkiani
, “
Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation
,”
Lab Chip
16
,
2791
2802
(
2016
).
59.
M.
Robinson
,
H.
Marks
,
T.
Hinsdale
,
K.
Maitland
, and
G.
Coté
, “
Rapid isolation of blood plasma using a cascaded inertial microfluidic device
,”
Biomicrofluidics
11
,
024109
(
2017
).
60.
H.
Feng
,
D.
Patel
,
J. J.
Magda
,
S.
Geher
,
P. A.
Sigala
, and
B. K.
Gale
, “
Multiple-streams focusing-based cell separation in high viscoelasticity flow
,”
ACS Omega
7
,
41759
41767
(
2022
).
61.
M. A.
Faridi
,
H.
Ramachandraiah
,
I.
Banerjee
,
S.
Ardabili
,
S.
Zelenin
, and
A.
Russom
, “
Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics
,”
J. Nanobiotechnol.
15
,
3
(
2017
).
62.
S. N.
Iyengar
,
T.
Kumar
,
G.
Mårtensson
, and
A.
Russom
, “
High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics
,”
Electrophoresis
42
,
2538
2551
(
2021
).
63.
T.
Zhang
et al, “
Microfluidic separation and enrichment of Escherichia coli by size using viscoelastic flows
,”
Anal. Chem.
95
,
2561
2569
(
2023
).
64.
J.-J.
Bai
et al, “
Dean-flow-coupled elasto-inertial focusing accelerates exosome purification to facilitate single vesicle profiling
,”
Anal. Chem.
95
,
2523
2531
(
2023
).
65.
Y.
Dai
et al, “
Enhanced blood plasma extraction utilising viscoelastic effects in a serpentine microchannel
,”
Biosensors
12
,
120
(
2022
).
66.
P.
Sethu
,
A.
Sin
, and
M.
Toner
, “
Microfluidic diffusive filter for apheresis (leukapheresis)
,”
Lab Chip
6
,
83
89
(
2006
).
67.
D. L.
Lezzar
,
F. W.
Lam
,
R.
Huerta
,
A.
Mukhamedshin
,
M.
Lu
, and
S. S.
Shevkoplyas
, “
A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis
,”
Sci. Rep.
12
,
13798
(
2022
).
68.
K.
Abhishek
et al, “
Red blood cell rosetting enables size-based separation of specific lymphocyte subsets from blood in a microfluidic device
,”
Lab Chip
23
,
1804
1815
(
2023
).
69.
H.
Xia
,
B. C.
Strachan
,
S. C.
Gifford
, and
S. S.
Shevkoplyas
, “
A high-throughput microfluidic approach for 1000-fold leukocyte reduction of platelet-rich plasma
,”
Sci. Rep.
6
,
35943
(
2016
).
70.
S. C.
Gifford
et al, “
A portable system for processing donated whole blood into high quality components without centrifugation
,”
PLoS ONE
13
,
e0190827
(
2018
).
71.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle filtration and extraction
,”
Microfluid. Nanofluid.
7
,
217
226
(
2009
).
72.
E. W.
Lam
,
G. A.
Cooksey
,
B. A.
Finlayson
, and
A.
Folch
, “
Microfluidic circuits with tunable flow resistances
,”
Appl. Phys. Lett.
89
,
164105
(
2006
).
73.
P. A.
Aarts
,
S. A.
Van den Broek
,
G. W.
Prins
,
G. D.
Kuiken
,
J. J.
Sixma
, and
R. M.
Heethaar
, “
Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood
,”
Arterioscler. Off. J. Am. Heart Assoc. Inc.
8
,
819
824
(
1988
).
74.
E. C.
Eckstein
,
A. W.
Tilles
, and
F. J.
Millero
III
, “
Conditions for the occurrence of large near-wall excesses of small particles during blood flow
,”
Microvasc. Res.
36
,
31
39
(
1988
).
75.
H.-Y.
Chang
,
A.
Yazdani
,
X.
Li
,
K. A. A.
Douglas
,
C. S.
Mantzoros
, and
G. E.
Karniadakis
, “
Quantifying platelet margination in diabetic blood flow
,”
Biophys. J.
115
,
1371
1382
(
2018
).
76.
M.
Sugihara-Seki
and
N.
Takinouchi
, “
Margination of platelet-sized particles in the red blood cell suspension flow through square microchannels
,”
Micromachines
12
,
1175
(
2021
).
77.
A. W.
Tilles
and
E. C.
Eckstein
, “
The near-wall excess of platelet-sized particles in blood flow: Its dependence on hematocrit and wall shear rate
,”
Microvasc. Res.
33
,
211
223
(
1987
).
78.
K.
Müller
,
D. A.
Fedosov
, and
G.
Gompper
, “
Margination of micro- and nano-particles in blood flow and its effect on drug delivery
,”
Sci. Rep.
4
,
4871
(
2014
).
79.
E. S.
Machado
et al, “
A simple double-spin closed method for preparing platelet-rich plasma
,”
Cureus
14
,
e20899
(
2022
).
80.
T. E.
Harrison
,
J.
Bowler
,
T. N.
Levins
,
A.-L.
Cheng
, and
K. D.
Reeves
, “
Platelet yield and yield consistency for six single-spin methods of platelet rich plasma preparation
,”
Platelets
31
,
661
666
(
2020
).
81.
L. M.
Lee
,
J. W.
Lee
,
D.
Chase
,
D.
Gebrezgiabhier
, and
A. P.
Liu
, “
Development of an advanced microfluidic micropipette aspiration device for single cell mechanics studies
,”
Biomicrofluidics
10
,
054105
(
2016
).
82.
M. L.
Salva
,
Y.
Temiz
,
M.
Rocca
,
Y. C.
Arango
,
C. M.
Niemeyer
, and
E.
Delamarche
, “
Programmable hydraulic resistor for microfluidic chips using electrogate arrays
,”
Sci. Rep.
9
,
17242
(
2019
).
83.
A.
Sengupta
, “
Tuning fluidic resistance via liquid crystal microfluidics
,”
Int. J. Mol. Sci.
14
,
22826
22844
(
2013
).
84.
L. M.
Lee
et al, “
Label-free enrichment of human adipose-derived stem cells using a continuous microfluidic sorting cascade
,”
Lab Chip
23
,
2131
2140
(
2023
).
85.
B.
Jundi
et al, “
Leukocyte function assessed via serial microlitre sampling of peripheral blood from sepsis patients correlates with disease severity
,”
Nat. Biomed. Eng.
3
,
961
973
(
2019
).
86.
N.
Castaño
,
S.
Kim
,
A. M.
Martin
,
S. J.
Galli
,
K. C.
Nadeau
, and
S. K. Y.
Tang
, “
Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system
,”
Lab Chip
22
,
1690
1701
(
2022
).
87.
F.
Fachin
et al, “
Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells
,”
Sci. Rep.
7
,
10936
(
2017
).

Supplementary Material

You do not currently have access to this content.