The separation of peripheral blood mononuclear cells (PBMCs) into constituent blood cell types is a vital step to obtain immune cells for autologous cell therapies. The ability to separate PBMCs using label-free microfluidic techniques, based on differences in biomechanical properties, can have a number of benefits over other conventional techniques, including lower cost, ease of use, and avoidance of animal-derived labeling antibodies. Here, we report a microfluidic device that uses compressive diagonal ridges to separate PBMCs into highly pure samples of viable and functional lymphocytes. The technique utilizes the differences in the biophysical properties of PBMC sub-populations to direct the lymphocytes and monocytes into separate outlets. The biophysical properties of the monocytes and lymphocytes from healthy donors were first characterized using atomic force microscopy. Lymphocytes were found to be significantly stiffer than monocytes, with a mean cell stiffness of 1495 and 931 Pa, respectively. The differences in biophysical properties resulted in distinct trajectories through the microchannel terminating at different outlets, resulting in a lymphocyte sample with purity and viability both greater than 96% with no effect on the cells’ ability to produce interferon gamma, a cytokine crucial for innate and adaptive immunity.

1.
T. R. J.
Heathman
et al, “
The translation of cell-based therapies: Clinical landscape and manufacturing challenges
,”
Regener. Med.
10
,
49
64
(
2015
).
2.
ClinicalTrials.gov.
3.
N. N.
Watkins
et al, “
Microfluidic CD4 + and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood
,”
Sci. Transl. Med.
5
,
214ra170
(
2013
).
4.
M.
Sadelain
,
I.
Rivière
, and
S.
Riddell
, “
Therapeutic T cell engineering
,”
Nature
545
,
423
431
(
2017
).
5.
D. F.
Stroncek
,
J.
Ren
,
D. W.
Lee
,
M.
Tran
,
S. E.
Frodigh
,
M.
Sabatino
,
H.
Khuu
,
M. S.
Merchant
, and
C. L.
Mackall
, “
Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells
,”
Cytotherapy
18
,
893
901
(
2016
).
6.
K.
Menck
et al, “
Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags
,”
J. Visualized Exp.
91,
1
10
(
2014
).
7.
D. F.
Stroncek
et al, “
Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies
,”
J. Transl. Med.
12
,
241
(
2014
).
8.
C.
Lissandrello
,
R.
Dubay
,
K. T.
Kotz
, and
J.
Fiering
, “
Purification of lymphocytes by acoustic separation in plastic microchannels
,”
SLAS Technol.
23
,
352
363
(
2018
).
9.
A.
Mohd Noor
et al, “
A microfluidic chip for capturing, imaging and counting CD3+ T-lymphocytes and CD19+ B-lymphocytes from whole blood
,”
Sens. Actuators, B
276
,
107
113
(
2018
).
10.
D. K.
Moore
et al, “
Isolation of B-cells using miltenyi MACS bead isolation kits
,”
PLoS One
14
,
e0213832
(
2019
).
11.
E.
Fung
,
L.
Esposito
,
J. A.
Todd
, and
L. S.
Wicker
, “
Multiplexed immunophenotyping of human antigen-presenting cells in whole blood by polychromatic flow cytometry
,”
Nat. Protoc.
5
,
357
370
(
2010
).
12.
W.
Tang
et al, “
Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles
,”
Electrophoresis
40
,
930
954
(
2019
).
13.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
,
2369
2376
(
2012
).
14.
A.
Sarkar
,
H. W.
Hou
,
A. E.
Mahan
,
J.
Han
, and
G.
Alter
, “
Multiplexed affinity-based separation of proteins and cells using inertial microfluidics
,”
Sci. Rep.
6
,
23589
(
2016
).
15.
Y. C.
Kung
,
K. R.
Niazi
, and
P. Y.
Chiou
, “
Tunnel dielectrophoresis for ultra-high precision size-based cell separation
,”
Lab Chip
21
,
1049
1060
(
2021
).
16.
G.
Wang
et al, “
Stiffness dependent separation of cells in a microfluidic device
,”
PLoS One
8
,
e75901
(
2013
).
17.
M.
Islam
et al, “
Microfluidic sorting of cells by viability based on differences in cell stiffness
,”
Sci. Rep.
7
,
1997
(
2017
).
18.
M.
Islam
et al, “
Microfluidic cell sorting by stiffness to examine heterogenic responses of cancer cells to chemotherapy
,”
Cell Death Dis.
9
,
239
(
2018
).
19.
B.
Tasadduq
,
W.
Lam
,
A.
Alexeev
,
A. F.
Sarioglu
, and
T.
Sulchek
, “
Enhancing size based size separation through vertical focus microfluidics using secondary flow in a ridged microchannel
,”
Sci. Rep.
7
,
17375
(
2017
).
20.
A.
Alexeev
et al, “
Continuous sorting of cells based on differential P selectin glycoprotein ligand expression using molecular adhesion
,”
Anal. Chem.
89
,
11545
11551
(
2017
).
21.
D. R.
Gossett
et al, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
22.
A.
Kumar
and
A.
Bhardwaj
, “
Methods in cell separation for biomedical application: Cryogels as a new tool
,”
Biomed. Mater.
3
,
034008
(
2008
).
23.
J. O.
Lamvik
, “
Separation of lymphocytes from human blood
,”
Acta Haematol.
35
,
294
303
(
1966
).
24.
D. J.
Powell
et al, “
Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program
,”
Cytotherapy
11
,
923
935
(
2009
).
25.
I.
Andrä
et al, “
An evaluation of T-cell functionality after flow cytometry sorting revealed p38 MAPK activation
,”
Cytometry, Part A
97
,
171
183
(
2020
).
26.
S. K.
Murthy
,
A.
Sin
,
R. G.
Tompkins
, and
M.
Toner
, “
Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers
,”
Langmuir
20
,
11649
11655
(
2004
).
27.
J.
Darabi
and
C.
Guo
, “
On-chip magnetophoretic isolation of CD4 + T cells from blood
,”
Biomicrofluidics
7
,
1
14
(
2013
).
28.
C.
Grenvall
,
C.
Magnusson
,
H.
Lilja
, and
T.
Laurell
, “
Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis
,”
Anal. Chem.
87
,
5596
5604
(
2015
).
29.
P. L.
Chiu
,
C. H.
Chang
,
Y. L.
Lin
,
P. H.
Tsou
, and
B. R.
Li
, “
Rapid and safe isolation of human peripheral blood B and T lymphocytes through spiral microfluidic channels
,”
Sci. Rep.
9
,
8145
(
2019
).
30.
P.
Bhat
,
G.
Leggatt
,
N.
Waterhouse
, and
I. H.
Frazer
, “
Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity
,”
Cell Death Dis.
8
,
e2836
(
2017
).
31.
N. A.
Saunders
and
A. M.
Jetten
, “
Control of growth regulatory and differentiation-specific genes in human epidermal keratinocytes by interferon γ: Antagonism by retinoic acid and transforming growth factor β1
,”
J. Biol. Chem.
269
,
2016
2022
(
1994
).
32.
T.
Karlsson
,
A.
Vahlquist
, and
H.
Törmä
, “
Keratinocyte differentiation induced by calcium, phorbol ester or interferon-γ elicits distinct changes in the retinoid signalling pathways
,”
J. Dermatol. Sci.
57
,
207
213
(
2010
).
33.
K. M.
Young
,
P. G.
Shankles
,
T.
Chen
,
K.
Ahkee
,
S.
Bules
, and
T.
Sulchek
, “
Scaling microfluidic throughput with flow-balanced manifolds to simply control devices with multiple inlets and outlets
,”
Biomicrofluidics
16
,
1
10
(
2022
).

Supplementary Material

You do not currently have access to this content.