Imaging and impedance flow cytometry is a label-free technique that has shown promise as a potential replacement for standard flow cytometry. This is due to its ability to provide rich information and archive high-throughput analysis. Recently, significant efforts have been made to leverage machine learning for processing the abundant data generated by those techniques, enabling rapid and accurate analysis. Harnessing the power of machine learning, imaging and impedance flow cytometry has demonstrated its capability to address various complex phenotyping scenarios. Herein, we present a comprehensive overview of the detailed strategies for implementing machine learning in imaging and impedance flow cytometry. We initiate the discussion by outlining the commonly employed setup to acquire the data (i.e., image or signal) from the cell. Subsequently, we delve into the necessary processes for extracting features from the acquired image or signal data. Finally, we discuss how these features can be utilized for cell phenotyping through the application of machine learning algorithms. Furthermore, we discuss the existing challenges and provide insights for future perspectives of intelligent imaging and impedance flow cytometry.

1.
K. M.
McKinnon
, “
Flow cytometry: An overview
,”
Curr. Protoc. Immunol.
120
(
1
), 5.1.1–5.1.11 (
2018
).
2.
D.
Pischel
,
J. H.
Buchbinder
,
K.
Sundmacher
,
I. N.
Lavrik
, and
R. J.
Flassig
, “
A guide to automated apoptosis detection: How to make sense of imaging flow cytometry data
,”
PLOS One
13
(
5
),
e0197208
(
2018
).
3.
S. D.
Tanner
,
V. I.
Baranov
,
O. I.
Ornatsky
,
D. R.
Bandura
, and
T. C.
George
, “
An introduction to mass cytometry: Fundamentals and applications
,”
Cancer Immunol., Immunother.
62
(
5
),
955
965
(
2013
).
4.
R. B. M.
Schasfoort
,
F.
Abali
,
I.
Stojanovic
,
G.
Vidarsson
, and
L. W. M. M.
Terstappen
, “
Trends in SPR cytometry: Advances in label-free detection of cell parameters
,”
Biosensors
8
(
4
),
102
(
2018
).
5.
T.
Sun
and
H.
Morgan
, “
Single-cell microfluidic impedance cytometry: A review
,”
Microfluid. Nanofluid.
8
(
4
),
423
443
(
2010
).
6.
P.
Rees
,
H. D.
Summers
,
A.
Filby
,
A. E.
Carpenter
, and
M.
Doan
, “
Imaging flow cytometry
,”
Nat. Rev. Methods Primers
2
(
1
),
1
13
(
2022
).
7.
S.
Stavrakis
,
G.
Holzner
,
J.
Choo
, and
A.
deMello
, “
High-throughput microfluidic imaging flow cytometry
,”
Curr. Opin. Biotechnol.
55
,
36
43
(
2019
).
8.
C.
Honrado
,
P.
Bisegna
,
N. S.
Swami
, and
F.
Caselli
, “
Single-cell microfluidic impedance cytometry: From raw signals to cell phenotypes using data analytics
,”
Lab Chip
21
(
1
),
22
54
(
2021
).
9.
Y.
Han
,
Y.
Gu
,
A.
Ce Zhang
, and
Y.-H.
Lo
, “
Review: Imaging technologies for flow cytometry
,”
Lab Chip
16
(
24
),
4639
4647
(
2016
).
10.
B. Y.
Yu
,
C.
Elbuken
,
C. L.
Ren
, and
J. P.
Huissoon
, “
Image processing and classification algorithm for yeast cell morphology in a microfluidic chip
,”
J. Biomed. Opt.
16
(
6
),
066008
(
2011
).
11.
C.
Zhang
,
K.-C.
Huang
,
B.
Rajwa
,
J.
Li
,
S.
Yang
,
H.
Lin
,
C.
Liao
,
G.
Eakins
,
S.
Kuang
,
V.
Patsekin
,
J. P.
Robinson
, and
J.-X.
Cheng
, “
Stimulated Raman scattering flow cytometry for label-free single-particle analysis
,”
Optica
4
(
1
),
103
109
(
2017
).
12.
Q. T. K.
Lai
,
K. C. M.
Lee
,
A. H. L.
Tang
,
K. K. Y.
Wong
,
H. K. H.
So
, and
K. K.
Tsia
, “
High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton
,”
Opt. Express
24
(
25
),
28170
28184
(
2016
).
13.
V.
Dashkova
,
D.
Malashenkov
,
N.
Poulton
,
I.
Vorobjev
, and
N. S.
Barteneva
, “
Imaging flow cytometry for phytoplankton analysis
,”
Methods
112
,
188
200
(
2017
).
14.
T.
Tang
,
X.
Liu
,
Y.
Yuan
,
R.
Kiya
,
Y.
Shen
,
T.
Zhang
,
K.
Suzuki
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Dual-frequency impedance assays for intracellular components in microalgal cells
,”
Lab Chip
22
(
3
),
550
559
(
2022
).
15.
T.
Tang
,
X.
Liu
,
R.
Kiya
,
Y.
Shen
,
Y.
Yuan
,
T.
Zhang
,
K.
Suzuki
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Microscopic impedance cytometry for quantifying single cell shape
,”
Biosens. Bioelectron.
193
,
113521
(
2021
).
16.
D. S.
de Bruijn
,
K. F. A.
Jorissen
,
W.
Olthuis
, and
A.
van den Berg
, “
Determining particle size and position in a coplanar electrode setup using measured opacity for microfluidic cytometry
,”
Biosensors (Basel)
11
(
10
),
353
(
2021
).
17.
J.
Zhong
,
D.
Yang
,
Y.
Zhou
,
M.
Liang
, and
Y.
Ai
, “
Multi-frequency single cell electrical impedance measurement for label-free cell viability analysis
,”
Analyst
146
(
6
),
1848
1858
(
2021
).
18.
C.
Lei
,
H.
Kobayashi
,
Y.
Wu
,
M.
Li
,
A.
Isozaki
,
A.
Yasumoto
,
H.
Mikami
,
T.
Ito
,
N.
Nitta
,
T.
Sugimura
,
M.
Yamada
,
Y.
Yatomi
,
D. D.
Carlo
,
Y.
Ozeki
, and
K.
Goda
, “
High-throughput imaging flow cytometry by optofluidic time-stretch microscopy
,”
Nat. Protoc.
13
(
7
),
1603
1631
(
2018
).
19.
A. S.
Rane
,
J.
Rutkauskaite
,
A.
deMello
, and
S.
Stavrakis
, “
High-throughput multi-parametric imaging flow cytometry
,”
Chem
3
(
4
),
588
602
(
2017
).
20.
D. C.
Spencer
,
T. F.
Paton
,
K. T.
Mulroney
,
T. J. J.
Inglis
,
J. M.
Sutton
, and
H.
Morgan
, “
A fast impedance-based antimicrobial susceptibility test
,”
Nat. Commun.
11
(
1
),
5328
(
2020
).
21.
T.
Sun
,
S.
Gawad
,
C.
Bernabini
,
N. G.
Green
, and
H.
Morgan
, “
Broadband single cell impedance spectroscopy using maximum length sequences: Theoretical analysis and practical considerations
,”
Meas. Sci. Technol.
18
(
9
),
2859
(
2007
).
22.
C.
Opitz
,
G.
Schade
,
S.
Kaufmann
,
M. D.
Berardino
,
M.
Ottiger
, and
S.
Grzesiek
, “
Rapid determination of general cell status, cell viability, and optimal harvest time in eukaryotic cell cultures by impedance flow cytometry
,”
Appl. Microbiol. Biotechnol.
103
(
20
),
8619
8629
(
2019
).
23.
H.
Song
,
Y.
Wang
,
J. M.
Rosano
,
B.
Prabhakarpandian
,
C.
Garson
,
K.
Pant
, and
E.
Lai
, “
A microfluidic impedance flow cytometer for identification of differentiation state of stem cells
,”
Lab Chip
13
(
12
),
2300
2310
(
2013
).
24.
T.
Blasi
,
H.
Hennig
,
H. D.
Summers
,
F. J.
Theis
,
J.
Cerveira
,
J. O.
Patterson
,
D.
Davies
,
A.
Filby
,
A. E.
Carpenter
, and
P.
Rees
, “
Label-free cell cycle analysis for high-throughput imaging flow cytometry
,”
Nat. Commun.
7
(
1
),
10256
(
2016
).
25.
P.
Eulenberg
,
N.
Köhler
,
T.
Blasi
,
A.
Filby
,
A. E.
Carpenter
,
P.
Rees
,
F. J.
Theis
, and
F. A.
Wolf
, “
Reconstructing cell cycle and disease progression using deep learning
,”
Nat. Commun.
8
(
1
), 463 (
2017
).
26.
A.
Filby
,
E.
Perucha
,
H.
Summers
,
P.
Rees
,
P.
Chana
,
S.
Heck
,
G. M.
Lord
, and
D.
Davies
, “
An imaging flow cytometric method for measuring cell division history and molecular symmetry during mitosis
,”
Cytometry, Part A
79A
(
7
),
496
506
(
2011
).
27.
Y.
Li
,
C. M.
Nowak
,
U.
Pham
,
K.
Nguyen
, and
L.
Bleris
, “
Cell morphology-based machine learning models for human cell state classification
,”
npj Syst. Biol. Appl.
7
(
1
),
23
(
2021
).
28.
J.
Sui
,
N.
Gandotra
,
P.
Xie
,
Z.
Lin
,
C.
Scharfe
, and
M.
Javanmard
, in
21st International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2017
(
Chemical and Biological Microsystems Society
,
2020
), pp.
515
516
.
29.
K. C. M.
Lee
,
J.
Guck
,
K.
Goda
, and
K. K.
Tsia
, “
Toward deep biophysical cytometry: Prospects and challenges
,”
Trends Biotechnol.
39
(
12
),
1249
1262
(
2021
).
30.
T.
Tang
,
T.
Julian
,
D.
Ma
,
Y.
Yang
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
A review on intelligent impedance cytometry systems: Development, applications and advances
,”
Anal. Chim. Acta
1269
,
341424
(
2023
).
31.
S.
Luo
,
Y.
Shi
,
L. K.
Chin
,
P. E.
Hutchinson
,
Y.
Zhang
,
G.
Chierchia
,
H.
Talbot
,
X.
Jiang
,
T.
Bourouina
, and
A.-Q.
Liu
, “
Machine-learning-assisted intelligent imaging flow cytometry: A review
,”
Adv. Intell. Syst.
3
(
11
),
2100073
(
2021
).
32.
H.
Raji
,
M.
Tayyab
,
J.
Sui
,
S. R.
Mahmoodi
, and
M.
Javanmard
, “
Biosensors and machine learning for enhanced detection, stratification, and classification of cells: A review
,”
Biomed. Microdevices
24
(
3
),
26
(
2022
).
33.
M.
Lippeveld
,
C.
Knill
,
E.
Ladlow
,
A.
Fuller
,
L. J.
Michaelis
,
Y.
Saeys
,
A.
Filby
, and
D.
Peralta
, “
Classification of human white blood cells using machine learning for stain-free imaging flow cytometry
,”
Cytometry, Part A
97
(
3
),
308
319
(
2020
).
34.
R.
Reimann
,
B.
Zeng
,
M.
Jakopec
,
M.
Burdukiewicz
,
I.
Petrick
,
P.
Schierack
, and
S.
Rödiger
, “
Classification of dead and living microalgae chlorella vulgaris by bioimage informatics and machine learning
,”
Algal Res.
48
,
101908
(
2020
).
35.
C. L.
Chen
,
A.
Mahjoubfar
,
L.-C.
Tai
,
I. K.
Blaby
,
A.
Huang
,
K. R.
Niazi
, and
B.
Jalali
, “
Deep learning in label-free cell classification
,”
Sci. Rep.
6
(
1
),
21471
(
2016
).
36.
V.
Kachel
,
G.
Benker
,
K.
Lichtnau
,
G.
Valet
, and
E.
Glossner
, “
Fast imaging in flow: A means of combining flow-cytometry and image analysis.
,”
J. Histochem. Cytochem.
27
(
1
),
335
341
(
1979
).
37.
D. B.
Kay
,
J. L.
Cambier
, and
L. L.
Wheeless
, “
Imaging in flow.
,”
J. Histochem. Cytochem.
27
(
1
),
329
334
(
1979
).
38.
J.
Mertz
, “
Nonlinear microscopy: New techniques and applications
,”
Curr. Opin. Neurobiol.
14
(
5
),
610
616
(
2004
).
39.
T. C.
George
,
D. A.
Basiji
,
B. E.
Hall
,
D. H.
Lynch
,
W. E.
Ortyn
,
D. J.
Perr
et al, “
Distinguishing modes of cell death using the ImageStream® multispectral imaging flow cytometer
,”
Cytometry Part A
59
(
2
),
237
245
(
2004
).
40.
E.
Schonbrun
,
S. S.
Gorthi
, and
D.
Schaak
, “
Microfabricated multiple field of view imaging flow cytometry
,”
Lab Chip
12
(
2
),
268
273
(
2012
).
41.
H.
Adachi
,
Y.
Kawamura
,
K.
Nakagawa
,
R.
Horisaki
,
I.
Sato
,
S.
Yamaguchi
,
K.
Fujiu
,
K.
Waki
,
H.
Noji
, and
S.
Ota
, “
Use of ghost cytometry to differentiate cells with similar gross morphologic characteristics
,”
Cytometry, Part A
97
(
4
),
415
422
(
2020
).
42.
S.
Ota
,
R.
Horisaki
,
Y.
Kawamura
,
M.
Ugawa
,
I.
Sato
,
K.
Hashimoto
,
R.
Kamesawa
,
K.
Setoyama
,
S.
Yamaguchi
,
K.
Fujiu
,
K.
Waki
, and
H.
Noji
, “
Ghost cytometry
,”
Science
360
(
6394
),
1246
1251
(
2018
).
43.
S. C.
Hur
,
H. T. K.
Tse
, and
D. D.
Carlo
, “
Sheathless inertial cell ordering for extreme throughput flow cytometry
,”
Lab Chip
10
(
3
),
274
280
(
2010
).
44.
C.
Lei
,
N.
Nitta
,
Y.
Ozeki
, and
K.
Goda
, “
Optofluidic time-stretch microscopy: Recent advances
,”
Opt. Rev.
25
(
3
),
464
472
(
2018
).
45.
Y.
Jiang
,
C.
Lei
,
A.
Yasumoto
,
H.
Kobayashi
,
Y.
Aisaka
,
T.
Ito
,
B.
Guo
,
N.
Nitta
,
N.
Kutsuna
,
Y.
Ozeki
,
A.
Nakagawa
,
Y.
Yatomi
, and
K.
Goda
, “
Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy
,”
Lab Chip
17
(
14
),
2426
2434
(
2017
).
46.
T. T. W.
Wong
,
A. K. S.
Lau
,
K. K. Y.
Ho
,
M. Y. H.
Tang
,
J. D. F.
Robles
,
X.
Wei
,
A. C. S.
Chan
,
A. H. L.
Tang
,
E. Y.
Lam
,
K. K. Y.
Wong
,
G. C. F.
Chan
,
H. C.
Shum
, and
K. K.
Tsia
, “
Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow
,”
Sci. Rep.
4
(
1
),
3656
(
2014
).
47.
Y.
Suzuki
,
K.
Kobayashi
,
Y.
Wakisaka
,
D.
Deng
,
S.
Tanaka
,
C.-J.
Huang
,
C.
Lei
,
C.-W.
Sun
,
H.
Liu
,
Y.
Fujiwaki
,
S.
Lee
,
A.
Isozaki
,
Y.
Kasai
,
T.
Hayakawa
,
S.
Sakuma
,
F.
Arai
,
K.
Koizumi
,
H.
Tezuka
,
M.
Inaba
,
K.
Hiraki
,
T.
Ito
,
M.
Hase
,
S.
Matsusaka
,
K.
Shiba
,
K.
Suga
,
M.
Nishikawa
,
M.
Jona
,
Y.
Yatomi
,
Y.
Yalikun
,
Y.
Tanaka
,
T.
Sugimura
,
N.
Nitta
,
K.
Goda
, and
Y.
Ozeki
, “
Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering
,”
Proc. Natl. Acad. Sci. U.S.A.
116
(
32
),
15842
15848
(
2019
).
48.
X.
Liu
,
J.
Zhou
,
R.
Yan
,
T.
Tang
,
S.
Wei
,
R.
Li
,
D.
Hou
,
Y.
Weng
,
D.
Wang
,
H.
Shen
,
F.
Zhou
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
,
Y.
Yalikun
, and
C.
Lei
, “
An optimized PDMS microfluidic device for ultra-fast and high-throughput imaging flow cytometry
,”
Lab Chip
23
(16), 3571–3580 (
2023
).
49.
Q. T. K.
Lai
,
G. G. K.
Yip
,
J.
Wu
,
J. S. J.
Wong
,
M. C. K.
Lo
,
K. C. M.
Lee
,
T. T. H. D.
Le
,
H. K. H.
So
,
N.
Ji
, and
K. K.
Tsia
, “
High-speed laser-scanning biological microscopy using FACED
,”
Nat. Protoc.
16
(
9
),
4227
4264
(
2021
).
50.
J.
Gala de Pablo
,
M.
Lindley
,
K.
Hiramatsu
, and
K.
Goda
, “
High-throughput Raman flow cytometry and beyond
,”
Acc. Chem. Res.
54
(
9
),
2132
2143
(
2021
).
51.
N.
Nitta
,
T.
Iino
,
A.
Isozaki
,
M.
Yamagishi
,
Y.
Kitahama
,
S.
Sakuma
,
Y.
Suzuki
,
H.
Tezuka
,
M.
Oikawa
,
F.
Arai
,
T.
Asai
,
D.
Deng
,
H.
Fukuzawa
,
M.
Hase
,
T.
Hasunuma
,
T.
Hayakawa
,
K.
Hiraki
,
K.
Hiramatsu
,
Y.
Hoshino
,
M.
Inaba
,
Y.
Inoue
,
T.
Ito
,
M.
Kajikawa
,
H.
Karakawa
,
Y.
Kasai
,
Y.
Kato
,
H.
Kobayashi
,
C.
Lei
,
S.
Matsusaka
,
H.
Mikami
,
A.
Nakagawa
,
K.
Numata
,
T.
Ota
,
T.
Sekiya
,
K.
Shiba
,
Y.
Shirasaki
,
N.
Suzuki
,
S.
Tanaka
,
S.
Ueno
,
H.
Watarai
,
T.
Yamano
,
M.
Yazawa
,
Y.
Yonamine
,
D. D.
Carlo
,
Y.
Hosokawa
,
S.
Uemura
,
T.
Sugimura
,
Y.
Ozeki
, and
K.
Goda
, “
Raman image-activated cell sorting
,”
Nat. Commun.
11
(
1
),
3452
(
2020
).
52.
Y.
Ozeki
,
T.
Asai
,
J.
Shou
, and
H.
Yoshimi
, “
Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser
,”
IEEE J. Sel. Top. Quantum Electron.
25
(
1
),
1
11
(
2019
).
53.
Y.
Ozeki
,
W.
Umemura
,
Y.
Otsuka
,
S.
Satoh
,
H.
Hashimoto
,
K.
Sumimura
,
N.
Nishizawa
,
K.
Fukui
, and
K.
Itoh
, “
High-speed molecular spectral imaging of tissue with stimulated Raman scattering
,”
Nat. Photonics
6
(
12
),
845
851
(
2012
).
54.
Y.
Han
and
Y.-H.
Lo
, “
Imaging cells in flow cytometer using spatial-temporal transformation
,”
Sci. Rep.
5
(
1
),
13267
(
2015
).
55.
W. H.
Coulter
, US2656508A (20 October 1953).
56.
W. H.
Coulter
and
W. R.
Hogo
, 3502974 (24 March 1970).
57.
W. H.
Coulter
and
C. M.
Rodriguez
, EP0292523A1 (30 November 1988).
58.
H. E.
Ayliffe
,
A. B.
Frazier
, and
R. D.
Rabbitt
, “
Electric impedance spectroscopy using microchannels with integrated metal electrodes
,”
J. Microelectromech. Syst.
8
(
1
),
50
57
(
1999
).
59.
S.
Gawad
,
L.
Schild
, and
P.
Renaud
, “
Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing
,”
Lab Chip
1
(
1
),
76
82
(
2001
).
60.
J.
Cottet
,
A.
Kehren
,
H.
van Lintel
,
F.
Buret
,
M.
Frénéa-Robin
, and
P.
Renaud
, “
How to improve the sensitivity of coplanar electrodes and micro channel design in electrical impedance flow cytometry: A study
,”
Microfluid. Nanofluid.
23
(
1
),
11
(
2019
).
61.
Y.
Feng
,
H.
Chai
,
W.
He
,
F.
Liang
,
Z.
Cheng
, and
W.
Wang
, “
Impedance-enabled camera-free intrinsic mechanical cytometry
,”
Small Methods
6
(
7
),
2200325
(
2022
).
62.
D.
Tang
,
L.
Jiang
,
W.
Tang
,
N.
Xiang
, and
Z.
Ni
, “
Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing
,”
Talanta
242
,
123274
(
2022
).
63.
T.
Tang
,
X.
Liu
,
Y.
Yuan
,
T.
Zhang
,
R.
Kiya
,
Y.
Yang
,
K.
Suzuki
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Assessment of the electrical penetration of cell membranes using four-frequency impedance cytometry
,”
Microsyst. Nanoeng.
8
(
1
),
68
(
2022
).
64.
T.
Tang
,
X.
Liu
,
Y.
Yuan
,
T.
Zhang
,
R.
Kiya
,
Y.
Yang
,
Y.
Yamazaki
,
H.
Kamikubo
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Parallel impedance cytometry for real-time screening of bacterial single cells from nano- to microscale
,”
ACS Sensors
7
(12), 3700–3709 (
2022
).
65.
T.
Tang
,
X.
Liu
,
Y.
Yuan
,
T.
Zhang
,
R.
Kiya
,
K.
Suzuki
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Impedance-based tracking of the loss of intracellular components in microalgae cells
,”
Sens. Actuators, B
358
,
131514
(
2022
).
66.
Y.
Feng
,
L.
Huang
,
P.
Zhao
,
F.
Liang
, and
W.
Wang
, “
A microfluidic device integrating impedance flow cytometry and electric impedance spectroscopy for high-efficiency single-cell electrical property measurement
,”
Anal. Chem.
91
(
23
),
15204
15212
(
2019
).
67.
N.
Talukder
,
A.
Furniturewalla
,
T.
Le
,
M.
Chan
,
S.
Hirday
,
X.
Cao
,
P.
Xie
,
Z.
Lin
,
A.
Gholizadeh
,
S.
Orbine
, and
M.
Javanmard
, “
A portable battery powered microfluidic impedance cytometer with smartphone readout: Towards personal health monitoring
,”
Biomed. Microdevices
19
(
2
),
36
(
2017
).
68.
A.
Furniturewalla
,
M.
Chan
,
J.
Sui
,
K.
Ahuja
, and
M.
Javanmard
, “
Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout
,”
Microsyst. Nanoeng.
4
(
1
),
1
10
(
2018
).
69.
T.
Tang
,
X.
Liu
,
Y.
Shen
,
Y.
Yuan
,
Y.
Tanaka
,
Y.
Hosokawa
, and
Y.
Yalikun
, in
2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)
(
IEEE
,
Orlando, FL
,
2021
), pp.
727
730
.
70.
S.
Gawad
,
T.
Sun
,
N. G.
Green
, and
H.
Morgan
, “
Impedance spectroscopy using maximum length sequences: Application to single cell analysis
,”
Rev. Sci. Instrum.
78
(
5
),
054301
(
2007
).
71.
T.
Sun
,
D.
Holmes
,
S.
Gawad
,
N. G.
Green
, and
H.
Morgan
, “
High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences
,”
Lab Chip
7
(
8
),
1034
1040
(
2007
).
72.
B. K.
Ashley
,
J.
Sui
,
M.
Javanmard
, and
U.
Hassan
, “
Antibody-functionalized aluminum oxide-coated particles targeting neutrophil receptors in a multifrequency microfluidic impedance cytometer
,”
Lab Chip
22
(
16
),
3055
3066
(
2022
).
73.
J.
Sui
,
N.
Gandotra
,
P.
Xie
,
Z.
Lin
,
C.
Scharfe
, and
M.
Javanmard
, “
Multi-frequency impedance sensing for detection and sizing of DNA fragments
,”
Sci. Rep.
11
(
1
),
6490
(
2021
).
74.
M.
Kokabi
,
J.
Sui
,
N.
Gandotra
,
A.
Pournadali Khamseh
,
C.
Scharfe
, and
M.
Javanmard
, “
Nucleic acid quantification by multi-frequency impedance cytometry and machine learning
,”
Biosensors
13
(
3
),
316
(
2023
).
75.
L.
Chen
,
Z.
Han
,
X.
Fan
,
S.
Zhang
,
J.
Wang
, and
X.
Duan
, “
An impedance-coupled microfluidic device for single-cell analysis of primary cell wall regeneration
,”
Biosens. Bioelectron.
165
,
112374
(
2020
).
76.
M.
Nassar
,
M.
Doan
,
A.
Filby
,
O.
Wolkenhauer
,
D. K.
Fogg
,
J.
Piasecka
,
C. A.
Thornton
,
A. E.
Carpenter
,
H. D.
Summers
,
P.
Rees
, and
H.
Hennig
, “
Label-free identification of white blood cells using machine learning
,”
Cytometry, Part A
95
(
8
),
836
842
(
2019
).
77.
B. Y.
Yu
,
C.
Elbuken
,
C.
Shen
,
J. P.
Huissoon
, and
C. L.
Ren
, “
An integrated microfluidic device for the sorting of yeast cells using image processing
,”
Sci. Rep.
8
(
1
),
3550
(
2018
).
78.
C.
Liu
,
Z.
Wang
,
J.
Jia
,
Q.
Liu
, and
X.
Su
, “
High-content video flow cytometry with digital cell filtering for label-free cell classification by machine learning
,”
Cytometry, Part A
103
(4), 325–334 (
2022
).
79.
E.
Meijering
, “
Cell segmentation: 50 years down the road [life sciences]
,”
IEEE Signal Process. Mag.
29
(
5
),
140
145
(
2012
).
80.
H.
Hennig
,
P.
Rees
,
T.
Blasi
,
L.
Kamentsky
,
J.
Hung
,
D.
Dao
,
A. E.
Carpenter
, and
A.
Filby
, “
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
,”
Methods
112
,
201
210
(
2017
).
81.
D. S.
de Bruijn
,
H. R. A.
ten Eikelder
,
V. A.
Papadimitriou
,
W.
Olthuis
, and
A.
van den Berg
, “
Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination
,”
Cytometry, Part A
103
(3), 221–226 (
2022
).
82.
F.
Caselli
,
R.
Reale
,
A.
De Ninno
,
D.
Spencer
,
H.
Morgan
, and
P.
Bisegna
, “
Deciphering impedance cytometry signals with neural networks
,”
Lab Chip
22
(
9
),
1714
1722
(
2022
).
83.
M.
Kräter
,
S.
Abuhattum
,
D.
Soteriou
,
A.
Jacobi
,
T.
Krüger
,
J.
Guck
, and
M.
Herbig
, “
AIDeveloper: Deep learning image classification in life science and beyond
,”
Adv. Sci.
8
(
11
),
2003743
(
2021
).
84.
M.
Doan
,
C.
Barnes
,
C.
McQuin
,
J. C.
Caicedo
,
A.
Goodman
,
A. E.
Carpenter
, and
P.
Rees
, “
Deepometry, a framework for applying supervised and weakly supervised deep learning to imaging cytometry
,”
Nat. Protoc.
16
(
7
),
3572
3595
(
2021
).
85.
J. M.
Phillip
,
K.-S.
Han
,
W.-C.
Chen
,
D.
Wirtz
, and
P.-H.
Wu
, “
A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei
,”
Nat. Protoc.
16
(
2
),
754
774
(
2021
).
86.
S.
Rödiger
,
P.
Schierack
,
A.
Böhm
,
J.
Nitschke
,
I.
Berger
,
U.
Frömmel
,
C.
Schmidt
,
M.
Ruhland
,
I.
Schimke
,
D.
Roggenbuck
,
W.
Lehmann
, and
C.
Schröder
, “
A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies
,” in
Molecular Diagnostics
, edited by H. Seitz and S. Schumacher, Advances in Biochemical Engineering/Biotechnology Volum 133 (Springer, 2013), pp. 35–74.
87.
S. M.
Bryce
,
D. T.
Bernacki
,
J. C.
Bemis
, and
S. D.
Dertinger
, “
Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach
,”
Environ. Mol. Mutagen.
57
(
3
),
171
189
(
2016
).
88.
C.
Schmidt
,
P.
Schierack
,
U.
Gerber
,
C.
Schröder
,
Y.
Choi
,
I.
Bald
,
W.
Lehmann
, and
S.
Rödiger
, “
Streptavidin homologues for applications on solid surfaces at high temperatures
,”
Langmuir
36
(
2
),
628
636
(
2020
).
89.
C.
Schmidt
,
S.
Rödiger
,
M.
Gruner
,
A.
Moncsek
,
R.
Stohwasser
,
K.
Hanack
,
P.
Schierack
, and
C.
Schröder
, “
Multiplex localization of sequential peptide epitopes by use of a planar microbead chip
,”
Anal. Chim. Acta
908
,
150
160
(
2016
).
90.
M.
Lippeveld
,
D.
Peralta
,
A.
Filby
, and
Y.
Saeys
, “A scalable, reproducible and open-source pipeline for morphologically profiling image cytometry data,” 2022.10.24.512549 (2022).
91.
A. E.
Carpenter
,
T. R.
Jones
,
M. R.
Lamprecht
,
C.
Clarke
,
I. H.
Kang
,
O.
Friman
,
D. A.
Guertin
,
J. H.
Chang
,
R. A.
Lindquist
,
J.
Moffat
,
P.
Golland
, and
D. M.
Sabatini
, “
Cellprofiler: Image analysis software for identifying and quantifying cell phenotypes
,”
Genome Biol.
7
(
10
),
R100
(
2006
).
92.
J.
Schindelin
,
C. T.
Rueden
,
M. C.
Hiner
, and
K. W.
Eliceiri
, “
The ImageJ ecosystem: An open platform for biomedical image analysis
,”
Mol. Reprod. Dev.
82
(
7–8
),
518
529
(
2015
).
93.
C. T.
Rueden
,
J.
Schindelin
,
M. C.
Hiner
,
B. E.
DeZonia
,
A. E.
Walter
,
E. T.
Arena
, and
K. W.
Eliceiri
, “
ImageJ2: ImageJ for the next generation of scientific image data
,”
BMC Bioinf.
18
(
1
),
529
(
2017
).
94.
P.
Bankhead
,
M. B.
Loughrey
,
J. A.
Fernández
,
Y.
Dombrowski
,
D. G.
McArt
,
P. D.
Dunne
,
S.
McQuaid
,
R. T.
Gray
,
L. J.
Murray
,
H. G.
Coleman
,
J. A.
James
,
M.
Salto-Tellez
, and
P. W.
Hamilton
, “
Qupath: Open source software for digital pathology image analysis
,”
Sci. Rep.
7
(
1
),
16878
(
2017
).
95.
M.
Stritt
,
A. K.
Stalder
, and
E.
Vezzali
, “
Orbit image analysis: An open-source whole slide image analysis tool
,”
PLoS Comput. Biol.
16
(
2
),
e1007313
(
2020
).
96.
D.
Schapiro
,
A.
Sokolov
,
C.
Yapp
,
Y.-A.
Chen
,
J. L.
Muhlich
,
J.
Hess
,
A. L.
Creason
,
A. J.
Nirmal
,
G. J.
Baker
,
M. K.
Nariya
,
J.-R.
Lin
,
Z.
Maliga
,
C. A.
Jacobson
,
M. W.
Hodgman
,
J.
Ruokonen
,
S. L.
Farhi
,
D.
Abbondanza
,
E. T.
McKinley
,
D.
Persson
,
C.
Betts
,
S.
Sivagnanam
,
A.
Regev
,
J.
Goecks
,
R. J.
Coffey
,
L. M.
Coussens
,
S.
Santagata
, and
P. K.
Sorger
, “
MCMICRO: A scalable, modular image-processing pipeline for multiplexed tissue imaging
,”
Nat. Methods
19
(
3
),
311
315
(
2022
).
97.
N. D.
Macedo
,
A. R.
Buzin
,
I. B. B. A.
de Araujo
,
B. V.
Nogueira
,
T. U.
de Andrade
,
D. C.
Endringer
, and
D.
Lenz
, “
Objective detection of apoptosis in rat renal tissue sections using light microscopy and free image analysis software with subsequent machine learning: Detection of apoptosis in renal tissue
,”
Tissue Cell
49
(
1
),
22
27
(
2017
).
98.
G. P.
Ribeiro
,
D. C.
Endringer
,
T. U.
De Andrade
, and
D.
Lenz
, “
Comparison between two programs for image analysis, machine learning and subsequent classification
,”
Tissue Cell
58
,
12
16
(
2019
).
99.
K.
Goda
,
A.
Filby
, and
N.
Nitta
, “
In flow cytometry, image is everything
,”
Cytometry, Part A
95
(
5
),
475
477
(
2019
).
100.
D.
Di Carlo
,
F.
Arai
,
K.
Goda
,
T. J.
Huang
,
Y.-H.
Lo
,
N.
Nitta
,
Y.
Ozeki
,
K.
Tsia
,
S.
Uemura
, and
K. K. Y.
Wong
, “
Comment on ‘ghost cytometry’
,”
Science
364
(
6437
),
eaav1429
(
2019
).
101.
S.
Ota
,
R.
Horisaki
,
Y.
Kawamura
,
M.
Ugawa
,
I.
Sato
,
H.
Adachi
,
S.
Yamaguchi
,
K.
Fujiu
,
K.
Waki
, and
H.
Noji
, “
Response to comment on ‘ghost cytometry’
,”
Science
364
(
6437
),
eaav3136
(
2019
).
102.
M.
Ugawa
,
Y.
Kawamura
,
K.
Toda
,
K.
Teranishi
,
H.
Morita
,
H.
Adachi
,
R.
Tamoto
,
H.
Nomaru
,
K.
Nakagawa
,
K.
Sugimoto
,
E.
Borisova
,
Y.
An
,
Y.
Konishi
,
S.
Tabata
,
S.
Morishita
,
M.
Imai
,
T.
Takaku
,
M.
Araki
,
N.
Komatsu
,
Y.
Hayashi
,
I.
Sato
,
R.
Horisaki
,
H.
Noji
, and
S.
Ota
, “
In silico-labeled ghost cytometry
,”
eLife
10
,
e67660
(
2021
).
103.
C.
Honrado
,
J. S.
McGrath
,
R.
Reale
,
P.
Bisegna
,
N. S.
Swami
, and
F.
Caselli
, “
A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry
,”
Anal. Bioanal. Chem.
412
(
16
),
3835
3845
(
2020
).
104.
Y.
Zhou
,
D.
Yang
,
Y.
Zhou
,
B. L.
Khoo
,
J.
Han
, and
Y.
Ai
, “
Characterizing deformability and electrical impedance of cancer cells in a microfluidic device
,”
Anal. Chem.
90
(
1
),
912
919
(
2018
).
105.
Y.
Feng
,
J.
Zhu
,
H.
Chai
,
W.
He
,
L.
Huang
, and
W.
Wang
, “
Imedance-based multimodal electrical-mechanical intrinsic flow cytometry
,”
Small
(published online 2023).
106.
C.
Honrado
,
L.
Ciuffreda
,
D.
Spencer
,
L.
Ranford-Cartwright
, and
H.
Morgan
, “
Dielectric characterization of plasmodium falciparum-infected red blood cells using microfluidic impedance cytometry
,”
J. R. Soc., Interface
15
(
147
),
20180416
(
2018
).
107.
Y.
Saeys
,
I.
Inza
, and
P.
Larrañaga
, “
A review of feature selection techniques in bioinformatics
,”
Bioinformatics
23
(
19
),
2507
2517
(
2007
).
108.
J. E. T.
Akinsola
, “
Supervised machine learning algorithms: Classification and comparison
,”
Int. J. Comp. Trends Technol.
48
,
128
138
(
2017
).
109.
Y.
Zhao
,
K.
Wang
,
D.
Chen
,
B.
Fan
,
Y.
Xu
,
Y.
Ye
,
J.
Wang
,
J.
Chen
, and
C.
Huang
, “
Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells
,”
Biosens. Bioelectron.
111
,
138
143
(
2018
).
110.
Y.
Feng
,
Z.
Cheng
,
H.
Chai
,
W.
He
,
L.
Huang
, and
W.
Wang
, “
Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization
,”
Lab Chip
22
(
2
),
240
249
(
2022
).
111.
D.
Tang
,
M.
Chen
,
Y.
Han
,
N.
Xiang
, and
Z.
Ni
, “
Asymmetric serpentine microchannel based impedance cytometer enabling consistent transit and accurate characterization of tumor cells and blood cells
,”
Sens. Actuators, B
336
,
129719
(
2021
).
112.
D.
Tang
,
L.
Jiang
,
N.
Xiang
, and
Z.
Ni
, “
Discrimination of tumor cell type based on cytometric detection of dielectric properties
,”
Talanta
246
,
123524
(
2022
).
113.
J.
Feng
,
T.
Feng
,
C.
Yang
,
W.
Wang
,
Y.
Sa
, and
Y.
Feng
, “
Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques
,”
Apoptosis
23
(
5
),
290
298
(
2018
).
114.
C.
Honrado
,
A.
Salahi
,
S. J.
Adair
,
J. H.
Moore
,
T. W.
Bauer
, and
N. S.
Swami
, “
Automated biophysical classification of apoptotic pancreatic cancer cell subpopulations by using machine learning approaches with impedance cytometry
,”
Lab Chip
22
(
19
),
3708
3720
(
2022
).
115.
K.
Ahuja
,
G. M.
Rather
,
Z.
Lin
,
J.
Sui
,
P.
Xie
,
T.
Le
,
J. R.
Bertino
, and
M.
Javanmard
, “
Toward point-of-care assessment of patient response: A portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning
,”
Microsyst. Nanoeng.
5
(
1
),
34
(
2019
).
116.
T.
Tang
,
X.
Liu
,
Y.
Yuan
,
R.
Kiya
,
T.
Zhang
,
Y.
Yang
,
S.
Suetsugu
,
Y.
Yamazaki
,
N.
Ota
,
K.
Yamamoto
,
H.
Kamikubo
,
Y.
Tanaka
,
M.
Li
,
Y.
Hosokawa
, and
Y.
Yalikun
, “
Machine learning-based impedance system for real-time recognition of antibiotic-susceptible bacteria with parallel cytometry
,”
Sens. Actuators, B
374
,
132698
(
2023
).
117.
H. M.
Sosik
and
R. J.
Olson
, “
Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry
,”
Limnol. Oceanogr.: Methods
5
(
6
),
204
216
(
2007
).
118.
R. J.
Olson
and
H. M.
Sosik
, “
A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot
,”
Limnol. Oceanogr.: Methods
5
(
6
),
195
203
(
2007
).
119.
L.
Campbell
,
R. J.
Olson
,
H. M.
Sosik
,
A.
Abraham
,
D. W.
Henrichs
,
C. J.
Hyatt
, and
E. J.
Buskey
, “
First harmful dinophysis (dinophyceae, dinophysiales) bloom in the U.S. is revealed by automated imaging flow cytometry
,”
J. Phycol.
46
(
1
),
66
75
(
2010
).
120.
Z.
Göröcs
,
M.
Tamamitsu
,
V.
Bianco
,
P.
Wolf
,
S.
Roy
,
K.
Shindo
,
K.
Yanny
,
Y.
Wu
,
H. C.
Koydemir
,
Y.
Rivenson
, and
A.
Ozcan
, “
A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples
,”
Light: Sci. Appl.
7
(
1
),
66
(
2018
).
121.
N.
Nitta
,
T.
Sugimura
,
A.
Isozaki
,
H.
Mikami
,
K.
Hiraki
,
S.
Sakuma
,
T.
Iino
,
F.
Arai
,
T.
Endo
,
Y.
Fujiwaki
,
H.
Fukuzawa
,
M.
Hase
,
T.
Hayakawa
,
K.
Hiramatsu
,
Y.
Hoshino
,
M.
Inaba
,
T.
Ito
,
H.
Karakawa
,
Y.
Kasai
,
K.
Koizumi
,
S.
Lee
,
C.
Lei
,
M.
Li
,
T.
Maeno
,
S.
Matsusaka
,
D.
Murakami
,
A.
Nakagawa
,
Y.
Oguchi
,
M.
Oikawa
,
T.
Ota
,
K.
Shiba
,
H.
Shintaku
,
Y.
Shirasaki
,
K.
Suga
,
Y.
Suzuki
,
N.
Suzuki
,
Y.
Tanaka
,
H.
Tezuka
,
C.
Toyokawa
,
Y.
Yalikun
,
M.
Yamada
,
M.
Yamagishi
,
T.
Yamano
,
A.
Yasumoto
,
Y.
Yatomi
,
M.
Yazawa
,
D.
Di Carlo
,
Y.
Hosokawa
,
S.
Uemura
,
Y.
Ozeki
, and
K.
Goda
, “
Intelligent image-activated cell sorting
,”
Cell
175
(
1
),
266
276.e13
(
2018
).
122.
A. A.
Nawaz
,
M.
Urbanska
,
M.
Herbig
,
M.
Nötzel
,
M.
Kräter
,
P.
Rosendahl
,
C.
Herold
,
N.
Toepfner
,
M.
Kubánková
,
R.
Goswami
,
S.
Abuhattum
,
F.
Reichel
,
P.
Müller
,
A.
Taubenberger
,
S.
Girardo
,
A.
Jacobi
, and
J.
Guck
, “
Intelligent image-based deformation-assisted cell sorting with molecular specificity
,”
Nat. Methods
17
(
6
),
595
599
(
2020
).
123.
J.
Sui
,
P.
Xie
,
Z.
Lin
, and
M.
Javanmard
, “
Electronic classification of barcoded particles for multiplexed detection using supervised machine learning analysis
,”
Talanta
215
,
120791
(
2020
).
124.
S. V.
Stassen
,
G. G. K.
Yip
,
K. K. Y.
Wong
,
J. W. K.
Ho
, and
K. K.
Tsia
, “
Generalized and scalable trajectory inference in single-cell omics data with VIA
,”
Nat. Commun.
12
(
1
),
5528
(
2021
).
125.
W.
Wang
,
D.
Douglas
,
J.
Zhang
,
S.
Kumari
,
M. S.
Enuameh
,
Y.
Dai
,
C. T.
Wallace
,
S. C.
Watkins
,
W.
Shu
, and
J.
Xing
, “
Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data
,”
Sci. Adv.
6
(
36
),
eaba9319
(
2020
).
126.
C. J.
Soelistyo
,
G.
Vallardi
,
G.
Charras
, and
A. R.
Lowe
, “
Learning biophysical determinants of cell fate with deep neural networks
,”
Nat. Mach. Intell.
4
(
7
),
636
644
(
2022
).
127.
R. J.
Olson
,
A.
Shalapyonok
,
D. J.
Kalb
,
S. W.
Graves
, and
H. M.
Sosik
, “
Imaging FlowCytobot modified for high throughput by in-line acoustic focusing of sample particles
,”
Limnol. Oceanogr.: Methods
15
(
10
),
867
874
(
2017
).
128.
A.
Isozaki
,
H.
Mikami
,
K.
Hiramatsu
,
S.
Sakuma
,
Y.
Kasai
,
T.
Iino
,
T.
Yamano
,
A.
Yasumoto
,
Y.
Oguchi
,
N.
Suzuki
,
Y.
Shirasaki
,
T.
Endo
,
T.
Ito
,
K.
Hiraki
,
M.
Yamada
,
S.
Matsusaka
,
T.
Hayakawa
,
H.
Fukuzawa
,
Y.
Yatomi
,
F.
Arai
,
D. D.
Carlo
,
A.
Nakagawa
,
Y.
Hoshino
,
Y.
Hosokawa
,
S.
Uemura
,
T.
Sugimura
,
Y.
Ozeki
,
N.
Nitta
, and
K.
Goda
, “
A practical guide to intelligent image-activated cell sorting
,”
Nat. Protoc.
14
(
8
),
2370
2415
(
2019
).
129.
J.
Zhong
,
M.
Liang
,
Q.
Tang
, and
Y.
Ai
, “
Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting
,”
Mater. Today Bio.
19
,
100594
(
2023
).
130.
B.
de Wagenaar
,
S.
Dekker
,
H. L.
de Boer
,
J. G.
Bomer
,
W.
Olthuis
,
A.
van den Berg
, and
L. I.
Segerink
, “
Towards microfluidic sperm refinement: Impedance-based analysis and sorting of sperm cells
,”
Lab Chip
16
(
8
),
1514
1522
(
2016
).
131.
S. V.
Stassen
,
D. M. D.
Siu
,
K. C. M.
Lee
,
J. W. K.
Ho
,
H. K. H.
So
, and
K. K.
Tsia
, “
PARC: Ultrafast and accurate clustering of phenotypic data of millions of single cells
,”
Bioinformatics
36
(
9
),
2778
2786
(
2020
).
132.
N.
Haandbæk
,
S. C.
Bürgel
,
F.
Rudolf
,
F.
Heer
, and
A.
Hierlemann
, “
Characterization of single yeast cell phenotypes using microfluidic impedance cytometry and optical imaging
,”
ACS Sens.
1
(
8
),
1020
1027
(
2016
).
133.
Y.
Gu
,
A. C.
Zhang
,
Y.
Han
,
J.
Li
,
C.
Chen
, and
Y.-H.
Lo
, “
Machine learning based real-time image-guided cell sorting and classification
,”
Cytometry, Part A
95
(
5
),
499
509
(
2019
).
134.
A.
Filby
and
A. E.
Carpenter
, “
A new image for cell sorting
,”
N. Engl. J. Med.
386
(
18
),
1755
1758
(
2022
).
135.
B.
Brazey
,
J.
Cottet
,
A.
Bolopion
,
H. V.
Lintel
,
P.
Renaud
, and
M.
Gauthier
, “
Impedance-based real-time position sensor for lab-on-a-chip devices
,”
Lab Chip
18
(
5
),
818
831
(
2018
).
136.
H.
Wang
,
N.
Sobahi
, and
A.
Han
, “
Impedance spectroscopy-based cell/particle position detection in microfluidic systems
,”
Lab Chip
17
(
7
),
1264
1269
(
2017
).
137.
D.
Yang
and
Y.
Ai
, “
Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles
,”
Lab Chip
19
(
21
),
3609
3617
(
2019
).
You do not currently have access to this content.