Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of “on-chip” technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.

1.
K.
Koch
,
B.
Bhushan
, and
W.
Barthlott
, “
Multifunctional surface structures of plants: An inspiration for biomimetics
,”
Prog. Mater. Sci.
54
(
2
),
137
178
(
2009
).
2.
B.
Bhushan
, “
Adhesion of multi-level hierarchical attachment systems in gecko feet
,”
J. Adhes. Sci. Technol.
21
(
12–13
),
1213
1258
(
2007
).
3.
K.
Autumn
and
A. M.
Peattie
, “
Mechanisms of adhesion in geckos
,”
Integr. Comp. Biol.
42
(
6
),
1081
1090
(
2002
).
4.
J.
Sun
,
B.
Bhushan
, and
J.
Tong
, “
Structural coloration in nature
,”
RSC Adv.
3
(
35
),
14862
14889
(
2013
).
5.
S. J.
Wilson
and
M. C.
Hutley
, “
The optical properties of ‘moth eye’ antireflection surfaces
,”
Opt. Acta
29
(
7
),
993
1009
(
1982
).
6.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
J. Ind. Eng. Chem.
28
(
8
),
988
994
(
1936
).
7.
W.
Barthlott
and
C.
Neinhuis
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Planta
202
(
1
),
1
8
(
1997
).
8.
L.
Feng
,
Y.
Zhang
,
J.
Xi
,
Y.
Zhu
,
N.
Wang
,
F.
Xia
, and
L.
Jiang
, “
Petal effect: A superhydrophobic state with high adhesive force
,”
Langmuir
24
(
8
),
4114
4119
(
2008
).
9.
U. U.
Ghosh
,
S.
Nair
,
A.
Das
,
R.
Mukherjee
, and
S.
Dasgupta
, “
Replicating and resolving wetting and adhesion characteristics of a rose petal
,”
Colloids Surf. A
561
(
10
),
9
17
(
2019
).
10.
L.
Gaume
,
S.
Gorb
, and
N.
Rowe
, “
Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers
,”
New Phytol.
156
(
3
),
479
489
(
2002
).
11.
L.
Zhang
,
Z.
Zhou
,
B.
Cheng
,
J. M.
DeSimone
, and
E. T.
Samulski
, “
Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography
,”
Langmuir
22
(
20
),
8576
8580
(
2006
).
12.
A.
Marmur
, “
The lotus effect: Superhydrophobicity and metastability
,”
Langmuir
20
(
9
),
3517
3519
(
2004
).
13.
L.
Gao
and
T. J.
McCarthy
, “
The ‘lotus effect’ explained: Two reasons why two length scales of topography are important
,”
Langmuir
22
(
7
),
2966
2967
(
2006
).
14.
S.
Bandyopadhyay
,
R.
Dey
,
M. K.
Raj
,
N.
Bhandaru
,
R.
Mukherjee
, and
S.
Chakraborty
, “
Mixing characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls
,”
Microfluid. Nanofluidics
21
(
9
) (
2017
).
15.
W.
Zhao
,
R.
Zhu
,
J.
Jiang
, and
Z.
Wang
, “
Environmentally-friendly superhydrophobic surface based on Al2O3@KH560@SiO2 electrokinetic nanoparticle for long-term anti-corrosion in sea water
,”
Appl. Surf. Sci.
484
(
April
),
307
316
(
2019
).
16.
L.-Y.
Meng
and
S.-J.
Park
, “
Improvement of superhydrophobicity of multi-walled carbon nanotubes produced by fluorination
,”
Carbon Lett.
13
(
3
),
178
181
(
2012
).
17.
C.
Kosak Söz
,
E.
Yilgör
, and
I.
Yilgör
, “
Influence of the average surface roughness on the formation of superhydrophobic polymer surfaces through spin-coating with hydrophobic fumed silica
,”
Polymer
62
,
118
128
(
2015
).
18.
L.
Li
,
V.
Breedveld
, and
D. W.
Hess
, “
Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition
,”
ACS Appl. Mater. Interfaces
4
(
9
),
4549
4556
(
2012
).
19.
A.
Milella
,
R.
Di Mundo
,
F.
Palumbo
,
P.
Favia
,
F.
Fracassi
, and
R.
Agostino
, “
Plasma nanostructuring of polymers: Different routes to superhydrophobicity
,”
Plasma Process. Polym.
6
(
6–7
),
460
466
(
2009
).
20.
N.
Zhao
,
F.
Shi
,
Z.
Wang
, and
X.
Zhang
, “
Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces
,”
Langmuir
21
(
10
),
4713
4716
(
2005
).
21.
B.
Bhushan
,
K.
Koch
, and
Y. C.
Jung
, “
Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning
,”
Ultramicroscopy
109
(
8
),
1029
1034
(
2009
).
22.
B.
Bhushan
and
M.
Nosonovsky
, “
The rose petal effect and the modes of superhydrophobicity
,”
Philos. Trans. R. Soc. A
368
(
1929
),
4713
4728
(
2010
).
23.
M.
Nosonovsky
and
B.
Bhushan
,
Green Tribology: Biomimetics, Energy Conservation and Sustainability
(
Springer Science & Business Media
,
2012
).
24.
C.
Wang
,
R.
Shao
,
G.
Wang
, and
S.
Sun
, “
Hierarchical hydrophobic surfaces with controlled dual transition between rose petal effect and lotus effect via structure tailoring or chemical modification
,”
Colloids Surf. A Physicochem. Eng. Asp.
622
(
April
),
126661
(
2021
).
25.
C.
Cao
,
Y.
Feng
,
J.
Zang
,
G. P.
López
, and
X.
Zhao
, “
Tunable lotus-leaf and rose-petal effects via graphene paper origami
,”
Extrem. Mech. Lett.
4
,
18
25
(
2015
).
26.
Y.
Shao
,
J.
Zhao
,
Y.
Fan
,
Z.
Wan
,
L.
Lu
,
Z.
Zhang
,
W.
Ming
, and
L.
Ren
, “
Shape memory superhydrophobic surface with switchable transition between ‘lotus effect’ to ‘rose petal effect.,’
Chem. Eng. J.
382
(
February
),
122989
(
2020
).
27.
S.
Bandyopadhyay
,
S. M.
Sriram
,
V.
Parihar
,
S.
Das Gupta
,
R.
Mukherjee
, and
S.
Chakraborty
, “
Tunable adhesion and slip on a bio-mimetic sticky soft surface
,”
Soft Matter
15
(
44
),
9031
9040
(
2019
).
28.
S.
Bandyopadhyay
,
A.
Shristi
,
V.
Kumawat
,
A.
Gope
,
A.
Mukhopadhyay
,
S.
Chakraborty
, and
R.
Mukherjee
, “
Droplet impact dynamics on biomimetic replica of yellow rose petals: Rebound to micropinning transition
,”
Langmuir
39
(
17
),
6051
6060
(
2023
).
29.
S.
Feng
,
P.
Zhu
,
H.
Zheng
,
H.
Zhan
,
C.
Chen
,
J.
Li
,
L.
Wang
,
X.
Yao
,
Y.
Liu
, and
Z.
Wang
, “
Three-dimensional capillary ratchet-induced liquid directional steering
,”
Science
373
,
1344
1348
(
2021
).
30.
Z.
Yu
,
T.
Zhu
,
J.
Zhang
,
M.
Ge
,
S.
Fu
, and
Y.
Lai
, “
Fog harvesting devices inspired from single to multiple creatures: Current progress and future perspective
,”
Adv. Func. Mater.
32
(
26
),
2200359
(
2022
).
31.
H. F.
Bohn
and
W.
Federle
, “
Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface
,”
Proc. Natl. Acad. Sci. U.S.A.
101
(
39
),
14138
14143
(
2004
).
32.
L.
Gaume
,
S.
Gorb
, and
N.
Rowe
, “
Function of epidermal surfaces in the trapping efficiency of nepenthes alata pitchers
,”
New Phytol.
156
(
3
),
479
489
(
2002
).
33.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
(
7365
),
443
447
(
2011
).
34.
L.
Xiao
,
J.
Li
,
S.
Mieszkin
,
A. D.
Fino
,
A. S.
Clare
,
M. E.
Callow
,
J. A.
Callow
,
M.
Grunze
,
A.
Rosenhahn
, and
P. A.
Levkin
, “
Slippery liquid-infused porous surfaces showing marine antibiofouling properties
,”
ACS Appl. Mater. Interfaces
5
(
20
),
10074
10080
(
2013
).
35.
J.
Li
,
T.
Kleintschek
,
A.
Rieder
,
Y.
Cheng
,
T.
Baumbach
,
U.
Obst
,
T.
Schwartz
, and
P. A.
Levkin
, “
Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications
,”
ACS Appl. Mater. Interfaces
5
(
14
),
6704
6711
(
2013
).
36.
X.
Yao
,
Y.
Hu
,
A.
Grinthal
,
T.-S.
Wong
,
L.
Mahadevan
, and
J.
Aizenberg
, “
Adaptive fluid-infused porous films with tunable transparency and wettability
,”
Nat. Mater.
12
(
6
),
529
534
(
2013
).
37.
R.
Qiu
,
Q.
Zhang
,
P.
Wang
,
L.
Jiang
,
J.
Hou
,
W.
Guo
, and
H.
Zhang
, “
Fabrication of slippery liquid-infused porous surface based on carbon fiber with enhanced corrosion inhibition property
,”
Colloids Surf. A Physicochem. Eng. Asp.
453
(
1
),
132
141
(
2014
).
38.
P.
Wang
,
Z.
Lu
, and
D.
Zhang
, “
Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria
,”
Corros. Sci.
93
,
159
166
(
2015
).
39.
L.
Chen
,
A.
Geissler
,
E.
Bonaccurso
, and
K.
Zhang
, “
Transparent slippery surfaces made with sustainable porous cellulose lauroyl ester films
,”
ACS Appl. Mater. Interfaces
6
(
9
),
6969
6976
(
2014
).
40.
S.
Sunny
,
N.
Vogel
,
C.
Howell
,
T. L.
Vu
, and
J.
Aizenberg
, “
Lubricant-Infused nanoparticulate coatings assembled by layer-by-layer deposition
,”
Adv. Funct. Mater.
24
(
42
),
6658
6667
(
2014
).
41.
P.
Zhang
,
H.
Chen
,
L.
Zhang
,
Y.
Zhang
,
D.
Zhang
, and
L.
Jiang
, “
Stable slippery liquid-infused anti-wetting surface at high temperatures
,”
J. Mater. Chem. A
4
(
31
),
12212
12220
(
2016
).
42.
S.
Bandyopadhyay
,
S.
Khare
,
N.
Bhandaru
,
R.
Mukherjee
, and
S.
Chakraborty
, “
High temperature durability of oleoplaned slippery copper surfaces
,”
Langmuir
36
(
15
),
4135
4143
(
2020
).
43.
Q.
Wei
,
C.
Schlaich
,
S.
Prévost
,
A.
Schulz
,
C.
Böttcher
,
M.
Gradzielski
,
Z.
Qi
,
R.
Haag
, and
C. A.
Schalley
, “
Supramolecular polymers as surface coatings: Rapid fabrication of healable superhydrophobic and slippery surfaces
,”
Adv. Mater.
26
(
43
),
7358
7364
(
2014
).
44.
M. J.
Kratochvil
,
M. A.
Welsh
,
U.
Manna
,
B. J.
Ortiz
,
H. E.
Blackwell
, and
D. M.
Lynn
, “
Slippery liquid-infused porous surfaces that prevent bacterial surface fouling and inhibit virulence phenotypes in surrounding planktonic cells
,”
ACS Infect. Dis.
2
(
7
),
509
517
(
2016
).
45.
P. W.
Wilson
,
W.
Lu
,
H.
Xu
,
P.
Kim
,
M. J.
Kreder
,
J.
Alvarenga
, and
J.
Aizenberg
, “
Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS)
,”
Phys. Chem. Chem. Phys.
15
(
2
),
581
585
(
2013
).
46.
P.
Kim
,
T. S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
, “
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
,”
ACS Nano
6
(
8
),
6569
6577
(
2012
).
47.
S. B.
Subramanyam
,
K.
Rykaczewski
, and
K. K.
Varanasi
, “
Ice adhesion on lubricant-impregnated textured surfaces
,”
Langmuir
29
(
44
),
13414
13418
(
2013
).
48.
S.
Anand
,
A. T.
Paxson
,
R.
Dhiman
,
J. D.
Smith
, and
K. K.
Varanasi
, “
Enhanced condensation on lubricant- impregnated nanotextured surfaces
,”
ACS Nano
6
(
11
),
10122
10129
(
2012
).
49.
B. R.
Solomon
,
K. S.
Khalil
, and
K. K.
Varanasi
, “
Drag reduction using lubricant-impregnated surfaces in viscous laminar flow
,”
Langmuir
30
(
36
),
10970
10976
(
2014
).
50.
R.
Helbig
,
J.
Nickerl
,
C.
Neinhuis
, and
C.
Werner
, “
Smart skin patterns protect springtails
,”
PLoS One
6
(
9
),
e25105
(
2011
).
51.
R.
Hensel
,
C.
Neinhuis
, and
C.
Werner
, “
The springtail cuticle as a blueprint for omniphobic surfaces
,”
Chem. Soc. Rev.
45
,
323
341
(
2016
).
52.
P.
Zhu
,
T.
Kong
,
X.
Tang
, and
L.
Wang
, “
Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating
,”
Nat. Commun.
2017
,
8
15823
(
2017
).
53.
G.-T.
Yun
,
W.-B.
Jung
,
M. S.
Oh
,
G. M.
Jang
,
J.
Baek
,
N. I.
Kim
,
S. G.
Im
, and
H.-T.
Jung
, “
Springtail-inspired superomniphobic surface with extreme pressure resistance
,”
Sci. Adv.
4
,
eaat4978
(
2018
).
54.
H.
Chen
,
P.
Zhang
,
L.
Zhang
,
H.
Liu
,
Y.
Jiang
,
D.
Zhang
,
Z.
Han
, and
L.
Jiang
, “
Continuous directional water transport on the peristome surface of Nepenthes Alata
,”
Nature
532
,
85
89
(
2016
).
55.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
,
546
551
(
1944
).
56.
S.
Chakraborty
,
T.
Das
, and
S.
Chattoraj
, “
A generalized model for probing frictional characteristics of pressure-driven liquid microflows
,”
J. Appl. Phys.
102
(
10
),
104907
(
2007
).
57.
P.-F.
Hao
,
C.
Wong
,
Z.-H.
Yao
, and
K.-Q.
Zhu
, “
Laminar drag reduction in hydrophobic microchannels
,”
Chem. Eng. Technol.
32
(
6
),
912
918
(
2009
).
58.
D.
Byun
,
J.
Kim
,
H.-S.
Ko
, and
H.-C.
Park
, “
Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves
,”
Phys. Fluids
20
(
11
),
113601
(
2008
).
59.
S.
Chakraborty
, “
Order parameter modeling of fluid dynamics in narrow confinements subjected to hydrophobic interactions
,”
Phys. Rev. Lett.
99
(
9
),
94504
(
2007
).
60.
M.
Sbragaglia
,
R.
Benzi
,
L.
Biferale
,
S.
Succi
, and
F.
Toschi
, “
Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows
,”
Phys. Rev. Lett.
97
(
20
),
204503
(
2006
).
61.
J.
Davies
,
D.
Maynes
,
B. W.
Webb
, and
B.
Woolford
, “
Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs
,”
Phys. Fluids
18
(
8
),
087110
(
2006
).
62.
C. H.
Choi
,
U.
Ulmanella
,
J.
Kim
,
C. M.
Ho
, and
C. J.
Kim
, “
Effective slip and friction reduction in nanograted superhydrophobic microchannels
,”
Phys. Fluids
18
(
8
),
087105
087108
(
2006
).
63.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
(
August 2009
),
89
109
(
2010
).
64.
R.
Dey
,
M. K.
Raj
,
N.
Bhandaru
,
R.
Mukherjee
, and
S.
Chakraborty
, “
Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls
,”
Soft Matter
10
(
19
),
3451
3462
(
2014
).
65.
K.
Kant
and
R.
Pitchumani
, “
Laminar drag reduction in microchannels with liquid infused textured surfaces
,”
Chem. Eng. Sci.
230
(
C
),
116196
(
2021
).
66.
B.
Fan
and
P. R.
Bandaru
, “
Modulation of the streaming potential and slip characteristics in electrolyte flow over liquid-filled surfaces
,”
Langmuir
35
(
18
),
6203
6210
(
2019
).
67.
R. F.
Ismagilov
,
J. M. K.
Ng
,
P. J. A.
Kenis
, and
G. M.
Whitesides
, “
Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools
,”
Anal. Chem.
73
(
21
),
5207
5213
(
2001
).
68.
A.
Bernard
,
B.
Michel
, and
E.
Delamarche
, “
Micromosaic immunoassays
,”
Anal. Chem.
73
(
1
),
8
12
(
2001
).
69.
T.
Deng
,
M.
Prentiss
, and
G. M.
Whitesides
, “
Fabrication of magnetic microfiltration systems using soft lithography
,”
Appl. Phys. Lett.
80
(
3
),
461
463
(
2002
).
70.
B. S.
Cho
,
T. G.
Schuster
,
X.
Zhu
,
D.
Chang
,
G. D.
Smith
, and
S.
Takayama
, “
Passively driven integrated microfluidic system for separation of motile sperm
,”
Anal. Chem.
75
(
7
),
1671
1675
(
2003
).
71.
J. S.
Choi
,
Y.
Piao
, and
T. S.
Seo
, “
Fabrication of a circular PDMS microchannel for constructing a three-dimensional endothelial cell layer
,”
Bioprocess. Biosyst. Eng.
36
(
12
),
1871
1878
(
2013
).
72.
M. K.
Raj
,
S.
Dasgupta
, and
S.
Chakraborty
, “
Biomimetic pulsatile flows through flexible microfluidic conduits
,”
Biomicrofluidics
13
(
1
),
014103
(
2019
).
73.
Y.
Ling
,
J.
Rubin
,
Y.
Deng
,
C.
Huang
,
U.
Demirci
,
J. M.
Karp
, and
A.
Khademhosseini
, “
A cell-laden microfluidic hydrogel
,”
Lab Chip
7
(
6
),
756
762
(
2007
).
74.
J. H.
Park
,
B. G.
Chung
,
W. G.
Lee
,
J.
Kim
,
M. D.
Brigham
,
J.
Shim
,
S.
Lee
,
C. M.
Hwang
,
N. G.
Durmus
,
U.
Demirci
, and
A.
Khademhosseini
, “
Microporous cell-laden hydrogels for engineered tissue constructs
,”
Biotechnol. Bioeng.
106
(
1
),
138
148
(
2010
).
75.
M. K.
Raj
,
S.
Bhattacharya
,
S.
Dasgupta
, and
S.
Chakraborty
, “
Collective dynamics of red blood cells on an in vitro microfluidic platform
,”
Lab Chip
18
(
24
),
3939
3948
(
2018
).
76.
A. P.
Golden
and
J.
Tien
, “
Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element
,”
Lab Chip
7
(
6
),
720
725
(
2007
).
77.
C. J.
Bettinger
,
B.
Orrick
,
A.
Misra
,
R.
Langer
, and
J. T.
Borenstein
, “
Microfabrication of poly (glycerol–sebacate) for contact guidance applications
,”
Biomaterials
27
(
12
),
2558
2565
(
2006
).
78.
C. J.
Bettinger
,
E. J.
Weinberg
,
K. M.
Kulig
,
J. P.
Vacanti
,
Y.
Wang
,
J. T.
Borenstein
, and
R.
Langer
, “
Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer
,”
Adv. Mater.
18
(
2
),
165
169
(
2006
).
79.
B. M.
Gillette
,
J. A.
Jensen
,
B.
Tang
,
G. J.
Yang
,
A.
Bazargan-Lari
,
M.
Zhong
, and
S. K.
Sia
, “
In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices
,”
Nat. Mater.
7
(
8
),
636
640
(
2008
).
80.
K. H. K.
Wong
,
J. G.
Truslow
, and
J.
Tien
, “
The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels
,”
Biomaterials
31
(
17
),
4706
4714
(
2010
).
81.
G. M.
Price
,
K. H. K.
Wong
,
J. G.
Truslow
,
A. D.
Leung
,
C.
Acharya
, and
J.
Tien
, “
Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels
,”
Biomaterials
31
(
24
),
6182
6189
(
2010
).
82.
C. P.
Huang
,
J.
Lu
,
H.
Seon
,
A. P.
Lee
,
L. A.
Flanagan
,
H. Y.
Kim
,
A. J.
Putnam
, and
N. L.
Jeon
, “
Engineering microscale cellular niches for three-dimensional multicellular co-cultures
,”
Lab Chip
9
(
12
),
1740
1748
(
2009
).
83.
W. J.
Polacheck
,
J. L.
Charest
, and
R. D.
Kamm
, “
Interstitial flow influences direction of tumor cell migration through competing mechanisms
,”
Proc. Natl. Acad. Sci. U.S.A.
108
(
27
),
11115
11120
(
2011
).
84.
D. A.
Bruzewicz
,
A. P.
McGuigan
, and
G. M.
Whitesides
, “
Fabrication of a modular tissue construct in a microfluidic chip
,”
Lab Chip
8
(
5
),
663
671
(
2008
).
85.
L.
Xu
,
S.
Wang
,
X.
Sui
,
Y.
Wang
,
Y.
Su
,
L.
Huang
,
Y.
Zhang
,
Z.
Chen
,
Q.
Chen
,
H.
Du
, and
Y.
Zhang
, “
Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure
,”
ACS Appl. Mater. Interfaces
9
(
17
),
14716
14723
(
2017
).
86.
Y.
Zhang
,
Y.
Yu
, and
I. T.
Ozbolat
, “
Direct bioprinting of vessel-like tubular microfluidic channels
,”
J. Nanotechnol. Eng. Med.
4
(
2
), 020902 (
2013
).
87.
N. W.
Choi
,
M.
Cabodi
,
B.
Held
,
J. P.
Gleghorn
,
L. J.
Bonassar
, and
A. D.
Stroock
, “
Microfluidic scaffolds for tissue engineering
,”
Nat. Mater.
6
(
11
),
908
915
(
2007
).
88.
M. D.
Brigham
,
A.
Bick
,
E.
Lo
,
A.
Bendali
,
J. A.
Burdick
, and
A.
Khademhosseini
, “
Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks
,”
Tissue Eng. Part A
15
(
7
),
1645
1653
(
2009
).
89.
M. P.
Cuchiara
,
A. C. B.
Allen
,
T. M.
Chen
,
J. S.
Miller
, and
J. L.
West
, “
Multilayer microfluidic PEGDA hydrogels
,”
Biomaterials
31
(
21
),
5491
5497
(
2010
).
90.
X.
Li
,
D. R.
Ballerini
, and
W.
Shen
, “
A perspective on paper-based microfluidics: Current status and future trends
,”
Biomicrofluidics
6
(
1
),
11301
11313
(
2012
).
91.
J.
Hiltunen
,
C.
Liedert
,
M.
Hiltunen
,
O.-H.
Huttunen
,
J. H.
Kainanen
,
S.
Aikio
,
M.
Harjanne
,
M.
Kurkinen
,
L.
Hakalathi
, and
L. P.
Lee
, “
Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification
,”
Lab Chip
18
(
11
),
1552
1559
(
2018
).
92.
G.
Buchberger
,
F.
Hischen
,
P.
Comanns
,
R.
Baumgartner
,
A.
Kogler
,
A.
Buchsbaum
,
S.
Bauer
, and
W.
Baumgartner
, “
Bio-inspired microfluidic devices for passive, directional liquid transport: Model-based adaption for different materials
,”
Procedia Eng.
120
,
106
111
(
2015
).
93.
Z.
Yongmei
,
C.
Qunfeng
,
H.
Yongping
, and
Y.
Chen
,
Bio-Inspired Wettability Surfaces: Developments in Micro- and Nanostructures
,
1st ed.
(Jenny Stanford Publishing,
2015
).
94.
Y.
Yan
,
H.
Liu
,
B.
Zhang
, and
R.
Liu
, “
A PMMA-based microfluidic device for human sperm evaluation and screening on swimming capability and swimming persistence
,”
Micromachines (Basel)
11
(
9
),
793
(
2020
).
95.
H.
Hartanto
,
M.
Wu
,
M. L.
Lam
, and
T. H.
Chen
, “
Microfluidic immunoassay for detection of serological antibodies: A potential tool for rapid evaluation of immunity against SARS-CoV-2
,”
Biomicrofluidics
14
(
6
),
061507-1-13
(
2020
).
96.
T.
Tang
,
Y.
Yuan
,
Y.
Yalikun
,
Y.
Hosokawa
,
M.
Li
, and
Y.
Tanaka
, “
Glass based micro total analysis systems: Materials, fabrication methods, and applications
,”
Sens. Actuators B
339
,
129859
(
2021
).
97.
M. K.
Raj
and
S.
Chakraborty
, “
PDMS microfluidics: A mini review
,”
J. Appl. Polym. Sci.
137
(
27
),
48958
(
2020
).
98.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Annu. Rev. Mater. Sci.
28
(
12
),
153
184
(
1998
).
99.
H.
Zhang
and
M.
Chiao
, “
Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications
,”
J. Med. Biol. Eng.
35
(
2
),
143
155
(
2015
).
100.
J. B.
You
,
B.
Lee
,
Y.
Choi
,
C.-S.
Lee
,
M.
Peter
,
S. G.
Im
, and
S. S.
Lee
, “
Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device
,”
Biotechniques
69
(
1
),
404
409
(
2020
).
101.
H. D.
Dhruv
, “
Controlling nonspecific adsorption of proteins at bio-interfaces for biosensor and biomedical applications
,”
All Graduate Theses and Dissertations
,
2009
, p.
276.
102.
T.
Fujii
, “
PDMS-based microfluidic devices for biomedical applications
,”
Microelectron. Eng.
61–62
,
907
914
(
2002
).
103.
V.
Ozbolat
,
M.
Dey
,
B.
Ayan
,
A.
Povilianskas
,
M. C.
Demirel
, and
I. T.
Ozbolat
, “
3D printing of PDMS improves Its mechanical and cell adhesion properties
,”
ACS Biomater. Sci. Eng.
4
(
2
),
682
693
(
2018
).
104.
Z.
Li
,
J.
Yang
,
K.
Li
,
L.
Zhu
, and
W.
Tang
, “
Fabrication of PDMS microfluidic devices with 3D wax jetting
,”
RSC Adv.
7
(
6
),
3313
3320
(
2017
).
105.
M.
Villegas
,
Z.
Cetinic
,
A.
Shakeri
, and
T. F.
Didar
, “
Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating
,”
Anal. Chim. Acta
1000
,
248
255
(
2018
).
106.
M.
Ionescu
,
B.
Winton
,
D.
Wexler
,
R.
Siegele
,
A.
Deslantes
,
E.
Stelcer
,
A.
Atanacio
, and
D. D.
Cohen
, “
Enhanced biocompatibility of PDMS (polydimethylsiloxane) polymer films by ion irradiation
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
273
,
161
163
(
2012
).
107.
M. P.
Wolf
,
G. B.
Salieb-Beugelaar
, and
P.
Hunziker
, “
PDMS with designer functionalities—properties, modifications strategies, and applications
,”
Prog. Polym. Sci.
83
,
97
134
(
2018
).
108.
D.
Vera
,
M.
Garcia-Diaz
,
N.
Torras
,
M.
Álvarez
,
R.
Villa
, and
E.
Martinez
, “
Engineering tissue barrier models on hydrogel microfluidic platforms
,”
ACS Appl. Mater. Interfaces
13
(
12
),
13920
13933
(
2021
).
109.
J.
Zhu
and
R. E.
Marchant
, “
Design properties of hydrogel tissue-engineering scaffolds
,”
Expert. Rev. Med. Dev.
8
(
5
),
607
626
(
2011
).
110.
C.
Hu
,
H.
Sun
,
Z.
Liu
,
Y.
Chen
,
Y.
Chen
,
Z.
Wu
, and
K.
Ren
, “
Freestanding 3-D microvascular networks made of alginate hydrogel as a universal tool to create microchannels inside hydrogels
,”
Biomicrofluidics
10
(
4
),
044112
(
2016
).
111.
S.
Basak
,
D.
Brogan
,
H.
Dietrich
,
R.
Ritter
,
R. G.
Dacey
, and
P.
Biswas
, “
Transport characteristics of nanoparticle-based ferrofluids in a gel model of the brain
,”
Int. J. Nanomed.
4
,
9
26
(
2009
).
112.
Q.
Chai
,
Y.
Jiao
, and
X.
Yu
, “
Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them
,”
Gels
3
(
1
),
6
(
2017
).
113.
Y.
Cheng
,
X.
Luo
,
G. F.
Payne
, and
G. W.
Rubloff
, “
Biofabrication: Programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds
,”
J. Mater. Chem.
22
(
16
),
7659
7666
(
2012
).
114.
F.
Yanagawa
,
S.
Sugiura
, and
T.
Kanamori
, “
Hydrogel microfabrication technology toward three dimensional tissue engineering
,”
Regen. Ther.
3
,
45
57
(
2016
).
115.
T.
Takei
,
Z.
Kitazono
,
Y.
Ozuno
,
T.
Yoshinaga
,
H.
Nishimata
, and
M.
Yoshida
, “
Vascular-like network prepared using hollow hydrogel microfibers
,”
J. Biosci. Bioeng.
121
(
3
),
336
340
(
2016
).
116.
R.
Michna
,
M.
Gadde
,
A.
Ozkan
,
M.
DeWitt
, and
M.
Rylander
, “
Vascularized microfluidic platforms to mimic the tumor microenvironment
,”
Biotechnol. Bioeng.
115
(
11
),
2793
2806
(
2018
).
117.
S.
Bhattacharya
,
R.
Ganguly
, and
S.
Chakraborty
, “A lab-on-chip based system to evaluate efficacy of magnetic fluid hyperthermia,” 2019, Publication number: IN 201931019943.
118.
W. E.
Trevelyan
,
D. P.
Procter
, and
J. S.
Harrison
, “
Detection of sugars on paper chromatograms
,”
Nature
166
(
September
),
444
445
(
1950
).
119.
G. M.
Dorris
and
D. G.
Gray
, “
Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers
,”
J. Colloid Interface Sci.
77
(
2
),
353
362
(
1980
).
120.
J.
Shah
and
R. M.
Brown
Jr
, “
Towards electronic paper displays made from microbial cellulose
,”
Appl. Microbiol. Biotechnol.
66
(
4
),
352
355
(
2005
).
121.
V. L.
Pushparaj
,
M. M.
Shaijumon
,
A.
Kumar
,
S.
Murugesan
,
L.
Ci
,
R.
Vajtai
,
R. J.
Linhardt
,
O.
Nalamasu
, and
P. M.
Ajayan
, “
Flexible energy storage devices based on nanocomposite paper
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
34
),
13574
13577
(
2007
).
122.
B.
Fugetsu
,
E.
Sano
,
M.
Sunada
,
Y.
Sambongi
,
T.
Shibuya
,
X.
Wang
, and
T.
Hiraki
, “
Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper
,”
Carbon
46
(
9
),
1256
1258
(
2008
).
123.
E.
Carrilho
,
A. W.
Martinez
, and
G. M.
Whitesides
, “
Understanding wax printing: A simple micropatterning process for paper-based microfluidics
,”
Anal. Chem.
81
(
16
),
7091
7095
(
2009
).
124.
W.
Dungchai
,
O.
Chailapakul
, and
C. S.
Henry
, “
Electrochemical detection for paper-based microfluidics
,”
Anal. Chem.
81
(
14
),
5821
5826
(
2009
).
125.
Y.
Lu
,
W.
Shi
,
L.
Jiang
,
J.
Qin
, and
B.
Lin
, “
Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay
,”
Electrophoresis
30
(
9
),
1497
1500
(
2009
).
126.
S.
Yun
and
J.
Kim
, “
Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor
,”
Sensors Actuators B
150
(
1
),
308
313
(
2010
).
127.
R. K.
Arun
,
S.
Halder
,
N.
Chanda
, and
S.
Chakraborty
, “
A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes
,”
Lab Chip
14
(
10
),
1661
1664
(
2014
).
128.
E.
Elizalde
,
R.
Urteaga
, and
C. L. A.
Berli
, “
Rational design of capillary-driven flows for paper-based microfluidics
,”
Lab Chip
15
(
10
),
2173
2180
(
2015
).
129.
H.
Noh
and
S. T.
Phillips
, “
Metering the capillary-driven flow of fluids in paper-based microfluidic devices
,”
Anal. Chem.
82
(
10
),
4181
4187
(
2010
).
130.
S. S.
Das
,
S.
Kar
,
T.
Anwar
,
P.
Saha
, and
S.
Chakraborty
, “
Hydroelectric power plant on a paper strip
,”
Lab Chip
18
(
11
),
1560
1568
(
2018
).
131.
R. K.
Arun
,
P.
Singh
,
G.
Biswas
,
N.
Chanda
, and
S.
Chakraborty
, “
Energy generation from water flow over reduced graphene oxide surface in a paper-pencil device
,”
Lab Chip
16
(
18
),
3589
3596
(
2016
).
132.
A. K.
Ellerbee
,
S. T.
Phillips
,
A. C.
Siegel
,
K.
Mirica
,
A. W.
Martinez
,
P.
Striehl
,
N.
Jain
,
M.
Prentiss
, and
G. M.
Whitesides
, “
Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper
,”
Anal. Chem.
81
(
20
),
8447
8452
(
2009
).
133.
W.
Dungchai
,
O.
Chailapakul
, and
C. S.
Henry
, “
Use of multiple colorimetric indicators for paper-based microfluidic devices
,”
Anal. Chim. Acta
674
(
2
),
227
233
(
2010
).
134.
J.
Ma
,
S.
Yan
,
C.
Miao
,
L.
Li
,
W.
Shi
,
X.
Liu
,
Y.
Luo
,
T.
Liu
,
B.
Lin
,
W.
Wu
, and
Y.
Lu
, “
Paper microfluidics for cell analysis
,”
Adv. Healthc. Mater.
8
(
1
),
1801084
(
2019
).
135.
C. D.
Chin
,
T.
Laksanasopin
,
Y. K.
Cheung
et al, “
Microfluidics-based diagnostics of infectious diseases in the developing world
,”
Nat. Med.
17
(
8
),
1015
1019
(
2011
).
136.
P.
Mandal
,
R.
Dey
, and
S.
Chakraborty
, “
Electrokinetics with ‘paper-and-pencil’ devices
,”
Lab Chip
12
(
20
),
4026
4028
(
2012
).
137.
N. K.
Mani
,
A.
Prabhu
,
S. K.
Biswas
, and
S.
Chakraborty
, “
Fabricating paper based devices using correction pens
,”
Sci. Rep.
9
(
1
),
1752
(
2019
).
138.
N. K.
Mani
,
S. S.
Das
,
S.
Dawn
, and
S.
Chakraborty
, “
Electro-kinetically driven route for highly sensitive blood pathology on a paper-based device
,”
Electrophoresis
41
(
7-8
),
615
620
(
2020
).
139.
L.
Yuan
,
B.
Yao
,
B.
Hu
,
K.
Huo
,
W.
Chen
, and
J.
Zhou
, “
Polypyrrole-coated paper for flexible solid-state energy storage
,”
Energy Environ. Sci.
6
(
2
),
470
476
(
2013
).
140.
P.
Przybysz
,
M.
Dubowik
,
M. A.
Kucner
,
K.
Przybysz
, and
K. P.
Buzała
, “
Contribution of hydrogen bonds to paper strength properties
,”
PLoS One
11
(
5
),
1
10
(
2016
).
141.
C. G.
Obeso
,
M. P.
Sousa
,
W.
Song
,
M. A.
Rodriguez-Pérez
,
B.
Bhushan
, and
J. F.
Mano
, “
Modification of paper using polyhydroxybutyrate to obtain biomimetic superhydrophobic substrates
,”
Colloids Surf. A
416
(
1
),
51
55
(
2013
).
142.
S.
Bandyopadhyay
,
S.
Santra
,
S. S.
Das
,
R.
Mukherjee
, and
S.
Chakraborty
, “
Non-wetting liquid-infused slippery paper
,”
Langmuir
37
(
46
),
13627
13636
(
2021
).
143.
F.
Kotz
,
M.
Mader
,
N.
Dellen
,
P.
Risch
,
A.
Kick
,
D.
Helmer
, and
B. E.
Rapp
, “
Fused deposition modeling of microfluidic chips in polymethylmethacrylate
,”
Micromachines (Basel)
11
(
9
),
873
(
2020
).
144.
S. U.
Hassan
,
A.
Tariq
,
Z.
Noreen
,
A.
Donia
,
S. Z. J.
Zaidi
,
H.
Bokhari
, and
X.
Zhang
, “
Capillary-Driven flow microfluidics combined with smartphone detection: An emerging tool for point-of-care diagnostics
,”
Diagnostics (Basel)
10
(
8
),
509
(
2020
).
145.
C.
Matellan
and
A. E.
del Río Hernández
, “
Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices
,”
Sci. Rep.
8
,
6971
(
2018
).
146.
Y.
Fan
,
K.
Gao
,
J.
Chen
,
W.
Li
, and
Y.
Zhang
, “
Low-cost PMMA-based microfluidics for the visualization of enhanced oil recovery
,”
OGST—Rev. d’IFP Energ. Nouv.
73
,
26
(
2018
).
147.
S.
Hassanpour-Tamrin
,
A.
Sanati-Nezhad
, and
A.
Sen
, “
A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics
,”
Sci. Rep.
11
,
4821
(
2021
).
148.
S.
Qu
,
X.
Chen
,
D.
Chen
,
P.
Yang
, and
G.
Chen
, “
Poly (methyl methacrylate) CE microchips replicated from poly (dimethylsiloxane) templates for the determination of cations
,”
Electrophoresis
27
,
4910
(
2006
).
149.
Z.
Chen
,
Y.
Gao
,
R.
Su
,
C.
Li
, and
J.
Lin
, “
Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template
,”
Electrophoresis
24
,
3246
(
2003
).
150.
S.
Mukhopadhyay
et al, “
Experimental study on capillary flow through polymer microchannel bends for microfluidic applications
,”
J. Micromech. Microeng.
20
,
055018
(
2010
).
151.
C. T.
Culbertson
,
J.
Sibbitts
,
K.
Sellens
, and
S.
Jia
, “
Fabrication of glass microfluidic devices
,”
Methods Mol. Biol.
1906
,
1
12
(
2019
).
152.
J.
Gottmann
,
M.
Hermans
,
N.
Repiev
, and
J.
Ortmann
, “
Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications—Up-scaling of complexity and speed
,”
Micromachines
8
(
4
),
110
(
2017
).
153.
X.
Ku
,
Z.
Zhang
,
X.
Liu
et al, “
Low-cost rapid prototyping of glass microfluidic devices using a micromilling technique
,”
Microfluid. Nanofluid.
22
,
82
(
2018
).
154.
Y. J.
Choi
,
D. W.
Cho
, and
H.
Lee
, “
Development of silk fibroin scaffolds by using indirect 3D-bioprinting technology
,”
Micromachines
13
(
1
),
43
(
2022
).
155.
S.
Santoni
,
S. G.
Gugliandolo
,
M.
Sponchioni
,
D.
Moscatelli
, and
B. M.
Colosimo
, “
3D bioprinting: Current status and trends—a guide to the literature and industrial practice
,”
Bio-des. Manuf.
5
,
14
42
(
2022
).
156.
S. H.
Kim
,
Y. K.
Yeon
,
J. M.
Lee
et al, “
Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing
,”
Nat. Commun.
9
,
1620
(
2018
).
157.
E. C.
Beck
,
M.
Barragan
,
M. H.
Tadros
,
S. H.
Gehrke
, and
M. S.
Detamore
, “
Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel
,”
Acta Biomater.
138
,
94
105
(
2016
).
158.
H. G.
Yi
,
Y. J.
Choi
,
J. W.
Jung
et al, “
Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty
,”
J. Tissue Eng.
10
(
2019
).
159.
C. J.
Bettinger
,
K. M.
Cyr
,
A.
Matsumoto
,
R.
Langer
,
J. T.
Borenstein
, and
D. L.
Kaplan
, “
Silk fibroin microfluidic devices
,”
Adv. Mater.
19
(
19
),
2847
2850
(
2007
).
160.
M.
Carvalho
,
V.
Ribeiro
,
D.
Caballero
et al, “
Biomimetic and soft lab-on-a-chip platform based on enzymatic-crosslinked silk fibroin hydrogel for colorectal tumor model
,”
Authorea
29
(
2022
).
161.
H.
Ceylan
,
J.
Giltinan
,
K.
Kozielski
, and
M.
Sitti
, “
Mobile microrobots for bioengineering applications
,”
Lab Chip
17
,
1705
1724
(
2017
).
162.
S.
Dodampegama
,
A.
Mudugamuwa
,
M.
Konara
,
N.
Perera
,
D.
De Silva
,
U.
Roshan
,
R.
Amarasinghe
,
N.
Jayaweera
, and
H.
Tamura
, “
A review on the motion of magnetically actuated bio-inspired microrobots
,”
Appl. Sci.
12
(
22
),
11542
(
2022
).
163.
J.
Priyadarshani
,
P.
Awasthi
,
S.
Das
, and
S.
Chakraborty
, “
Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate
,”
J. Colloid Interface Sci.
640
,
246
260
(
2023
).
164.
L.
Zhe
,
Y.
Omid
, and
D
.
Eric
, “
Magnetically-guided in-situ microrobot fabrication
,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE Press
,
2016
), pp.
5131
5136
.
165.
H.
Mu
,
C.
Liu
,
Q.
Zhang
,
H.
Meng
,
S.
Yu
,
K.
Zeng
,
J.
Han
,
X.
Jin
,
S.
Shi
,
P.
Yu
,
T.
Li
,
J.
Xu
, and
Y.
Hua
, “
Magnetic-Driven hydrogel microrobots selectively enhance synthetic lethality in MTAP-deleted osteosarcoma
,”
Front. Bioeng. Biotechnol.
10
,
911455
(
2022
).
166.
U.
Bozuyuk
,
O.
Yasa
,
I. C.
Yasa
,
H.
Ceylan
,
S.
Kizilel
, and
M.
Sitti
, “
Light-triggered drug release from 3D-printed magnetic chitosan microswimmers
,”
ACS Nano
12
(
9
),
9617
9625
(
2018
).
167.
A.
Svensson
,
E.
Nicklasson
,
T.
Harrah
et al, “
Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
,”
Biomaterials
26
(
4
),
419
431
(
2005
).
168.
L.
Qian
and
H.
Zhao
, “
Nanoindentation of soft biological materials
,”
Micromachines
9
(
12
),
654
(
2018
).
169.
A.
Kumachev
,
E.
Tumarkin
,
G. C.
Walker
, and
E.
Kumacheva
, “
Characterization of the mechanical properties of microgels acting as cellular microenvironments
,”
Soft Matter
9
(
10
),
2959
2965
(
2013
).
170.
M.
Ahearne
,
Y.
Yang
,
A. J.
El Haj
,
K. Y.
Then
, and
K.-K.
Liu
, “
Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications
,”
J. R. Soc. Interface
2
(
5
),
455
463
(
2005
).
171.
N.
Khalilgharibi
,
J.
Fouchard
,
N.
Asadipour
et al, “
Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex
,”
Nat. Phys.
15
(
8
),
839
847
(
2019
).
172.
M. W.
Davidson
and
M.
Abramowitz
, “
Optical microscopy
,”
Encycl. Imaging Sci. Technol.
(
2002
).
173.
E.
Betzig
,
J. K.
Trautman
, and
J. S.
Weiner
, “
Breaking the diffraction barrier: Optical microscopy of a nanometric scale. Published by: American association for the advancement of science
,”
Science
251
(
5000
),
1468
1470
(
2016
). http://www.jstor.org/stable/2873591.
174.
J.
Wu
,
G.
Zheng
, and
L. M.
Lee
, “
Optical imaging techniques in microfluidics and their applications
,”
Lab Chip
12
(
19
),
3566
3575
(
2012
).
175.
L.
Limozin
and
K.
Sengupta
, “
Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion
,”
ChemPhysChem
10
(
16
),
2752
2768
(
2009
).
176.
D.
Ross
,
M.
Gaitan
, and
L. E.
Locascio
, “
Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye
,”
Anal. Chem.
73
(
17
),
4117
4123
(
2001
).
177.
H.
Zhang
,
C. H.
Chon
,
X.
Pan
, and
D.
Li
, “
Methods for counting particles in microfluidic applications
,”
Microfluid. Nanofluid.
7
(
6
),
739
749
(
2009
).
178.
L. F.
Alonzo
,
M. L.
Moya
,
V. S.
Shirure
, and
S. C.
George
, “
Microfluidic device to control interstitial flow-mediated homotypic and heterotypic cellular communication
,”
Lab Chip
15
(
17
),
3521
3529
(
2015
).
179.
J.
Rusanen
,
L.
Kareinen
,
L.
Szirovicza
,
H.
Uğurlu
,
L.
Levanov
,
A.
Jääskeläinen
,
M.
Ahava
,
S.
Kurkela
,
K.
Saksela
,
K.
Hedman
,
O.
Vapalahti
, and
J.
Hepojoki
, “
A generic, scalable, and rapid time-resolved Förster resonance energy transfer-based assay for antigen detection—SARS-CoV-2 as a proof of concept
,”
mBio
12
(
3
),
e00902
21
(
2021
).
180.
A.
Sengupta
,
U.
Tkalec
,
M.
Ravnik
,
J. M.
Yeomans
,
C.
Bahr
, and
S.
Herminghaus
, “
Liquid crystal microfluidics for tunable flow shaping
,”
Phys. Rev. Lett.
110
(
4
),
1
5
(
2013
).
181.
K.
Li
,
S. O.
Correa
,
P.
Pham
,
C. B.
Raub
, and
X.
Luo
, “
Birefringence of flow-assembled chitosan membranes in microfluidics
,”
Biofabrication
9
(
3
),
641
649
(
2017
). .
182.
D.
Huh
,
W.
Gu
,
Y.
Kamotani
,
J. B.
Grotberg
, and
S.
Takayama
, “
Microfluidics for flow cytometric analysis of cells and particles
,”
Physiol. Meas.
26
(
3
(
2005
).
183.
M.
Kiran Raj
,
S.
Misra
, and
S. K.
Mitra
, “
Friction and adhesion of microparticle suspensions on repellent surfaces
,”
Langmuir
36
(
45
),
13689
13697
(
2020
).
184.
S.
Misra
et al, “
Reflected laser interferometry: A versatile tool to probe condensation of Low-surface-tension droplets
,”
Langmuir
37
(
27
),
8073
8082
(
2021
).
185.
A. R.
Kim
,
S. K.
Mitra
, and
B.
Zhao
, “
Capillary pressure mediated long-term dynamics of thin soft films
,”
J. Colloid Interface Sci.
628
,
788
797
(
2022
).
186.
F.
Zhao
,
S.
Mitra
,
A. R.
Kim
,
M.
Xu
,
J.
Yao
,
S. K.
Mitra
, and
B.
Zhao
, “
Determining effective refractive index and elasticity of nanoscale metal-thin, soft polymer bilayers using interference signatures of a glass probe
,”
Colloids Surf. A
674,
131861
(
2023
).
187.
K. L.
Jungjohann
,
J. E.
Evans
,
J. A.
Aguiar
,
I.
Arslan
, and
N. D.
Browning
, “
Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy
,”
Microsc. Microanal.
18
(
3
),
621
627
(
2012
).
188.
X.
Hou
,
Y. S.
Zhang
,
G. T.
De Santiago
et al, “
Interplay between materials and microfluidics
,”
Nat. Rev. Mater.
2
(
5),
17016 (
2017
).
189.
E. A.
Ring
and
N.
De Jonge
, “
Microfluidic system for transmission electron microscopy
,”
Microsc. Microanal.
16
(
5
),
622
629
(
2010
).
190.
J.
Cui
,
M.
Björnmalm
,
K.
Liang
et al, “
Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model
,”
Adv. Mater.
26
(
43
),
7295
7299
(
2014
).
191.
O.
Guillaume-gentil
,
E.
Potthoff
,
D.
Ossola
,
C. M.
Franz
,
T.
Zambelli
, and
J. A.
Vorholt
, “
Force-controlled manipulation of single cells: From AFM to fluid FM
,”
Trends Biotechnol.
32
(
7
),
381
388
(
2014
).
192.
T.
Das
,
T. K.
Maiti
, and
S.
Chakraborty
, “
Traction force microscopy on-chip: Shear deformation of fibroblast cells
,”
Lab Chip
8
,
1308
1318
(
2008
).
193.
S.
Shyam
,
S.
Misra
, and
S. K.
Mitra
, “
A universal capillary-deflection based adhesion measurement technique
,”
J. Colloid Interface Sci.
630
,
322
333
(
2023
).
194.
K. R.
Melayil
,
S.
Misra
, and
S. K.
Mitra
, “
Microparticle suspensions and bacteria-laden droplets: Are they the same in terms of wetting signature?
,”
Langmuir
37
(
Issue 4
),
1588
1595
(
2021
).
195.
K. R.
Melayil
and
S. K.
Mitra
, “
Wetting, adhesion, and droplet impact on face masks
,”
Langmuir
37
(
8
),
2810
2815
(
2021
).
196.
J. B.
Orhan
,
V. K.
Parashar
,
J.
Flueckiger
, and
M. A. M.
Gijs
, “
Internal modification of poly(dimethylsiloxane) microchannels with a borosilicate glass coating
,”
Langmuir
24
(
16
),
9154
9161
(
2008
).
197.
S.
Nasrazadani
and
S.
Nakka
, “
Characterization of corrosion products in RTPF and all-aluminum microchannel heat exchangers
,”
J. Fail Anal. Prev.
16
(
2
),
189
196
(
2016
).
198.
D.
Shahriari
,
G.
Loke
,
I.
Tafel
et al, “
Scalable fabrication of porous microchannel nerve guidance scaffolds with complex geometries
,”
Adv. Mater.
31
(
30
),
1
8
(
2019
).
199.
G.
Wang
,
Z.
He
,
G.
Shi
,
H.
Wang
,
Q.
Zhang
, and
Y.
Li
, “
Controllable construction of titanium dioxide-zirconium dioxide@zinc hydroxyfluoride networks in micro-capillaries for bio-analysis
,”
J. Colloid Interface Sci.
446
,
290
297
(
2015
).
200.
K. M.
Kovach
,
J. R.
Capadona
,
G. A.
Sen
, and
J. A.
Potkay
, “
The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility
,”
J. Biomed. Mater. Res. Part A
102
(
12
),
4195
4205
(
2014
). .
201.
W.
Deng
,
J.
Jie
,
X.
Xu
et al, “
A microchannel-confined crystallization strategy enables blade coating of perovskite single crystal arrays for device integration
,”
Adv. Mater.
32
(
1908340
),
1
9
(
2020
).
202.
G.
Chen
,
S.
Li
,
F.
Jiao
, and
Q.
Yuan
, “
Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors
,”
Catal. Today
125
(
1-2
),
111
119
(
2007
).
203.
M. D.
Dickey
,
R. C.
Chiechi
,
R. J.
Larsen
,
E. A.
Weiss
,
D. A.
Weitz
, and
G. M.
Whitesides
, “
Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
,”
Adv. Funct. Mater.
18
(
7
),
1097
1104
(
2008
).
204.
B.
Praček
and
M.
Kern
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Appl. Surf. Sci.
70–71
(
Part 1
),
169
171
(
1993
).
205.
R. S.
Renslow
,
M. J.
Marshall
,
A. E.
Tucker
,
W. B.
Chrisler
, and
X. Y.
Yu
, “
In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel
,”
Analyst
142
(
13
),
2363
2371
(
2017
).
206.
I.
Hosseini
,
J. M.
Posma
,
J. I.
Serrano-Contreras
et al, “
Identifying unknown metabolites using NMR-based metabolic profiling techniques
,”
Nat. Protoc.
15
(
8
),
2538
2567
(
2020
).
207.
I. I.
Hosseini
,
M.
Moghimi Zand
,
A. A.
Ebadi
, and
M.
Fathipour
, “
Cell properties assessment using optimized dielectrophoresis-based cell stretching and lumped mechanical modeling
,”
Sci. Rep.
11
(
1
),
2341
(
2021
).
208.
S.
Sawai
,
N.
Ahmad Shukri
,
M. S.
Mohktar
, and
W. S.
Wan Kamarul Zaman
, “
Dielectrophoresis-based discrimination of hepatic carcinoma cells following treatment with cytotoxic agents
,”
Eng. Sci. Technol. Int. J.
25
,
100990
(
2022
).
209.
M.
Viefhues
and
R.
Eichhorn
, “
DNA dielectrophoresis: Theory and applications a review
,”
Electrophoresis
38
(
11
),
1483
1506
(
2017
).
210.
T. N. G.
Adams
,
A. Y. L.
Jiang
,
P. D.
Vyas
, and
L. A.
Flanagan
, “
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis
,”
Methods
133
,
91
103
(
2018
).
211.
C. J.
Ramirez-Murillo
,
J. M.
de los Santos-Ramirez
, and
V. H.
Perez-Gonzalez
, “
Toward low-voltage dielectrophoresis-based microfluidic systems: A review
,”
Electrophoresis
42
(
5
),
565
587
(
2021
).
212.
F. W.
Yunus
,
A. A.
Hamzah
,
M. R.
Buyong
,
J.
Yunas
, and
B. Y.
Majlis
, “
Negative charge dielectrophoresis by using different radius of electrodes for biological particles
,” in
Proceedings of the 2017 IEEE Regional Symposium on Micro and Nanoelectronics, RSM 2017
(
Institute of Electrical and Electronics Engineers Inc.
,
2017
), pp.
84
87
.
213.
L. L.
Sohn
,
O. A.
Saleh
,
G. R.
Facer
,
A. J.
Beavis
,
R. S.
Allan
, and
D. A.
Notterman
, “
Capacitance cytometry: Measuring biological cells one by one
,”
Proc. Natl. Acad. Sci. U.S.A.
97
(
20
),
10687
10690
(
2000
).
214.
Y.
Song
,
B.
Lin
,
T.
Tian
,
X.
Xu
,
W.
Wang
,
Q.
Ruan
,
J.
Guo
,
Z.
Zhu
, and
C.
Yang
, “
Recent progress in microfluidics-based biosensing
,”
Anal. Chem.
91
(
1
),
388
404
(
2018
).
215.
H.
Goto
,
Y.
Kanai
,
A.
Yotsui
et al, “
Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases
,”
Lab Chip
20
(
4
),
852
861
(
2020
).
216.
P.
Liu
,
Q.
Huang
,
M.
Khan
,
N.
Xu
,
H.
Yao
, and
J. M.
Lin
, “
Microfluidic probe for in-situ extraction of adherent cancer cells to detect heterogeneity difference by electrospray ionization mass spectrometry
,”
Anal. Chem.
92
(
11
),
7900
7906
(
2020
).
217.
N. V.
Nguyen
,
T.
Le Manh
,
T. S.
Nguyen
,
V. T.
Le
, and
N.
Van Hieu
, “
Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel
,”
J. Sci. Adv. Mater. Devices.
6
(
1
),
11
18
(
2021
).
218.
Z.
Han
,
L.
Chen
,
S.
Zhang
,
J.
Wang
, and
X.
Duan
, “
Label-free and simultaneous mechanical and electrical characterization of single plant cells using microfluidic impedance flow cytometry
,”
Anal. Chem.
92
(
21
),
14568
14575
(
2020
).
219.
T.
Xu
,
M. A.
Lizarralde-Iragorri
,
J.
Roman
et al, “
Characterization of red blood cell microcirculatory parameters using a bioimpedance microfluidic device
,”
Sci. Rep.
10
(
1
),
1
10
(
2020
).
220.
J.
Wang
,
P.
Ma
,
D. H.
Kim
,
B. F.
Liu
, and
U.
Demirci
, “
Towards microfluidic-based exosome isolation and detection for tumor therapy
,”
Nano Today
37
,
101066
(
2021
).
221.
P.
Awasthi
,
R.
Mukherjee
,
S. P.
O’Kare
, and
S.
Das
, “
Impedimetric blood pH sensor based on MoS2-nafion coated microelectrode
,”
RSC Adv.
6
(
104
),
102088
102095
(
2016
).
222.
P.
Awasthi
,
A.
Singh
,
S.
Khatun
,
A. N.
Gupta
, and
S.
Das
, “
Fibril growth captured by electrical properties of amyloid-β and human islet amyloid polypeptide
,”
Phys. Rev. E
101
(
6
),
062413
(
2020
).
223.
M. W.
Sifuna
,
M. R.
Baidillah
,
A.
Sapkota
, and
M.
Takei
, “
A cole-cole dielectric relaxation analysis of albumin and γ-globulins for protein quantification by electrical impedance spectroscopy
,”
Electroanalysis
32
(
5
),
1121
1129
(
2020
).
224.
T.
Gerasimenko
,
S.
Nikulin
,
G.
Zakharova
et al, “
Impedance spectroscopy as a tool for monitoring performance in 3D models of epithelial tissues
,”
Front. Bioeng. Biotechnol.
7
,
474
(
2020
).
225.
L.
Wang
,
S.
Hu
,
K.
Liu
et al, “
A hybrid genetic algorithm and Levenberg-Marquardt (GA-LM) method for cell suspension measurement with electrical impedance spectroscopy
,”
Rev. Sci. Instrum.
91
(
12
),
124104
(
2020
).
226.
L. L.
Crowell
,
J. S.
Yakisich
,
B.
Aufderheide
, and
T. N. G.
Adams
, “
Electrical impedance spectroscopy for monitoring chemoresistance of cancer cells
,”
Micromachines
11
(
9
),
832
(
2020
).
227.
R.
Hölzel
and
I.
Lamprecht
, “
Dielectric properties of yeast cells as determined by electrorotation
,”
Biochim. Biophys. Acta Biomembr.
1104
(
1
),
195
200
(
1992
).
228.
C. I.
Trainito
,
D. C.
Sweeney
,
J.
Čemažar
et al, “
Characterization of sequentially-staged cancer cells using electrorotation
,”
PLoS One
14
(
9
),
e0222289
(
2019
).
229.
C.
Dalton
,
A. D.
Goater
,
J. P. H.
Burt
, and
H. V.
Smith
, “
Analysis of parasites by electrorotation
,”
J. Appl. Microbiol.
96
,
24
32
(
2004
).
230.
J.
Yang
,
Y.
Huang
,
X.
Wang
,
X. B.
Wang
,
F. F.
Becker
, and
P. R. C.
Gascoyne
, “
Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion
,”
Biophys. J.
76
(
6
),
3307
3314
(
1999
).
231.
S.
Kawai
,
M.
Suzuki
,
S.
Arimoto
,
T.
Korenaga
, and
T.
Yasukawa
, “
Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation
,”
Analyst
145
(
12
),
4188
4195
(
2020
).
232.
M.
Ostermann
,
A.
Sauter
,
Y.
Xue
et al, “
Label-free impedance flow cytometry for nanotoxicity screening
,”
Sci. Rep.
10
(
1
),
1
14
(
2020
).
233.
M.
Jiang
,
X.
Wang
,
X.
Zhao
et al, “
Classification of tumor subtypes leveraging constriction-channel based impedance flow cytometry and optical imaging
,”
Cytom. Part A
99
(
11
),
1114
1122
(
2021
).
234.
K.
Mahesh
,
M.
Varma
, and
P.
Sen
, “
Double-peak signal features in microfluidic impedance flow cytometry enable sensitive measurement of cell membrane capacitance
,”
Lab Chip
20
(
22
),
4296
4309
(
2020
).
235.
C. V.
Bertelsen
,
J. C.
Franco
,
G. E.
Skands
,
M.
Dimaki
, and
W. E.
Svendsen
, “
Investigating the use of impedance flow cytometry for classifying the viability state of E.
coli
,”
Sensors (Switzerland)
20
(
21
),
1
16
(
2020
).
236.
A. P.
Sudarsan
and
V. M.
Ugaz
, “
Multivortex micromixing
,”
Proc. Natl. Acad. Sci. U.S.A.
103
(
19
),
7228
7233
(
2006
).
237.
B.
Wang
,
A.
Demuren
,
E.
Gyuricsko
, and
H.
Hu
, “
An experimental study of pulsed micro-flows pertinent to continuous subcutaneous insulin infusion therapy
,”
Exp. Fluids
51
(
1
),
65
74
(
2011
).
238.
Y.
Pang
,
H.
Kim
,
Z.
Liu
, and
H. A.
Stone
, “
A soft microchannel decreases polydispersity of droplet generation
,”
Lab Chip
14
(
20
),
4029
4034
(
2014
).
239.
P. E.
Arratia
,
J. P.
Gollub
, and
D. J.
Durian
, “
Polymer drop breakup in microchannels
,”
Chaos
17
(
4
),
2006
2007
(
2007
).
240.
H. C.
Ishikawa-Ankerhold
,
R.
Ankerhold
, and
G. P. C.
Drummen
, “
Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM
,”
Molecules
17
(
4
),
4047
4132
(
2012
).
241.
S. S.
Varghese
,
Y.
Zhu
,
T. J.
Davis
, and
S. C.
Trowell
, “
FRET for lab-on-a-chip devices-current trends and future prospects
,”
Lab Chip
10
,
1355
1364
(
2010
).
242.
W. M.
Howell
,
M.
Jobs
, and
A. J.
Brookes
, “
iFRET: An improved fluorescence system for DNA-melting analysis
,”
Genome Res.
12
(
9
),
1401
1407
(
2002
).
243.
Y. Y.
Hsu
,
Y. N.
Liu
,
W.
Wang
,
F. J.
Kao
, and
S. H.
Kung
, “
In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair
,”
Biochem. Biophys. Res. Commun.
353
(
4
),
939
945
(
2007
).
244.
P. G.
Charest
,
S.
Terrillon
, and
M.
Bouvier
, “
Monitoring agonist-promoted conformational changes of beta-arrestin in living cells by intramolecular BRET
,”
EMBO Rep.
6
(
4
),
334
340
(
2005
).
245.
K.
Park
,
L. H.
Lee
,
Y. B.
Shin
,
S. Y.
Yi
,
Y. W.
Kang
,
D. E.
Sok
,
J. W.
Chung
,
B. H.
Chung
, and
M.
Kim
, “
Detection of conformationally changed MBP using intramolecular FRET
,”
Biochem. Biophys. Res. Commun.
388
(
3
),
560
564
(
2009
).
246.
K.
Furukawa
,
H.
Nakashima
,
Y.
Kashimura
, and
K.
Torimitsu
, “
Microchannel device using self-spreading lipid bilayer as molecule carrier
,”
Lab Chip
6
,
1001
1006
(
2006
).
247.
M.
Srisa-Art
,
A. J.
deMello
, and
J. B.
Edel
, “
High-throughput DNA droplet assays using picoliter reactor volumes
,”
Anal. Chem.
79
(
17
),
6682
6689
(
2007
).
248.
T.
Das
and
S.
Chakraborty
, “
Bio-microfluidics: Overview
,” in
Microfluidics and Microfabrication
, edited by
S.
Chakraborty
(
Springer
,
Boston,
MA
,
2010
).
249.
L.
Adrian
,
R. J.
Adrian
, and
J.
Westerweel
,
Particle Image Velocimetry
(
Cambridge University Press
,
2011
).
250.
R.
Lindken
,
M.
Rossi
,
S.
Große
, and
J.
Westerweel
, “
Micro-particle image velocimetry (μPIV): Recent developments, applications, and guidelines
,”
Lab Chip
9
(
17
),
2551
2567
(
2009
).
251.
R.
Lima
,
S.
Wada
,
M.
Takeda
,
K.
Tsubota
, and
T.
Yamaguchi
, “
In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles
,”
J. Biomech.
40
(
12
),
2752
2757
(
2007
).
252.
C. D.
Meinhart
,
S. T.
Wereley
, and
J. G.
Santiago
, “
PIV measurements of a microchannel flow
,”
Exp. Fluids
27
(
5
),
414
419
(
1999
).
253.
J. G.
Santiago
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
(
4
),
316
319
(
1998
).
254.
C.
Poelma
,
P.
Vennemann
,
R.
Lindken
, and
J.
Westerweel
, “
In vivo blood flow and wall shear stress measurements in the vitelline network
,”
Exp. Fluids
45
(
4
),
703
713
(
2008
).
255.
H. B. H.
Evans
,
S.
Gorumlu
,
B.
Aksak
et al, “
Holographic microscopy and microfluidics platform for measuring wall stress and 3D flow over surfaces textured by micro-pillars
,”
Sci. Rep.
6
,
28753
(
2016
).
256.
Y.
Choi
,
K.
Seo
,
M.
Sohn
, and
S.
Lee
, “
Advances in digital holographic micro-PTV for analyzing microscale flows
,”
Opt. Lasers Eng.
50
(
1
),
39
45
(
2012
).
257.
S.
Jin
,
P.
Huang
,
J.
Park
,
J. Y.
Yoo
, and
K. S.
Breuer
, “
Near-surface velocimetry using evanescent wave illumination
,”
Exp. Fluids
37
(
6
),
825
833
(
2004
).
258.
C. M.
Zettner
and
M.
Yoda
, “
Particle velocity field measurements in a near-wall flow using evanescent wave illumination
,”
Exp. Fluids
34
(
1
),
115
121
(
2003
).
259.
R.
Lima
,
S.
Wada
,
S.
Tanaka
et al, “
In vitro blood flow in a rectangular PDMS microchannel: Experimental observations using a confocal micro-PIV system
,”
Biomed. Microdevices
10
(
2
),
153
167
(
2008
).
260.
S. H.
Chao
,
M. R.
Holl
,
J. H.
Koschwanez
,
R. H.
Carlson
,
L. S.
Jang
, and
D. R.
Meldrum
, “
Velocity measurement in microchannels with a laser confocal microscope and particle linear image velocimetry
,”
Microfluid. Nanofluidics
1
(
2
),
155
160
(
2005
).
261.
R.
Lindken
,
J.
Westerweel
, and
B.
Wieneke
, “
Stereoscopic micro particle image velocimetry
,”
Exp. Fluids
41
,
161
171
(
2006
).
262.
H.
Kinoshita
,
S.
Kaneda
,
T.
Fujii
, and
M.
Oshima
, “
Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
,”
Lab Chip
7
(
3
),
338
346
(
2007
).
263.
W. H.
Tien
, “
Development of multi-spectral three-dimensional micro particle tracking velocimetry
,”
Meas. Sci. Technol.
27
(
8
),
084010
(
2016
).
264.
M. R.
Bown
,
J. M.
MacInnes
,
R. W. K.
Allen
, and
W. B. J.
Zimmerman
, “
Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV
,”
Meas. Sci. Technol.
17
(
8
),
2175
2185
(
2006
).
265.
T.
Pirbodaghi
,
D.
Vigolo
,
S.
Akbari
, and
A.
deMello
, “
Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy
,”
Lab Chip
15
,
2140
2144
(
2015
).
266.
N. M.
Kovalchuk
,
J.
Chowdhury
,
Z.
Schofield
,
D.
Vigolo
, and
M. J. H.
Simmons
, “
Study of drop coalescence and mixing in microchannel using ghost particle velocimetry
,”
Chem. Eng. Res. Des.
132
,
881
889
(
2018
).
267.
E.
Yeom
and
S. J.
Lee
, “
Microfluidic-based speckle analysis for sensitive measurement of erythrocyte aggregation: A comparison of four methods for detection of elevated erythrocyte aggregation in diabetic rat blood
,”
Biomicrofluidics
9
(
2
),
1
15
(
2015
).
268.
W. R.
Legant
,
C. K.
Choi
,
J. S.
Miller
,
L.
Shao
,
L.
Gao
,
E.
Betzig
, and
C. S.
Chen
, “
Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
3
),
881
886
(
2013
).
269.
A. F.
Mertz
,
S.
Banerjee
,
Y.
Che
,
G. K.
German
,
Y.
Xu
,
C.
Hyland
,
M. C.
Marchetti
,
V.
Horsley
, and
E. R.
Dufresne
, “
Scaling of traction forces with the size of cohesive cell colonies
,”
Phys. Rev. Lett.
108
(
19
),
198101
(
2012
).
270.
M. L.
McCain
,
H.
Lee
,
Y.
Aratyn-Schaus
,
A. G.
Kléber
, and
K. K.
Parker
, “
Cooperative coupling of cell-matrix and cell-cell adhesions in cardiac muscle
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
25
),
9881
9886
(
2012
).
271.
T. M.
Koch
,
S.
Münster
,
N.
Bonakdar
,
J. P.
Butler
, and
B.
Fabry
, “
3D traction forces in cancer cell invasion
,”
PLoS One
7
(
3
),
e33476
(
2012
).
272.
C. M.
Kraning-Rush
,
J. P.
Califano
, and
C. A.
Reinhart-King
, “
Cellular traction stresses increase with increasing metastatic potential
,”
PLoS One
7
(
2
),
e32572
(
2012
).
273.
A. J.
McKenzie
,
S. R.
Hicks
,
K. V.
Svec
,
H.
Naughton
,
Z. L.
Edmunds
, and
A. K.
Howe
, “
The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation
,”
Sci. Rep.
8
(
1
),
7228
(
2018
).
274.
K. S.
Anseth
,
C. N.
Bowman
, and
L.
Brannon-peppas
, “
Mechanical properties of hydrogels and their experimental determination
,”
Biomaterials
17
(
17
),
1647
1657
(
1996
).
275.
A. G.
Byju
,
A.
Kulkarni
, and
N.
Gundiah
, “
Mechanics of gelatin and elastin based hydrogels as tissue engineered constructs
,” in
Proceedings of the 13th International Conference on Fracture
(
PSU Citeseer X
,
2013
), pp.
4406
4415
.
276.
R.
Kocen
,
M.
Gasik
,
A.
Gantar
,
S.
Novak
et al, “
Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load
,”
Biomed. Mater.
12
(
2
),
25004
(
2017
).
277.
M.
Ahearne
,
Y.
Yang
, and
K. K.
Liu
, “
Mechanical characterization of hydrogels for tissue engineering applications
,”
Top Tissue Eng.
4
(
12
),
1
16
(
2008
).
278.
A. J.
Ranta-Eskola
, “
Use of the hydraulic bulge test in biaxial tensile testing
,”
Int. J. Mech. Sci.
21
(
8
),
457
465
(
1979
).
279.
T.
Tsakalakos
, “
The bulge test: A comparison of the theory and experiment for isotropic and anisotropic films
,”
Thin Solid Films.
75
(
3
),
293
305
(
1981
).
280.
C.
Yanfei
,
A.
Shigang
,
T.
Jingda
,
P.
Yongmao
,
T.
Liqun
, and
F.
Daining
, “
Characterizing the viscoelastic properties of hydrogel thin films by bulge test
,”
J. Appl. Mech.
84
(
6
(
2017
).
281.
A.
Coll De Peña
,
A.
Miller
,
C. J.
Lentz
et al, “
Creation of an electrokinetic characterization library for the detection and identification of biological cells
,”
Anal. Bioanal. Chem.
412
(
16
),
3935
3945
(
2020
).
282.
P.
Awasthi
and
S.
Das
,
Reduced electrode polarization at electrode and analyte interface in impedance spectroscopy using carbon paste and paper
,”
Rev. Sci. Instrum.
90
(
12
),
124103
(
2019
).
283.
L.
Yin
,
G.
Du
,
B.
Zhang
et al, “
Efficient drug screening and nephrotoxicity assessment on Co-culture microfluidic kidney chip
,”
Sci. Rep.
10
(
1
),
1
11
(
2020
).
284.
A.
Parekh
,
D.
Das
,
S.
Das
et al, “
Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells
,”
Sci. Rep.
8
(
1
),
1
10
(
2018
).
285.
G.
Linz
,
S.
Djeljadini
,
L.
Steinbeck
,
G.
Köse
,
F.
Kiessling
, and
M.
Wessling
, “
Cell barrier characterization in transwell inserts by electrical impedance spectroscopy
,”
Biosens. Bioelectron.
165
(
1
),
112345
(
2020
).
286.
D. A.
Dean
,
T.
Ramanathan
,
D.
Machado
, and
R.
Sundararajan
, “
Electrical impedance spectroscopy study of biological tissues
,”
J. Electrostat.
66
(
3–4
),
165
177
(
2008
).
287.
D.
Spencer
and
H.
Morgan
, “
High-Speed single-cell dielectric spectroscopy
,”
ACS Sens.
5
(
2
),
423
430
(
2020
).
288.
I.
Bilican
,
M. T.
Guler
,
M.
Serhatlioglu
,
T.
Kirindi
, and
C.
Elbuken
, “
Focusing-free impedimetric differentiation of red blood cells and leukemia cells: A system optimization
,”
Sens. Actuators B
307
(
August 2019
), (
2020
).
289.
J.
Zilberman-Rudenko
and
O. J. T.
McCarty
, “
Utility and development of microfluidic platforms for platelet research
,”
Platelets
28
(
5
),
425
426
(
2017
).
290.
M.
Al Ahmad
,
Z.
Al Natour
,
F.
Mustafa
, and
T. A.
Rizvi
, “
Electrical characterization of normal and cancer cells
,”
IEEE Access
6
,
25979
25986
(
2018
).
291.
S.
Kim
,
H.
Lee
,
M.
Chung
, and
N. L.
Jeon
, “
Engineering of functional, perfusable 3D microvascular networks on a chip
,”
Lab Chip
13
(
8
),
1489
1500
(
2013
).
292.
A.
Skardal
,
T.
Shupe
, and
A.
Atala
, “
Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling
,”
Drug Discov. Today
21
(
9
),
1399
1411
(
2016
).
293.
M. J.
Wilmer
,
C. P.
Ng
,
H. L.
Lanz
,
P.
Vulto
,
L.
Suter-Dick
, and
R.
Masereeuw
, “
Kidney-on-a-chip technology for drug-induced nephrotoxicity screening
,”
Trends Biotechnol.
34
(
2
),
156
170
(
2016
).
294.
P. M.
Rosa
,
N.
Gopalakrishnan
,
H.
Ibrahim
,
M.
Haug
, and
Ø.
Halaas
, “
The intercell dynamics of T cells and dendritic cells in a lymph node-on-a-chip flow device
,”
Lab Chip
16
(
19
),
3728
3740
(
2016
).
295.
D.
Huh
,
B. D.
Matthews
,
A.
Mammoto
,
M.
Montoya-Zavala
,
H. Y.
Hsin
, and
D. E.
Ingber
, “
Reconstituting organ-level lung functions on a chip
,”
Science
328
(
5986
),
1662
1668
(
2010
).
296.
M. K.
Raj
,
S.
DasGupta
, and
S.
Chakraborty
, “
Hydrodynamics in deformable microchannels
,”
Microfluid. Nanofluid.
21
, 70 (
2017
).
297.
M. K.
Raj
,
J.
Chakraborty
, and
S.
DasGupta
, “
Flow-induced deformation in a microchannel with a non-Newtonian fluid
,”
Biomicrofluidics
12
(
3
),
034116
(
2018
).
298.
E. O.
Ige
,
M. K.
Raj
,
A. A.
Dare
, and
S.
Chakraborty
, “
Micromechanical properties of biomedical hydrogel for application as microchannel elastomer
,”
J. Mech. Behav. Biomed. Mater.
77
(
July 2017
),
217
224
(
2018
).
299.
P.
Karan
,
S. S.
Das
,
R.
Mukherjee
,
J.
Chakraborty
, and
S.
Chakraborty
, “
Flow and deformation characteristics of a flexible microfluidic channel with axial gradients in wall elasticity
,”
Soft Matter
16
(
24),
5777
5786
(
2020
).
300.
D.
Chakraborty
,
J. R.
Prakash
,
J.
Friend
, and
L.
Yeo
, “
Fluid-structure interaction in deformable microchannels
,”
Phys. Fluids
24
(
10
),
102002
(
2012
).
301.
T.
Gervais
,
J.
El-Ali
,
A.
Gunther
, and
K. F.
Jensen
, “
Flow-induced deformation of shallow microfluidic channels
,”
Lab Chip
6
, 500–507 (
2006
).
302.
A.
Raj
and
A. K.
Sen
, “
Flow-induced deformation of compliant microchannels and its effect on pressure–flow characteristics
,”
Microfluid. Nanofluid.
20
(
2
),
31
(
2016
).
303.
B. S.
Hardy
,
K.
Uechi
,
J.
Zhen
, and
H.
Pirouz Kavehpour
, “
The deformation of flexible PDMS microchannels under a pressure driven flow
,”
Lab Chip
9
(
7
),
935
938
(
2009
).
304.
J.
Zhang
,
S.
Yan
,
D.
Yuan
et al, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16, 10–34 (
2015
).
305.
P.
Bandaru
and
V.
Kumaran
, “
Ultra-fast microfluidic mixing by soft-wall turbulence
,”
Chem. Eng. Sci.
149
,
156
168
(
2016
).
306.
I. C.
Christov
,
V.
Cognet
,
T. C.
Shidhore
, and
H. A.
Stone
, “
Flow rate–pressure drop relation for deformable shallow microfluidic channels
,”
J. Fluid Mech.
841
,
267
286
(
2018
).
307.
T. C.
Shidhore
and
I. C.
Christov
, “
Static response of deformable microchannels: A comparative modelling study
,”
J. Phys.: Condens. Matter
30
(
5
),
054002
(
2017
).
308.
D. C.
Leslie
,
C. J.
Easley
,
E.
Seker
et al, “
Frequency-specific flow control in microfluidic circuits with passive elastomeric features
,”
Nat. Phys.
5
(
3
),
231
235
(
2009
).
309.
D.
Kim
,
N. C.
Chesler
, and
D. J.
Beebe
, “
A method for dynamic system characterization using hydraulic series resistance
,”
Lab Chip
6
(
5
),
639
644
(
2006
).
310.
B.
Roy
,
T.
Das
,
D.
Mishra
,
T. K.
Maiti
, and
S.
Chakraborty
, “
Oscillatory shear stress induced calcium flickers in osteoblast cells
,”
Integr. Biol.
6
(
3
),
289
299
(
2014
).
311.
B.
Li
,
L.
Li
,
A.
Guan
et al, “
A smartphone controlled handheld microfluidic liquid handling system
,”
Lab Chip
14
(
20
),
4085
4092
(
2014
).
312.
Y.
Arango
,
Y.
Temiz
,
O.
Gökçe
, and
E.
Delamarche
, “
Electrogates for stop-and-go control of liquid flow in microfluidics
,”
Appl. Phys. Lett.
112
(
15
),
153701
(
2018
).
313.
Y.
Jiang
,
L.
Du
,
Y.
Li
et al, “
A novel mechanism for user-friendly and self-activated microdroplet generation capable of programmable control
,”
Analyst
143
(
16
),
3798
3807
(
2018
).
314.
M. A.
Hossain
,
J.
Canning
,
Z.
Yu
et al, “
Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter
,”
Analyst
142
(
11
),
1953
1961
(
2017
).
315.
M.
Heil
and
A. L.
Hazel
, “
Fluid-structure interaction in internal physiological flows
,”
Annu. Rev. Fluid Mech.
43
(
1
),
141
162
(
2011
).
316.
J.
Hale
,
D. A.
McDonald
, and
J. R.
Womersley
, “
Velocity profiles of oscillating arterial flow, with some calculations of viscous drag and the Reynolds number
,”
J. Physiol.
128
(
23
),
629
640
(
1955
).
317.
C. J.
Morris
and
F. K.
Forster
, “
Oscillatory flow in microchannels
,”
Exp. Fluids
36
(
6
),
928
937
(
2004
).
318.
K. S.
Matthys
,
J.
Alastruey
,
J.
Peiró
et al, “
Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements
,”
J. Biomech.
40
(
15
),
3476
3486
(
2007
).
319.
B.
Gaikwad
,
A.
Agarwal
,
P.
Karan
,
J.
Chakraborty
, and
S.
Chakraborty
, “
Deformation behaviour of viscoelastic microchannel with axially graded wall softness
,” in
Proceedings of the 8th International and 47th National Conference on Fluid Mechanics and Fluid Power (FMFP)
(
IIT Guwahati
,
Guwahati
,
2020
), pp.
1
6
.
320.
I.
Kokalari
,
T.
Karaja
, and
M.
Guerrisi
, “
Review on lumped parameter method for modeling the blood flow in systemic arteries
,”
J. Biomed. Sci. Eng.
06
(
01
),
92
99
(
2013
).
321.
Y.
Aboelkassem
and
Z.
Virag
, “
A hybrid Windkessel-Womersley model for blood flow in arteries
,”
J. Theor. Biol.
462
,
499
513
(
2019
).
322.
B.
Wunderlich
,
U.
Kleßinger
, and
A.
Bausch
, “
Diffusive spreading of time-dependent pressures in elastic microfluidic devices
,”
Lab Chip
10
(
8
),
1025
1029
(
2010
).
323.
R. P.
Chhabra
and
J. F.
Richardson
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
(
Butterworth-Heinemann
,
2011
).
324.
L.
Formaggia
,
D.
Lamponi
, and
A.
Quarteroni
, “
One-dimensional models for blood flow in arteries
,”
J. Eng. Math.
47
(
3-4
),
251
276
(
2003
).
325.
S.
Chakraborty
, “
Dynamics of capillary flow of blood into a microfluidic channel
,”
Lab Chip
5
(
4
),
421
430
(
2005
).
326.
K. A.
Brookshier
and
J. M.
Tarbell
, “
Evaluation of a transparent blood analog fluid: Aqueous xanthan gum/glycerin
,”
Biorheology
30
(
2
),
107
(
1993
).
327.
X.
Lu
,
C.
Liu
,
G.
Hu
, and
X.
Xuan
, “
Particle manipulations in non-Newtonian microfluidics: A review
,”
J. Colloid Interface Sci.
500
,
182
201
(
2017
).
328.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
(
5
),
912
(
2011
).
329.
J.
Dupire
,
M.
Socol
, and
A.
Viallat
, “
Full dynamics of a red blood cell in shear flow
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
51
),
20808
(
2012
).
330.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
,”
Lab Chip
11
(
2
),
266
273
(
2011
).
331.
C. L. A.
Berli
and
M. L.
Olivares
, “
Electrokinetic flow of non-Newtonian fluids in microchannels
,”
J. Colloid Interface Sci.
320
(
2
),
582
589
(
2008
).
332.
S.
Das
and
S.
Chakraborty
, “
Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid
,”
Anal. Chim. Acta
559
(
1
),
15
24
(
2006
).
333.
Y.
Huang
,
Y. L.
Wang
, and
T. N.
Wong
, “
AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale
,”
Lab Chip
17
(
17
),
2969
2981
(
2017
).
334.
G.
Kunti
,
A.
Bhattacharya
, and
S.
Chakraborty
, “
Analysis of micromixing of non-Newtonian fluids driven by alternating current electrothermal flow
,”
J. Non-Newton. Fluid Mech.
247
,
123
131
(
2017
).
335.
S.
Varchanis
,
Y.
Dimakopoulos
,
C.
Wagner
, and
J.
Tsamopoulos
, “
How viscoelastic is human blood plasma?
,”
Soft Matter
14
(
21
),
4238
4251
(
2018
).
336.
Y.
Jun Kang
and
S. J.
Lee
, “
Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel
,”
Biomicrofluidics
7
(
5
(
2013
).
337.
Y.
Sui
,
Y. T.
Chew
,
P.
Roy
,
Y. P.
Cheng
, and
H. T.
Low
, “
Dynamic motion of red blood cells in simple shear flow
,”
Phys. Fluids
20
(
11
(
2008
).
338.
X.
Li
,
P. M.
Vlahovska
, and
G. E.
Karniadakis
, “
Continuum-and particle-based modeling of shapes and dynamics of red blood cells in health and disease
,”
Soft Matter
9
(
1
),
28
37
(
2013
).
339.
K. P.
Sinha
and
R. M.
Thaokar
, “
A theoretical study on the dynamics of a compound vesicle in shear flow
,”
Soft Matter
15
(
35
),
6994
7017
(
2019
).
340.
T.
Ye
,
N.
Phan-Thien
,
C. T.
Lim
,
L.
Peng
, and
H.
Shi
, “
Hybrid smoothed dissipative particle dynamics and immersed boundary method for simulation of red blood cells in flows
,”
Phys. Rev. E
95
(
6
),
063314
(
2017
).
341.
V.
Leble
,
R.
Lima
,
R.
Dias
et al, “
Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation
,”
Biomicrofluidics
5
(
4
),
044120
(
2011
).
342.
S.
Chien
, “
Red cell deformability and its relevance to blood flow
,”
Annu. Rev. Physiol.
49
,
177
192
(
1987
).
343.
C.
Pozrikidis
, “
Numerical simulation of the flow-induced deformation of red blood cells
,”
Ann. Biomed. Eng.
31
(
10
),
1194
1205
(
2003
).
344.
J. L.
McWhirter
,
H.
Noguchi
, and
G.
Gompper
, “
Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
15
),
6039
6043
(
2009
).
345.
L.
Shi
,
T. W.
Pan
, and
R.
Glowinski
, “
Deformation of a single red blood cell in bounded Poiseuille flows
,”
Phys. Rev. E
85
(
1
),
1
15
(
2012
).
346.
H.
Hsieh
, “
Numerical simulation of the three-dimensional dynamics of healthy and hardened red blood cells passing through a stenosed microvessel by immersed boundary-lattice Boltzmann method
,”
Eng. Rep.
3(5),
1
15
(
2020
).
347.
D. A.
Fedosov
,
M.
Peltomäki
, and
G.
Gompper
, “
Deformation and dynamics of red blood cells in flow through cylindrical microchannels
,”
Soft Matter
10
(
24
),
4258
4267
(
2014
).
348.
H.
Basu
,
A. K.
Dharmadhikari
,
J. A.
Dharmadhikari
,
S.
Sharma
, and
D.
Mathur
, “
Tank treading of optically trapped red blood cells in shear flow
,”
Biophys. J.
101
(
7
),
1604
1612
(
2011
).