Microfluidic cell sorting has shown promising advantages over traditional bulky cell sorting equipment and has demonstrated wide-reaching applications in biological research and medical diagnostics. The most important characteristics of a microfluidic cell sorter are its throughput, ease of use, and integration of peripheral equipment onto the chip itself. In this review, we discuss the six most common methods for pumping fluid samples in microfluidic cell sorting devices, present their advantages and drawbacks, and discuss notable examples of their use. Syringe pumps are the most commonly used method for fluid actuation in microfluidic devices because they are easily accessible but they are typically too bulky for portable applications, and they may produce unfavorable flow characteristics. Peristaltic pumps, both on- and off-chip, can produce reversible flow but they suffer from pulsatile flow characteristics, which may not be preferable in many scenarios. Gravity-driven pumping, and similarly hydrostatic pumping, require no energy input but generally produce low throughputs. Centrifugal flow is used to sort cells on the basis of size or density but requires a large external rotor to produce centrifugal force. Electroosmotic pumping is appealing because of its compact size but the high voltages required for fluid flow may be incompatible with live cells. Emerging methods with potential for applications in cell sorting are also discussed. In the future, microfluidic cell sorting methods will trend toward highly integrated systems with high throughputs and low sample volume requirements.

1.
M.
Kaykhaii
,
Sample Preparation Techniques for Chemical Analysis
(
BoD—Books on Demand
,
2021
).
2.
C.
Wyatt Shields IV
,
C. D.
Reyes
, and
G. P.
López
, “
Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
,”
Lab Chip
15
(
5
),
1230
1249
(
2015
).
3.
Z. T. F.
Yu
,
K. M.
Aw Yong
, and
J.
Fu
, “
Microfluidic blood cell sorting: Now and beyond
,”
Small
10
(
9
),
1687
1703
(
2014
).
4.
J.
Autebert
,
B.
Coudert
,
F.-C.
Bidard
,
J.-Y.
Pierga
,
S.
Descroix
,
L.
Malaquin
, and
J.-L.
Viovy
, “
Microfluidic: An innovative tool for efficient cell sorting
,”
Methods
57
(
3
),
297
307
(
2012
).
5.
B.
Zhu
and
S. K.
Murthy
, “
Stem cell separation technologies
,”
Curr. Opin. Chem. Eng.
2
(
1
),
3
7
(
2013
).
6.
A.
Gross
,
J.
Schoendube
,
S.
Zimmermann
,
M.
Steeb
,
R.
Zengerle
, and
P.
Koltay
, “
Technologies for single-cell isolation
,”
Int. J. Mol. Sci.
16
(
8
),
16897
16919
(
2015
).
7.
N.
Xiang
and
Z.
Ni
, “
Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting
,”
Talanta
235
,
122807
(
2021
).
8.
L.
Xu
,
A.
Wang
,
X.
Li
, and
K. W.
Oh
, “
Passive micropumping in microfluidics for point-of-care testing
,”
Biomicrofluidics
14
(
3
),
031503
(
2020
).
9.
M. J.
Fulwyler
, “
Electronic separation of biological cells by volume
,”
Science
150
(
3698
),
910
911
, (
1965
).
10.
A.
Filby
and
A. E.
Carpenter
, “
A new image for cell sorting
,”
N. Engl. J. Med.
386
(
18
),
1755
1758
(
2022
).
11.
Z.
Cheng
,
X.
Wu
,
J.
Cheng
, and
P.
Liu
, “
Microfluidic fluorescence-activated cell sorting (μFACS) chip with integrated piezoelectric actuators for low-cost mammalian cell enrichment
,”
Microfluid. Nanofluid.
21
(
1
),
9
(
2017
).
12.
J.-C.
Baret
,
O. J.
Miller
,
V.
Taly
,
M.
Ryckelynck
,
A.
El-Harrak
,
L.
Frenz
,
C.
Rick
,
M. L.
Samuels
,
J.
Brian Hutchison
,
J. J.
Agresti
,
D. R.
Link
,
D. A.
Weitz
, and
A. D.
Griffiths
, “
Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity
,”
Lab Chip
9
(
13
),
1850
1858
(
2009
).
13.
K. M.
Reifel
,
B. K.
Swan
,
E. R.
Jellison
,
D.
Ambrozak
,
J.
Baijer
,
R.
Nguyen
,
S.
Monard
,
G.
Lyon
,
B.
Fontes
, and
S. P.
Perfetto
, “
Procedures for flow cytometry-based sorting of unfixed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected cells and other infectious agents
,”
Cytometry Part A
97
(
7
),
674
680
(
2020
).
14.
Y.
Li
,
C.
Dalton
,
H. J.
Crabtree
,
G.
Nilsson
, and
K. V. I. S.
Kaler
, “
Continuous dielectrophoretic cell separation microfluidic device
,”
Lab Chip
7
(
2
),
239
248
(
2007
).
15.
K.
Ryan
,
R. E.
Rose
,
D. R.
Jones
, and
P. A.
Lopez
, “
Sheath fluid impacts the depletion of cellular metabolites in cells afflicted by sorting induced cellular stress (SICS)
,”
Cytometry Part A
99
(
9
),
921
929
(
2021
).
16.
Y.
Shen
,
Y.
Yalikun
, and
Y.
Tanaka
, “
Recent advances in microfluidic cell sorting systems
,”
Sens. Actuators B
282
,
268
281
(
2019
).
17.
M.
Tsukamoto
,
S.
Taira
,
S.
Yamamura
,
Y.
Morita
,
N.
Nagatani
,
Y.
Takamura
, and
E.
Tamiya
, “
Cell separation by an aqueous two-phase system in a microfluidic device
,”
Analyst
134
(
10
),
1994
1998
(
2009
).
18.
F.
Kurth
,
E.
Györvary
,
S.
Heub
,
D.
Ledroit
,
S.
Paoletti
,
K.
Renggli
,
V.
Revol
,
M.
Verhulsel
,
G.
Weder
, and
F.
Loizeau
, in
Organ—Chip
, edited by
J.
Hoeng
,
D.
Bovard
, and
M. C.
Peitsch
(
Academic Press
,
2020
), pp.
47
130
.
19.
Z.
Wu
,
A. Q.
Liu
, and
K.
Hjort
, “
Microfluidic continuous particle/cell separation via electroosmotic-flow-tuned hydrodynamic spreading
,”
J. Micromech. Microeng.
17
(
10
),
1992
1999
(
2007
).
20.
A.
Enders
,
J.-A.
Preuss
, and
J.
Bahnemann
, “
3D printed microfluidic spiral separation device for continuous, pulsation-free and controllable CHO cell retention
,”
Micromachines
12
(
9
),
1060
(
2021
).
21.
M. E.
Haque
,
A.
Matin
,
X.
Wang
, and
M.
Kersaudy-Kerhoas
, “
Effects of syringe pump fluctuations on cell-free layer in hydrodynamic separation microfluidic devices
,”
Phys. Fluids
33
(
7
),
073317
(
2021
).
22.
W.
Zeng
,
I.
Jacobi
,
D. J.
Beck
,
S.
Li
, and
H. A.
Stone
, “
Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels
,”
Lab Chip
15
(
4
),
1110
1115
(
2015
).
23.
F.
Forouzandeh
,
A.
Alfadhel
,
A.
Arevalo
, and
D. A.
Borkholder
, “
A review of peristaltic micropumps
,”
Sens. Actuators A
326
,
112602
(
2021
).
24.
T.
Kwon
,
H.
Prentice
,
J. D.
Oliveira
,
N.
Madziva
,
M. E.
Warkiani
,
J.-F. P.
Hamel
, and
J.
Han
, “
Microfluidic cell retention device for perfusion of mammalian suspension culture
,”
Sci. Rep.
7
(
1
),
6703
(
2017
).
25.
C. K.
Byun
,
K.
Abi-Samra
,
Y.-K.
Cho
, and
S.
Takayama
, “
Pumps for microfluidic cell culture
,”
Electrophoresis
35
(
2–3
),
245
257
(
2014
).
26.
A. Y.
Fu
,
H.-P.
Chou
,
C.
Spence
,
F. H.
Arnold
, and
S. R.
Quake
, “
An integrated microfabricated cell sorter
,”
Anal. Chem.
74
(
11
),
2451
2457
(
2002
).
27.
W. C.
Jackson
,
F.
Kuckuck
,
B. S.
Edwards
,
A.
Mammoli
,
C. M.
Gallegos
,
G. P.
Lopez
,
T.
Buranda
, and
L. A.
Sklar
, “
Mixing small volumes for continuous high-throughput flow cytometry: Performance of a mixing Y and peristaltic sample delivery
,”
Cytometry
47
(
3
),
183
191
(
2002
).
28.
R.
Kant
,
H.
Singh
,
M.
Nayak
, and
S.
Bhattacharya
, “
Optimization of design and characterization of a novel micro-pumping system with peristaltic motion
,”
Microsyst. Technol.
19
(
4
),
563
575
(
2013
).
29.
B. Y.
Yu
,
C.
Elbuken
,
C.
Shen
,
J. P.
Huissoon
, and
C. L.
Ren
, “
An integrated microfluidic device for the sorting of yeast cells using image processing
,”
Sci. Rep.
8
(
1
),
3550
(
2018
).
30.
T.
Morijiri
,
M.
Yamada
,
T.
Hikida
, and
M.
Seki
, “
Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation
,”
Microfluid. Nanofluid.
14
(
6
),
1049
1057
(
2013
).
31.
Y.
Sun
,
C. S.
Lim
,
A. Q.
Liu
,
T. C.
Ayi
, and
P. H.
Yap
, “
Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting
,”
Sens. Actuators A
133
(
2
),
340
348
(
2007
).
32.
A.
Date
,
P.
Pasini
, and
S.
Daunert
, “
Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms
,”
Anal. Bioanal. Chem.
398
(
1
),
349
356
(
2010
).
33.
H.
Jiang
,
X.
Weng
,
C. H.
Chon
,
X.
Wu
, and
D.
Li
, “
A microfluidic chip for blood plasma separation using electro-osmotic flow control
,”
J. Micromech. Microeng.
21
(
8
),
085019
(
2011
).
34.
B.
Yao
,
G. A.
Luo
,
X.
Feng
,
W.
Wang
,
L. X.
Chen
, and
Y. M.
Wang
, “
A microfluidic device based on gravity and electric force driving for flow cytometry and fluorescence activated cell sorting
,”
Lab Chip
4
(
6
),
603
607
(
2004
).
35.
D.
Lee
,
D.
Kim
,
Y.
Kim
,
K. H.
Park
,
E.-J.
Oh
,
Y.
Kim
, and
B.
Kim
, “
A negative dielectrophoresis and gravity-driven flow-based high-throughput and high-efficiency cell-sorting system
,”
SLAS Technol.
19
(
1
),
60
74
(
2014
).
36.
M.
Boettcher
,
M.
Jaeger
,
M.
Kirschbaum
,
T.
Mueller
,
T.
Schnelle
, and
C.
Duschl
, “
Gravitation-driven stress-reduced cell handling
,”
Anal. Bioanal. Chem.
390
(
3
),
857
863
(
2008
).
37.
D.
Huh
,
H.-H.
Wei
,
O. D.
Kripfgans
,
J. B.
Fowlkes
,
J. B.
Grotberg
, and
S.
Takayama
, in 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology Proceedings (Cat. No. 02EX578) (IEEE, 2002), pp. 466–469.
38.
B.
Aghajanloo
,
F.
Ejeian
,
F.
Frascella
,
S. L.
Marasso
,
M.
Cocuzza
,
A. F.
Tehrani
,
M. H. N.
Esfahani
, and
D. W.
Inglis
, “
Pumpless deterministic lateral displacement separation using a paper capillary wick
,”
Lab Chip
23
(
8
),
2106
2112
(
2023
).
39.
S.
Hassan
,
A.
Tariq
,
Z.
Noreen
,
A.
Donia
,
S. Z. J.
Zaidi
,
H.
Bokhari
, and
X.
Zhang
, “
Capillary-driven flow microfluidics combined with smartphone detection: An emerging tool for point-of-care diagnostics
,”
Diagnostics
10
(
8
),
509
(
2020
).
40.
E.
Fu
and
C.
Downs
, “
Progress in the development and integration of fluid flow control tools in paper microfluidics
,”
Lab Chip
17
(
4
),
614
628
(
2017
).
41.
M. R.
Sarabi
,
D.
Yigci
,
M. M.
Alseed
,
B. A.
Mathyk
,
B.
Ata
,
C.
Halicigil
, and
S.
Tasoglu
, “
Disposable paper-based microfluidics for fertility testing
,”
IScience
25
(
9
),
104986
(
2022
).
42.
Z.
Li
,
S. Y.
Mak
,
A.
Sauret
, and
H. C.
Shum
, “
Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy
,”
Lab Chip
14
(
4
),
744
749
(
2014
).
43.
J.
Krüger
,
K.
Singh
,
A.
O’Neill
,
C.
Jackson
,
A.
Morrison
, and
P.
O’Brien
, “
Development of a microfluidic device for fluorescence activated cell sorting
,”
J. Micromech. Microeng.
12
(
4
),
486
(
2002
).
44.
V.
Parichehreh
,
R.
Estrada
,
S. S.
Kumar
,
K. K.
Bhavanam
,
V.
Raj
,
A.
Raj
, and
P.
Sethu
, “
Exploiting osmosis for blood cell sorting
,”
Biomed. Microdevices
13
(
3
),
453
462
(
2011
).
45.
D.
Robert
,
N.
Pamme
,
H.
Conjeaud
,
F.
Gazeau
,
A.
Iles
, and
C.
Wilhelm
, “
Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device
,”
Lab Chip
11
(
11
),
1902
1910
(
2011
).
46.
L.
Schmid
,
D. A.
Weitz
, and
T.
Franke
, “
Sorting drops and cells with acoustics: Acoustic microfluidic fluorescence-activated cell sorter
,”
Lab Chip
14
(
19
),
3710
3718
(
2014
).
47.
X.
Wang
,
S.
Chen
,
M.
Kong
,
Z.
Wang
,
K. D.
Costa
,
R. A.
Li
, and
D.
Sun
, “
Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies
,”
Lab Chip
11
(
21
),
3656
3662
(
2011
).
48.
A.
Wolff
,
I. R.
Perch-Nielsen
,
U. D.
Larsen
,
P.
Friis
,
G.
Goranovic
,
C. R.
Poulsen
,
J. P.
Kutter
, and
P.
Telleman
, “
Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter
,”
Lab Chip
3
(
1
),
22
27
(
2003
).
49.
A. K.
Fajrial
,
A.
Vega
,
G.
Shakya
, and
X.
Ding
, “
A frugal microfluidic pump
,”
Lab Chip
21
(
24
),
4772
4778
(
2021
).
50.
J.
Berg
and
T.
Dallas
,
Encyclopedia of Microfluidics and Nanofluidics
(Springer, New York, NY,
2015
), pp.
2693
2701
.
51.
J.
Xiang
,
Z.
Cai
,
Y.
Zhang
, and
W.
Wang
, “
A micro-cam actuated linear peristaltic pump for microfluidic applications
,”
Sens. Actuators A
251
,
20
25
(
2016
).
52.
P.-H.
Chen
,
Y.-T.
Cheng
,
B.-S.
Ni
, and
J.-H.
Huang
, “
Continuous cell separation using microfluidic-based cell retention device with alternative boosted flow
,”
Appl. Biochem. Biotechnol.
191
(
1
),
151
163
(
2020
).
53.
C.-M.
Chang
,
S.-K.
Hsiung
, and
G.-B.
Lee
, “
Micro flow cytometer chip integrated with micro-pumps/micro-valves for multi-wavelength cell counting and sorting
,”
Jpn. J. Appl. Phys.
46
(
5A
),
3126
3134
(
2007
).
54.
S.
Sakuma
,
Y.
Kasai
,
T.
Hayakawa
, and
F.
Arai
, “
On-chip cell sorting by high-speed local-flow control using dual membrane pumps
,”
Lab Chip
17
(
16
),
2760
2767
(
2017
).
55.
Z.
Ma
,
Y.
Zhou
,
D. J.
Collins
, and
Y.
Ai
, “
Fluorescence activated cell sorting via a focused traveling surface acoustic beam
,”
Lab Chip
17
(
18
),
3176
3185
(
2017
).
56.
P.
Chen
,
X.
Feng
,
W.
Du
, and
B.-F.
Liu
, “
Microfluidic chips for cell sorting
,”
Front. Biosci.
13
(
13
),
2464
2483
(
2008
).
57.
K. D.
Lenz
,
S.
Jakhar
,
J. W.
Chen
,
A. S.
Anderson
,
D. C.
Purcell
,
M. O.
Ishak
,
J. F.
Harris
,
L. E.
Akhadov
,
J. Z.
Kubicek-Sutherland
,
P.
Nath
, and
H.
Mukundan
, “
A centrifugal microfluidic cross-flow filtration platform to separate serum from whole blood for the detection of amphiphilic biomarkers
,”
Sci. Rep.
11
,
5287
(
2021
).
58.
J.
Ma
,
Y.
Wu
,
Y.
Liu
,
Y.
Ji
,
M.
Yang
, and
H.
Zhu
, “
Cell-sorting centrifugal microfluidic chip with a flow rectifier
,”
Lab Chip
21
(
11
),
2129
2141
(
2021
).
59.
X.
Wang
,
C.
Cheng
,
S.
Wang
, and
S.
Liu
, “
Electroosmotic pumps and their applications in microfluidic systems
,”
Microfluid. Nanofluid.
6
(
2
),
145
162
(
2009
).
60.
Y.
Sun
,
A. Q.
Liu
,
P. H.
Yap
, and
T. C.
Ayi
, in The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS 05 (IEEE, Piscataway, NJ, 2005), Vol. 2, pp. 1708–1711.
61.
D. B.
Seo
,
Y.
Agca
,
Z. C.
Feng
, and
J. K.
Critser
, “
Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure
,”
Microfluid. Nanofluid.
3
(
5
),
561
570
(
2007
).
62.
V.
Narayanamurthy
,
Z. E.
Jeroish
,
K. S.
Bhuvaneshwari
,
P.
Bayat
,
R.
Premkumar
,
F.
Samsuri
, and
M. M.
Yusoff
, “
Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis
,”
RSC Adv.
10
(
20
),
11652
11680
(
2020
).
63.
K.
Sato
,
N.
Sasaki
,
H. A.
Svahn
, and
K.
Sato
, “
Microfluidics for nano-pathophysiology
,”
Adv. Drug Delivery Rev.
74
,
115
121
(
2014
).
64.
V.
Gnyawali
,
M.
Saremi
,
M. C.
Kolios
, and
S. S. H.
Tsai
, “
Stable microfluidic flow focusing using hydrostatics
,”
Biomicrofluidics
11
(
3
),
034104
(
2017
).
65.
S.
Lee
,
H.
Kim
,
W.
Lee
, and
J.
Kim
, “
Microfluidic-based cell handling devices for biochemical applications
,”
J. Micromech. Microeng.
28
(
12
),
123001
(
2018
).
66.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
, “
Capillary microfluidics in microchannels: From microfluidic networks to capillaric circuits
,”
Lab Chip
18
(
16
),
2323
2347
(
2018
).
67.
M.
Zimmermann
,
H.
Schmid
,
P.
Hunziker
, and
E.
Delamarche
, “
Capillary pumps for autonomous capillary systems
,”
Lab Chip
7
(
1
),
119
125
(
2007
).
68.
T. S. H.
Tran
,
B. D.
Ho
,
J. P.
Beech
, and
J. O.
Tegenfeldt
, “
Open channel deterministic lateral displacement for particle and cell sorting
,”
Lab Chip
17
(
21
),
3592
3600
(
2017
).
69.
I.
Jang
,
H.
Kang
,
S.
Song
,
D. S.
Dandy
,
B. J.
Geiss
, and
C. S.
Henry
, “
Flow control in a laminate capillary-driven microfluidic device
,”
Analyst
146
(
6
),
1932
1939
(
2021
).
70.
E.
Noviana
,
T.
Ozer
,
C. S.
Carrell
,
J. S.
Link
,
C.
McMahon
,
I.
Jang
, and
C. S.
Henry
, “
Microfluidic paper-based analytical devices: From design to applications
,”
Chem. Rev.
121
(
19
),
11835
11885
(
2021
).
71.
S.
Yan
,
J.
Zhang
,
D.
Yuan
, and
W.
Li
, “
Hybrid microfluidics combined with active and passive approaches for continuous cell separation
,”
Electrophoresis
38
(
2
),
238
249
(
2017
).
72.
L.
Ren
,
Y.
Chen
,
P.
Li
,
Z.
Mao
,
P.-H.
Huang
,
J.
Rufo
,
F.
Guo
,
L.
Wang
,
J. P.
McCoy
,
S. J.
Levine
, and
T. J.
Huang
, “
A high-throughput acoustic cell sorter
,”
Lab Chip
15
(
19
),
3870
3879
(
2015
).
73.
H.
Song
,
J. M.
Rosano
,
Y.
Wang
,
C. J.
Garson
,
B.
Prabhakarpandian
,
K.
Pant
,
G. J.
Klarmann
,
A.
Perantoni
,
L. M.
Alvarez
, and
E.
Lai
, “
Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis
,”
Lab Chip
15
(
5
),
1320
1328
(
2015
).
74.
B.
Techaumnat
,
N.
Panklang
,
A.
Wisitsoraat
, and
Y.
Suzuki
, “
Study on the discrete dielectrophoresis for particle–cell separation
,”
Electrophoresis
41
(
10–11
),
991
1001
(
2020
).
75.
K.
Mutafopulos
,
P.
Spink
,
C. D.
Lofstrom
,
P. J.
Lu
,
H.
Lu
,
J. C.
Sharpe
,
T.
Franke
, and
D. A.
Weitz
, “
Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated cell sorter (μFACS)
,”
Lab Chip
19
(
14
),
2435
2443
(
2019
).
76.
P.
Reichert
,
D.
Deshmukh
,
L.
Lebovitz
, and
J.
Dual
, “
Thin film piezoelectrics for bulk acoustic wave (BAW) acoustophoresis
,”
Lab Chip
18
(
23
),
3655
3667
(
2018
).
77.
A.
Urbansky
,
F.
Olm
,
S.
Scheding
,
T.
Laurell
, and
A.
Lenshof
, “
Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis
,”
Lab Chip
19
(
8
),
1406
1416
(
2019
).
78.
J. J.
Hawkes
,
R. W.
Barber
,
D. R.
Emerson
, and
W. T.
Coakley
, “
Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel
,”
Lab Chip
4
(
5
),
446
452
(
2004
).
79.
S.
Lin
,
X.
Zhi
,
D.
Chen
,
F.
Xia
,
Y.
Shen
,
J.
Niu
,
S.
Huang
,
J.
Song
,
J.
Miao
,
D.
Cui
, and
X.
Ding
, “
A flyover style microfluidic chip for highly purified magnetic cell separation
,”
Biosens. Bioelectron.
129
,
175
181
(
2019
).
80.
K. Y.
Castillo-Torres
,
E. S.
McLamore
, and
D. P.
Arnold
, “
A high-throughput microfluidic magnetic separation (μFMS) platform for water quality monitoring
,”
Micromachines
11
(
1
),
16
(
2020
).
81.
S.
Bhuvanendran Nair Gourikutty
,
C.-P.
Chang
, and
P. D.
Puiu
, “
Microfluidic immunomagnetic cell separation from whole blood
,”
J. Chromatogr. B
. 1011,
77
88
(
2016
).
82.
T.
Hamacher
,
J. T. W.
Berendsen
,
J. E.
van Dongen
,
R. M.
van der Hee
,
J. J. L. M.
Cornelissen
,
M. L. W. J.
Broekhuijse
, and
L. I.
Segerink
, “
Virus removal from semen with a pinched flow fractionation microfluidic chip
,”
Lab Chip
21
(
22
),
4477
4486
(
2021
).
83.
J. F.
Ashley
,
C. N.
Bowman
, and
R. H.
Davis
, “
Hydrodynamic separation of particles using pinched-flow fractionation
,”
AIChE J.
59
(
9
),
3444
3457
(
2013
).
84.
M.
Pødenphant
,
N.
Ashley
,
K.
Koprowska
,
K. U.
Mir
,
M.
Zalkovskij
,
B.
Bilenberg
,
W.
Bodmer
,
A.
Kristensen
, and
R.
Marie
, “
Separation of cancer cells from white blood cells by pinched flow fractionation
,”
Lab Chip
15
(
24
),
4598
4606
(
2015
).
85.
T.
Kwon
,
R.
Yao
,
J.-F. P.
Hamel
, and
J.
Han
, “
Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics
,”
Lab Chip
18
(
18
),
2826
2837
(
2018
).
86.
K. K.
Zeming
,
T.
Salafi
,
C.-H.
Chen
, and
Y.
Zhang
, “
Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of Red blood cells
,”
Sci. Rep.
6
(
1
),
22934
(
2016
).
87.
M.
Xavier
,
S. H.
Holm
,
J. P.
Beech
,
D.
Spencer
,
J. O.
Tegenfeldt
,
R. O. C.
Oreffo
, and
H.
Morgan
, “
Label-free enrichment of primary human skeletal progenitor cells using deterministic lateral displacement
,”
Lab Chip
19
(
3
),
513
523
(
2019
).
88.
H. M.
Ji
,
V.
Samper
,
Y.
Chen
,
C. K.
Heng
,
T. M.
Lim
, and
L.
Yobas
, “
Silicon-based microfilters for whole blood cell separation
,”
Biomed. Microdevices
10
(
2
),
251
257
(
2008
).
89.
X.
Chen
,
D. F.
Cui
,
C.
Liu
, and
H.
Li
, “
Microfluidic chip for blood cell separation and collection based on crossflow filtration
,”
Sens. Actuators B
130
(
1
),
216
221
(
2008
).
90.
V.
Faustino
,
S. O.
Catarino
,
D.
Pinho
,
R. A.
Lima
, and
G.
Minas
, “
A passive microfluidic device based on crossflow filtration for cell separation measurements: A spectrophotometric characterization
,”
Biosensors
8
(
4
),
125
(
2018
).
91.
S.
Choi
,
J. M.
Karp
, and
R.
Karnik
, “
Cell sorting by deterministic cell rolling
,”
Lab Chip
12
(
8
),
1427
1430
(
2012
).
92.
J. H.
Myung
,
C. A.
Launiere
,
D. T.
Eddington
, and
S.
Hong
, “
Enhanced tumor cell isolation by a biomimetic combination of E-selectin and anti-EpCAM: Implications for the effective separation of circulating tumor cells (CTCs)
,”
Langmuir
26
(
11
),
8589
8596
(
2010
).
93.
T.
Xu
,
L.
Han
, and
L.
Jia
, “
Facile calcium ion-regulated grafting of dense and highly stretched hyaluronan for selective mediation of cancer cells rolling under high-speed flow
,”
Acta Biomater.
146
,
177
186
(
2022
).
94.
P.
Thurgood
,
S.
Aguilera Suarez
,
S.
Chen
,
C.
Gilliam
,
E.
Pirogova
,
A. R.
Jex
,
S.
Baratchi
, and
K.
Khoshmanesh
, “
Self-sufficient, low-cost microfluidic pumps utilising reinforced balloons
,”
Lab Chip
19
(
17
),
2885
2896
(
2019
).
95.
P.-H.
Huang
,
N.
Nama
,
Z.
Mao
,
P.
Li
,
J.
Rufo
,
Y.
Chen
,
Y.
Xie
,
C.-H.
Wei
,
L.
Wang
, and
T. J.
Huang
, “
A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures
,”
Lab Chip
14
(
22
),
4319
4323
(
2014
).
96.
S.
Hanasoge
,
P. J.
Hesketh
, and
A.
Alexeev
, “
Microfluidic pumping using artificial magnetic cilia
,”
Microsyst. Nanoeng.
4
(
1
),
1
9
(
2018
).
97.
T.
Franke
,
S.
Braunmüller
,
L.
Schmid
,
A.
Wixforth
, and
D. A.
Weitz
, “
Surface acoustic wave actuated cell sorting (SAWACS)
,”
Lab Chip
10
(
6
),
789
794
(
2010
).
98.
W.
Tang
,
D.
Jiang
,
Z.
Li
,
L.
Zhu
,
J.
Shi
,
J.
Yang
, and
N.
Xiang
, “
Recent advances in microfluidic cell sorting techniques based on both physical and biochemical principles
,”
Electrophoresis
40
(
6
),
930
954
(
2019
).
99.
D.
Erickson
and
D.
Li
, “
Integrated microfluidic devices
,”
Anal. Chim. Acta
507
(
1
),
11
26
(
2004
).
100.
Z.
Li
,
Y.
Bai
,
M.
You
,
J.
Hu
,
C.
Yao
,
L.
Cao
, and
F.
Xu
, “
Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care
,”
Biosens. Bioelectron.
177
,
112952
(
2021
).
101.
M. L.
Coluccio
,
G.
Perozziello
,
N.
Malara
,
E.
Parrotta
,
P.
Zhang
,
F.
Gentile
,
T.
Limongi
,
P. M.
Raj
,
G.
Cuda
,
P.
Candeloro
, and
E. D.
Fabrizio
, “
Microfluidic platforms for cell cultures and investigations
,”
Microelectron. Eng.
208
,
14
28
(
2019
).
You do not currently have access to this content.