On-chip microfluidics are characterized as miniaturized devices that can be either integrated with other components on-chip or can individually serve as a standalone lab-on-a-chip system for a variety of applications ranging from biochemical sensing to macromolecular manipulation. Heterogenous integration with various materials and form factors is, therefore, key to enhancing the performance of such microfluidic systems. The fabrication of complex three-dimensional (3D) microfluidic components that can be easily integrated with other material systems and existing state-of-the-art microfluidics is of rising importance. Research on producing self-assembled 3D architectures by the emerging self-rolled-up membrane (S-RuM) technology may hold the key to such integration. S-RuM technology relies on a strain-induced deformation mechanism to spontaneously transform stacked thin-film materials into 3D cylindrical hollow structures virtually on any kind of substrate. Besides serving as a compact microfluidic chamber, the S-RuM-based on-chip microtubular architecture exhibits several other advantages for microfluidic applications including customizable geometry, biocompatibility, chemical stability, ease of integration, uniform field distributions, and increased surface area to volume ratio. In this Review, we will highlight some of the applications related to molecule/particle sensing, particle delivery, and manipulation that utilized S-RuM technology to their advantage.

1.
X.
Wang
,
J.
Jia
,
M.
Niu
,
W.
Li
, and
Y.
Zhao
, “
Living Chinese herbal scaffolds from microfluidic bioprinting for wound healing
,”
Research
6
,
0138
, (
2023
).
2.
Y.
Wang
,
J.
Li
,
L.
Sun
,
H.
Chen
,
F.
Ye
,
Y.
Zhao
,
L.
Shang
,
Y.
Wang
,
J.
Li
,
L.
Sun
,
H.
Chen
,
Y.
Zhao
,
L.
Shang
,
S.
Xuhui
, and
F.
Ye
, “
Liquid metal droplets-based elastomers from electric toothbrush-inspired revolving microfluidics
,”
Adv. Mater.
35
(
20
),
2211731
(
2023
).
3.
W.
Huang
,
J.
Zhou
,
P. J.
Froeter
,
K.
Walsh
,
S.
Liu
,
M. D.
Kraman
,
M.
Li
,
J. A.
Michaels
,
D. J.
Sievers
,
S.
Gong
, and
X.
Li
, “
Three-dimensional radio-frequency transformers based on a self-rolled-up membrane platform
,”
Nat. Electron.
1
(
5
),
305
313
(
2018
).
4.
H.
Zhu
,
I. M.
White
,
J. D.
Suter
, and
X.
Fan
, “
Phage-based label-free biomolecule detection in an opto-fluidic ring resonator
,”
Biosens. Bioelectron.
24
(
3
),
461
466
(
2008
).
5.
M.
Yu
,
Y.
Huang
,
J.
Ballweg
,
H.
Shin
,
M.
Huang
,
D. E.
Savage
,
M. G.
Lagally
,
E. W.
Dent
,
R. H.
Blick
, and
J. C.
Williams
, “
Semiconductor nanomembrane tubes: Three-dimensional confinement for controlled neurite outgrowth
,”
ACS Nano
5
(
4
),
2447
2457
(
2011
).
6.
G. S.
Huang
,
S.
Kiravittaya
,
V. A.
Bolaños Quiñones
,
F.
Ding
,
M.
Benyoucef
,
A.
Rastelli
,
Y. F.
Mei
, and
O. G.
Schmidt
, “
Optical properties of rolled-up tubular microcavities from shaped nanomembranes
,”
Appl. Phys. Lett.
94
(
14
),
2007
2010
(
2009
).
7.
A.
Bernardi
,
S.
Kiravittaya
,
A.
Rastelli
,
R.
Songmuang
,
D. J.
Thurmer
,
M.
Benyoucef
, and
O. G.
Schmidt
, “
On-chip Si/SiOx microtube refractometer
,”
Appl. Phys. Lett.
93
(
9
),
2006
2009
(
2008
).
8.
G.
Huang
,
V. A. B.
Quiñones
,
F.
Ding
,
S.
Kiravittaya
,
Y.
Mei
, and
O. G.
Schmidt
, “
Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications
,”
ACS Nano
4
(
6
),
3123
3130
(
2010
).
9.
W.
Huang
,
Z.
Yang
,
M. D.
Kraman
,
Q.
Wang
,
Z.
Ou
,
M. M.
Rojo
,
A. S.
Yalamarthy
,
V.
Chen
,
F.
Lian
,
J. H.
Ni
,
S.
Liu
,
H.
Yu
,
L.
Sang
,
J.
Michaels
,
D. J.
Sievers
,
J.
Gary Eden
,
P. V.
Braun
,
Q.
Chen
,
S.
Gong
,
D. G.
Senesky
,
E.
Pop
, and
X.
Li
, “
Monolithic mtesla-level magnetic induction by self-rolled-up membrane technology
,”
Sci. Adv.
6
(
3
),
28
30
(
2020
).
10.
P.
Froeter
,
Y.
Huang
,
O. V.
Cangellaris
,
W.
Huang
,
E. W.
Dent
,
M. U.
Gillette
,
J. C.
Williams
, and
X.
Li
, “
Toward intelligent synthetic neural circuits: Directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array
,”
ACS Nano
8
(
11
),
11108
11117
(
2014
).
11.
X.
Li
, “
Strain induced semiconductor nanotubes: From formation process to device applications
,”
J. Phys. D: Appl. Phys.
41
(
19
),
193001
(
2008
).
12.
Z.
Yang
,
M. D.
Kraman
,
Z.
Zheng
,
H.
Zhao
,
J.
Zhang
,
S.
Gong
,
Y. V.
Shao
,
W.
Huang
,
P.
Wang
, and
X.
Li
, “
Monolithic heterogeneous integration of 3D radio frequency L−C elements by self-rolled-up membrane nanotechnology
,”
Adv. Funct. Mater.
30
(
40
),
1
10
(
2020
).
13.
V. Y.
Prinz
,
V. A.
Seleznev
,
A. K.
Gutakovsky
,
A. V.
Chehovskiy
,
V. V.
Preobrazhenskii
,
M. A.
Putyato
, and
T. A.
Gavrilova
, “
Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays
,”
Phys. E: Low-Dimens. Syst. Nanostructures
6
(
1
),
828
831
(
2000
).
14.
O.G.
Schmidt
and
K.
Eberl
, “
Thin solid films roll up into nanotubes
,”
Nature
410
(
March
),
2001
(
2001
).
15.
B. S.
Schulze
,
G.
Huang
,
M.
Krause
,
D.
Aubyn
,
V. A.
Bolaños Quiñones
,
C. K.
Schmidt
,
Y.
Mei
, and
O. G.
Schmidt
, “
Morphological differentiation of neurons on microtopographic substrates fabricated by rolled-up nanotechnology
,”
Adv. Eng. Mater.
12
(
9
),
B558
B564
(
2010
).
16.
J.
Yang
,
Y.
Wang
,
L.
Wang
,
Z.
Tian
,
Z.
Di
, and
Y.
Mei
, “
Tubular/helical architecture construction based on rolled-up AlN nanomembranes and resonance as optical microcavity
,”
J. Semicond.
41
(
4
),
042601
(
2020
).
17.
P.
Froeter
,
X.
Yu
,
W.
Huang
,
F.
Du
,
M.
Li
,
I.
Chun
,
S. H.
Kim
,
K. J.
Hsia
,
J. A.
Rogers
, and
X.
Li
, “
3D hierarchical architectures based on self-rolled-up silicon nitride membranes
,”
Nanotechnology
24
(
47
),
475301
(
2013
).
18.
A.
Khandelwal
,
Z.
Ren
,
S.
Namiki
,
Z.
Yang
,
N.
Choudhary
,
C.
Li
,
P.
Wang
,
Z.
Mi
, and
X.
Li
, “
Self-rolled-up aluminum nitride-based 3D architectures enabled by record-high differential stress
,”
ACS Appl. Mater. Interfaces
14
(
25
),
29014
29024
(
2022
).
19.
Y.
Mei
,
G.
Huang
,
A. A.
Solovev
,
E. B.
Ureña
,
I.
Mönch
,
F.
Ding
,
T.
Reindl
,
R. K. Y.
Fu
,
P. K.
Chu
, and
O. G.
Schmidt
, “
Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers
,”
Adv. Mater.
20
(
21
),
4085
4090
(
2008
).
20.
V.
Luchnikov
,
K.
Kumar
, and
M.
Stamm
, “
Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films
,”
J. Micromech. Microeng.
18
(
3
),
035041
(
2008
).
21.
Y.
Mei
,
D. J.
Thurmer
,
C.
Deneke
,
S.
Kiravittaya
,
Y. F.
Chen
,
A.
Dadgar
,
F.
Bertram
,
B.
Bastek
,
A.
Krost
,
J.
Christen
,
T.
Reindl
,
M.
Stoffel
,
E.
Coric
, and
O. G.
Schmidt
, “
Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: Tubes, spirals, and curved sheets
,”
ACS Nano
3
(
7
),
1663
1668
(
2009
).
22.
S.
Timoshenko
, “
Analysis of Bi-metal thermostats
,”
J. Opt. Soc. Am.
11
(
3
),
233
(
1925
).
23.
J.
Meng
,
G.
Wang
,
X.
Li
,
X.
Lu
,
J.
Zhang
,
H.
Yu
,
W.
Chen
,
L.
Du
,
M.
Liao
,
J.
Zhao
,
P.
Chen
,
J.
Zhu
,
X.
Bai
,
D.
Shi
, and
G.
Zhang
, “
Rolling up a monolayer MoS2 sheet
,”
Small
12
(
28
),
3770
3774
(
2016
).
24.
X.
Xie
,
L.
Ju
,
X.
Feng
,
Y.
Sun
,
R.
Zhou
,
K.
Liu
,
S.
Fan
,
Q.
Li
, and
K.
Jiang
, “
Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene
,”
Nano Lett.
9
(
7
),
2565
2570
(
2009
).
25.
P.
Bianucci
,
S.
Mukherjee
,
P.
Poole
, and
Z.
Mila
, “
Self-organized 1.55 μm InAs/InP quantum dot tube nanoscale coherent light sources
,” in
2011 IEEE Winter Topicals, WTM 2011
(IEEE, Piscataway, NJ,
2011
), pp.
127
128
.
26.
Y. V.
Nastaushev
,
V. Y.
Prinz
, and
S. N.
Svitasheva
, “
A technique for fabricating Au/Ti micro- and nanotubes
,”
Nanotechnology
16
(
6
),
908
(
2005
).
27.
F.
Gabler
,
D. D.
Karnaushenko
,
D.
Karnaushenko
, and
O. G.
Schmidt
, “
Magnetic origami creates high performance micro devices
,”
Nat. Commun.
10
(
1
),
1
10
(
2019
).
28.
Z.
Ma
,
Z.
Tian
,
X.
Li
,
C.
You
,
Y.
Wang
,
Y.
Mei
, and
Z.
Di
, “
Self-rolling of monolayer graphene for ultrasensitive molecular sensing
,”
ACS Appl. Mater. Interfaces
13
(
41
),
49146
49152
(
2021
).
29.
J.
Wang
,
E.
Song
,
C.
Yang
,
L.
Zheng
, and
Y.
Mei
, “
Fabrication and whispering gallery resonance of self-rolled up gallium nitride microcavities
,”
Thin Solid Films
627
,
77
81
(
2017
).
30.
R.
Songmuang
,
A.
Rastelli
,
S.
Mendach
, and
O. G.
Schmidt
, “
SiOx/Si radial superlattices and microtube optical ring resonators
,”
Appl. Phys. Lett.
90
(
9
),
091905
(
2007
).
31.
C.
Deneke
,
E.
Wild
,
K.
Boldyreva
,
S.
Baunack
,
P.
Cendula
,
I.
Mönch
,
M.
Simon
,
A.
Malachias
,
K.
Dörr
, and
O. G.
Schmidt
, “
Rolled-up tubes and cantilevers by releasing SrRuO3-Pr0.7Ca0.3MnO3 nanomembranes
,”
Nanoscale Res. Lett.
6
(
1
),
1
8
(
2011
).
32.
Y.
Guo
,
B.
Peng
,
R.
Qiu
,
G.
Dong
,
Y.
Yao
,
Y.
Zhao
,
Z.
Zhou
, and
M.
Liu
, “
Self-rolling-up enabled ultrahigh-density information storage in freestanding single-crystalline ferroic oxide films
,”
Adv. Funct. Mater.
33
(
20
),
2213668
(
2023
).
33.
X.
Li
,
Y.
Wang
,
B.
Xu
,
X.
Zhou
,
C.
Men
,
Z.
Tian
, and
Y.
Mei
, “
Rolled-up single-layered vanadium oxide nanomembranes for microactuators with tunable active temperature
,”
Nanotechnology
30
(
35
),
354003
(
2019
).
34.
K.
Kumar
,
B.
Nandan
,
V.
Luchnikov
,
E. B.
Gowd
, and
M.
Stammm
, “
Fabrication of metallic microtubes using self-rolled polymer tubes as templates
,”
Langmuir
25
(
13
),
7667
7674
(
2009
).
35.
V.
Luchnikov
,
M.
Stamm
,
C.
Akhmadaliev
,
L.
Bischoff
, and
B.
Schmidt
, “
Focused-ion-beam-assisted fabrication of polymer rolled-up microtubes
,”
J. Micromech. Microeng.
16
(
8
),
1602
(
2006
).
36.
S.
Moradi
,
E.
Saei Ghareh Naz
,
G.
Li
,
N.
Bandari
,
V.
Kumar Bandari
,
F.
Zhu
,
H.
Wendrock
,
O. G.
Schmidt
,
S.
Moradi
,
E. S. G.
Naz
,
G.
Li
,
N.
Bandari
,
V. K.
Bandari
,
F.
Zhu
,
O. G.
Schmidt
, and
H.
Wendrock
, “
Highly symmetric and extremely compact multiple winding microtubes by a dry rolling mechanism
,”
Adv. Mater. Interfaces
7
(
13
),
1902048
(
2020
).
37.
P.
Cendula
,
S.
Kiravittaya
,
Y. F.
Mei
,
C.
Deneke
, and
O. G.
Schmidt
, “
Bending and wrinkling as competing relaxation pathways for strained free-hanging films
,”
Phys. Rev. B
79
(
8
),
085429
(
2009
).
38.
L. F.
Francis
,
B. J. H.
Stadler
, and
C. C.
Roberts
,
Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers
(
Elsevier Inc.
,
2016
).
39.
J. A.
Floro
,
E.
Chason
,
R. C.
Cammarata
, and
D. J.
Srolovitz
, “
Physical origins of intrinsic stresses in Volmer–Weber thin films
,”
MRS Bull.
27
(
1
),
19
25
(
2002
).
40.
H.
Zhang
,
H.
Chang
, and
P.
Neuzil
, “
DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms
,”
Micromachines
10
(
6
),
1
22
(
2019
).
41.
M.
Medina-Sánchez
,
B.
Ibarlucea
,
N.
Pérez
,
D. D.
Karnaushenko
,
S. M.
Weiz
,
L.
Baraban
,
G.
Cuniberti
, and
O. G.
Schmidt
, “
High-performance three-dimensional tubular nanomembrane sensor for DNA detection
,”
Nano Lett.
16
(
7
),
4288
4296
(
2016
).
42.
Z.
Ou
,
X.
Song
,
W.
Huang
,
X.
Jiang
,
S.
Qu
,
Q.
Wang
,
P. V.
Braun
,
J. S.
Moore
,
X.
Li
, and
Q.
Chen
, “
Colloidal metal-organic framework hexapods prepared from postsynthesis etching with enhanced catalytic activity and rollable packing
,”
ACS Appl. Mater. Interfaces
10
(
48
),
40990
40995
(
2018
).
43.
N.
Li
,
Q.
Wang
,
C.
Shen
,
Z.
Wei
,
H.
Yu
,
J.
Zhao
,
X.
Lu
,
G.
Wang
,
C.
He
,
L.
Xie
,
J.
Zhu
,
L.
Du
,
R.
Yang
,
D.
Shi
, and
G.
Zhang
, “
Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors
,”
Nat. Electron.
3
(
11
),
711
717
(
2020
).
44.
Y.
Chen
,
Y.
Zhang
,
Z.
Liang
,
Y.
Cao
,
Z.
Han
, and
X.
Feng
, “
Flexible inorganic bioelectronics
,”
Npj Flexible Electron.
4
(
1
),
1
20
(
2020
).
45.
Z.
Yang
,
M. D.
Kraman
,
Z.
Zheng
,
H.
Zhao
,
J.
Zhang
,
S.
Gong
,
Y. V.
Shao
,
W.
Huang
,
P.
Wang
, and
X.
Li
, “
Monolithic heterogeneous integration of 3D radio frequency L−C elements by self-rolled-up membrane nanotechnology
,”
Adv. Funct. Mater.
30
(
40
),
2004034
(
2020
).
46.
F.
Li
,
J.
Wang
,
L.
Liu
,
J.
Qu
,
Y.
Li
,
V. K.
Bandari
,
D.
Karnaushenko
,
C.
Becker
,
M.
Faghih
,
T.
Kang
,
S.
Baunack
,
M.
Zhu
,
F.
Zhu
, and
O. G.
Schmidt
, “
Self-assembled flexible and integratable 3D microtubular asymmetric supercapacitors
,”
Adv. Sci.
6
(
20
),
2103927
(
2019
).
47.
F.
Li
,
M.
Huang
,
J.
Wang
,
J.
Qu
,
Y.
Li
,
L.
Liu
,
V. K.
Bandari
,
Y.
Hong
,
B.
Sun
,
M.
Zhu
,
F.
Zhu
,
Y. X.
Zhang
, and
O. G.
Schmidt
, “
On-chip 3D interdigital micro-supercapacitors with ultrahigh areal energy density
,”
Energy Storage Mater.
27
,
17
24
(
2020
).
48.
D. J.
Prakash
,
M. M.
Dwyer
,
M. M.
Argudo
,
M. L.
Debasu
,
H.
Dibaji
,
M. G.
Lagally
,
D. W.
van der Weide
, and
F.
Cavallo
, “
Self-winding helices as slow-wave structures for sub-millimeter traveling-wave tubes
,”
ACS Nano
15
(
1
),
1229
1239
(
2021
).
49.
X.
Li
, “
Self-rolled-up microtube ring resonators: A review of geometrical and resonant properties
,”
Adv. Opt. Photonics
3
(
4
),
366
(
2011
).
50.
D. D.
Karnaushenko
,
D.
Karnaushenko
,
H. J.
Grafe
,
V.
Kataev
,
B.
Büchner
, and
O. G.
Schmidt
, “
Rolled-up self-assembly of compact magnetic inductors, transformers, and resonators
,”
Adv. Electron. Mater.
4
(
11
),
1800298
(
2018
).
51.
X.
Yu
,
E.
Arbabi
,
L. L.
Goddard
,
X.
Li
, and
X.
Chen
, “
Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration
,”
Appl. Phys. Lett.
107
(
3
),
31102
(
2015
).
52.
X.
Yu
,
L. L.
Goddard
,
J.
Zhu
,
X.
Li
, and
X.
Chen
, “
Passive wavelength tuning and multichannel photonic coupling using monolithically integrated vertical microresonators on ridge waveguides
,”
Appl. Phys. Lett.
112
(
2
),
21108
(
2018
).
53.
X.
Yu
,
L. L.
Goddard
,
X.
Li
, and
X.
Chen
, “
Enhanced axial confinement in a monolithically integrated self-rolled-up SiNx vertical microring photonic coupler
,”
Appl. Phys. Lett.
109
(
11
),
111104
(
2016
).
54.
M. H. T.
Dastjerdi
,
M.
Djavid
, and
Z.
Mi
, “
An electrically injected rolled-up semiconductor tube laser
,”
Appl. Phys. Lett.
106
(
2
),
21114
(
2015
).
55.
F.
Li
,
Z.
Mi
,
H.
Altug
,
D.
Englund
,
S.
Reitzenstein
,
A.
Bazhenov
,
A.
Gorbunov
,
C.
Hofmann
,
S.
Munch
,
A.
Loffler
,
M.
Kamp
,
J.
Reithmaier
,
V.
Kulakovskii
, and
A.
Forchel
, “
Optically pumped rolled-up InGaAs/GaAs quantum dot microtube lasers
,”
Opt. Express
17
(
22
),
19933
19939
(
2009
).
56.
O. V.
Cangellaris
,
E. A.
Corbin
,
P.
Froeter
,
J. A.
Michaels
,
X.
Li
, and
M. U.
Gillette
, “
Aligning synthetic hippocampal neural circuits via self-rolled-up silicon nitride microtube arrays
,”
ACS Appl. Mater. Interfaces
10
(
42
),
35705
35714
(
2018
).
57.
B.
Pinho
and
R. L.
Hartman
, “
Microfluidics with in situ Raman spectroscopy for the characterization of non-polar/aqueous interfaces
,”
React. Chem. Eng.
2
(
2
),
189
200
(
2017
).
58.
A.
Perro
,
G.
Lebourdon
,
S.
Henry
,
S.
Lecomte
,
L.
Servant
, and
S.
Marre
, “
Combining microfluidics and FT-IR spectroscopy: Towards spatially resolved information on chemical processes
,”
React. Chem. Eng.
1
(
6
),
577
594
(
2016
).
59.
J.
Yue
,
F. H.
Falke
,
J. C.
Schouten
, and
T. A.
Nijhuis
, “
Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow
,”
Lab Chip
13
(
24
),
4855
4863
(
2013
).
60.
S. M.
Harazim
,
V. A.
Bolaños Quiñones
,
S.
Kiravittaya
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Lab-in-a-tube: On-chip integration of glass optofluidic ring resonators for label-free sensing applications
,”
Lab Chip
12
(
15
),
2649
2655
(
2012
).
61.
J.
Wang
and
A. W.
Poon
, “
Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices
,”
Lab Chip
14
(
8
),
1426
1436
(
2014
).
62.
K.
De Vos
,
I.
Bartolozzi
,
E.
Schacht
,
P.
Bienstman
, and
R.
Baets
, “
Silicon-on-insulator microring resonator for sensitive and label-free biosensing
,”
Opt. Express
15
(
12
),
7610
(
2007
).
63.
A.
Madani
,
M.
Kleinert
,
S. M.
Harazim
,
A.
Finn
,
E. S. G.
Naz
,
O. G.
Schmidt
,
V. A. B.
Quiñones
, and
L.
Ma
, “
Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing
,”
Opt. Lett.
42
(
3
),
486
489
(
2017
).
64.
A.
Madani
,
M.
Kleinert
,
Y.
Yin
,
O. G.
Schmidt
,
E. S. G.
Naz
,
S.
Harazim
, and
L.
Ma
, “
Multiplexing and tuning of a double set of resonant modes in optical microtube cavities monolithically integrated on a photonic chip
,”
Opt. Lett.
43
(
19
),
4703
4706
(
2018
).
65.
J.
Zhang
,
J.
Zhong
,
Y. F.
Fang
,
J.
Wang
,
G. S.
Huang
,
X. G.
Cui
, and
Y. F.
Mei
, “
Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing
,”
Nanoscale
6
(
22
),
13646
13650
(
2014
).
66.
L.
Ma
,
S.
Li
,
V. A. B.
Quiñones
,
L.
Yang
,
W.
Xi
,
M.
Jorgensen
,
S.
Baunack
,
Y.
Mei
,
S.
Kiravittaya
, and
O. G.
Schmidt
, “
Dynamic molecular processes detected by microtubular opto-chemical sensors self-assembled from prestrained nanomembranes
,”
Adv. Mater.
25
(
16
),
2357
2361
(
2013
).
67.
J.
Zhong
,
J.
Wang
,
G.
Huang
,
G.
Yuan
, and
Y.
Mei
, “
Effect of physisorption and chemisorption of water on resonant modes of rolled-up tubular microcavities
,”
Nanoscale Res. Lett.
8
(
1
),
1
6
(
2013
).
68.
W.
Lee
and
X.
Fan
, “
Intracavity DNA melting analysis with optofluidic lasers
,”
Anal. Chem.
84
(
21
),
9558
9563
(
2012
).
69.
Y.
Yin
,
J.
Pang
,
J.
Wang
,
X.
Lu
,
Q.
Hao
,
E.
Saei Ghareh Naz
,
X.
Zhou
,
L.
Ma
, and
O. G.
Schmidt
, “
Graphene-Activated optoplasmonic nanomembrane cavities for photodegradation detection
,”
ACS Appl. Mater. Interfaces
11
(
17
),
15891
15897
(
2019
).
70.
J.
Wang
,
Y.
Yin
,
Q.
Hao
,
Y.
Zhang
,
L.
Ma
, and
O. G.
Schmidt
, “
Strong coupling in a photonic molecule formed by trapping a microsphere in a microtube cavity
,”
Adv. Opt. Mater.
6
(
1
),
1700842
(
2018
).
71.
E. J.
Smith
,
S.
Schulze
,
S.
Kiravittaya
,
Y.
Mei
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Lab-in-a-tube: Detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors
,”
Nano Lett.
11
(
10
),
4037
4042
(
2011
).
72.
K. H.
Kim
,
G.
Bahl
,
W.
Lee
,
J.
Liu
,
M.
Tomes
,
X.
Fan
, and
T.
Carmon
, “
Cavity optomechanics on a microfluidic resonator with water and viscous liquids
,”
Light: Sci. Appl.
2
(
11
),
e110
(
2013
).
73.
K.
Zhu
,
K.
Han
,
T.
Carmon
,
X.
Fan
, and
G.
Bahl
, “
Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators
,”
Eur. Phys. J.: Spec. Top.
223
(
10
),
1937
1947
(
2014
).
74.
J.
Kim
,
G.
Bahl
, and
K.
Han
, “
High-throughput sensing of freely flowing particles with optomechanofluidics
,”
Optica
3
(
6
),
585
591
(
2016
).
75.
C. S.
Bausch
,
C.
Heyn
,
W.
Hansen
,
I. M. A.
Wolf
,
B. P.
Diercks
,
A. H.
Guse
, and
R. H.
Blick
, “
Ultra-fast cell counters based on microtubular waveguides
,”
Sci. Rep.
7
(
1
),
1
11
(
2017
).
76.
D.
Grimm
,
C. C.
Bof Bufon
,
C.
Deneke
,
P.
Atkinson
,
D. J.
Thurmer
,
F.
Schäffel
,
S.
Gorantla
,
A.
Bachmatiuk
, and
O. G.
Schmidt
, “
Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications
,”
Nano Lett.
13
(
1
),
213
218
(
2013
).
77.
C. S.
Martinez-Cisneros
,
S.
Sanchez
,
W.
Xi
, and
O. G.
Schmidt
, “
Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications
,”
Nano Lett.
14
(
4
),
2219
2224
(
2014
).
78.
D.
Karnaushenko
,
N.
Münzenrieder
,
D. D.
Karnaushenko
,
B.
Koch
,
A. K.
Meyer
,
S.
Baunack
,
L.
Petti
,
G.
Tröster
,
D.
Makarov
,
O. G.
Schmidt D Karnaushenko
,
D. D.
Karnaushenko
,
B.
Koch
,
A. K.
Meyer
,
S.
Baunack
,
D.
Makarov
,
O. G.
Schmidt
,
N.
Münzenrieder
,
L.
Petti
, and
G.
Tröster
, “
Biomimetic microelectronics for regenerative neuronal cuff implants
,”
Adv. Mater.
27
(
43
),
6797
6805
(
2015
).
79.
C.
Vervacke
,
C. C.
Bof Bufon
,
D. J.
Thurmer
, and
O. G.
Schmidt
, “
Three-dimensional chemical sensors based on rolled-up hybrid nanomembranes
,”
RSC Adv.
4
(
19
),
9723
9729
(
2014
).
80.
I.
Mönch
,
D.
Makarov
,
R.
Koseva
,
L.
Baraban
,
D.
Karnaushenko
,
C.
Kaiser
,
K. F.
Arndt
, and
O. G.
Schmidt
, “
Rolled-up magnetic sensor: Nanomembrane architecture for in-flow detection of magnetic objects
,”
ACS Nano
5
(
9
),
7436
7442
(
2011
).
81.
S.
Tang
,
Y.
Fang
,
Z.
Liu
,
L.
Zhou
, and
Y.
Mei
, “
Tubular optical microcavities of indefinite medium for sensitive liquid refractometers
,”
Lab Chip
16
(
1
),
182
187
(
2016
).
82.
L.
Cai
,
D.
Xu
,
H.
Chen
,
L.
Wang
, and
Y.
Zhao
, “
Designing bioactive micro-/nanomotors for engineered regeneration
,”
Eng. Regener.
2
,
109
115
(
2021
).
83.
P.
Wrede
,
M.
Medina-Sánchez
,
V. M.
Fomin
,
O.
G
,
S. P.
Wrede
,
M.
Medina-Sánchez
,
V. M.
Fomin
,
O. G.
Schmidt
, and
P.
Wrede
, “
Switching propulsion mechanisms of tubular catalytic micromotors
,”
Small
17
(
12
),
2006449
(
2021
).
84.
V. M.
Fomin
, “
Self-rolled micro- and nanoarchitectures: Topological and geometrical effects
,” in
Self-Rolled Micro- and Nanoarchitectures: Topological and Geometrical Effects
(Walter de Gruyter GmbH & Co KG,
2020
), pp.
1
138
.
85.
J.
Li
,
Z.
Liu
,
G.
Huang
,
Z.
An
,
G.
Chen
,
J.
Zhang
,
M.
Li
,
R.
Liu
, and
Y.
Mei
, “
Hierarchical nanoporous microtubes for high-speed catalytic microengines
,”
NPG Asia Mater.
6
(
4
),
e94
(
2014
).
86.
A. A.
Solovev
,
Y.
Mei
,
E. B.
Ureña
,
G.
Huang
, and
O. G.
Schmidt
, “
Catalytic microtubular jet engines self-propelled by accumulated gas bubbles
,”
Small
5
(
14
),
1688
1692
(
2009
).
87.
G.
Zhao
,
S.
Sanchez
,
O. G.
Schmidt
, and
M.
Pumera
, “
Micromotors with built-in compasses
,”
Chem. Commun.
48
(
81
),
10090
10092
(
2012
).
88.
A. A.
Solovev
,
W.
Xi
,
D. H.
Gracias
,
S. M.
Harazim
,
C.
Deneke
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Self-propelled nanotools
,”
ACS Nano
6
(
2
),
1751
1756
(
2012
).
89.
W.
Xi
,
A. A.
Solovev
,
A. N.
Ananth
,
D. H.
Gracias
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery
,”
Nanoscale
5
(
4
),
1294
1297
(
2013
).
90.
S.
Sanchez
,
A. A.
Solovev
,
S. M.
Harazim
, and
O. G.
Schmidt
, “
Microbots swimming in the flowing streams of microfluidic channels
,”
J. Am. Chem. Soc.
133
(
4
),
701
703
(
2011
).
91.
I. S. M.
Khalil
,
V.
Magdanz
,
S.
Sanchez
,
O. G.
Schmidt
, and
S.
Misra
, “
The control of self-propelled microjets inside a microchannel with time-varying flow rates
,”
IEEE Trans. Rob.
30
(
1
),
49
58
(
2014
).
92.
I. S. M.
Khalil
,
V.
Magdanz
,
S.
Sanchez
,
O. G.
Schmidt
, and
S.
Misra
, “
Three-dimensional closed-loop control of self-propelled microjets
,”
Appl. Phys. Lett.
103
(
17
),
172404
(
2013
).
93.
I. S. M.
Khalil
,
V.
Magdanz
,
S.
Sanchez
,
O. G.
Schmidt
, and
S.
Misra
, “
Wireless magnetic-based closed-loop control of self-propelled microjets
,”
PLoS One
9
(
2
),
e83053
(
2014
).
94.
I. S. M.
Khalil
,
V.
Magdanz
,
S.
Sanchez
,
O. G.
Schmidt
, and
S.
Misra
, “
Biocompatible, accurate, and fully autonomous: A sperm-driven micro-bio-robot
,”
J. Micro-Bio Rob.
9
(
3–4
),
79
86
(
2014
).
95.
L.
Soler
,
C.
Martínez-Cisneros
,
A.
Swiersy
,
S.
Sánchez
, and
O. G.
Schmidt
, “
Thermal activation of catalytic microjets in blood samples using microfluidic chips
,”
Lab Chip
13
(
22
),
4299
4303
(
2013
).
96.
A. A.
Solovev
,
E. J.
Smith
,
C. C.
Bufon
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Light-controlled propulsion of catalytic microengines
,”
Angew. Chem., Int. Ed.
50
(
46
),
10875
10878
(
2011
).
97.
S.
Sanchez
,
A. N.
Ananth
,
V. M.
Fomin
,
M.
Viehrig
, and
O. G.
Schmidt
, “
Superfast motion of catalytic microjet engines at physiological temperature
,”
J. Am. Chem. Soc.
133
(
38
),
14860
14863
(
2011
).
98.
V.
Magdanz
,
G.
Stoychev
,
L.
Ionov
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Stimuli-responsive microjets with reconfigurable shape
,”
Angew. Chem., Int. Ed.
53
(
10
),
2673
2677
(
2014
).
99.
L.
Restrepo-Pérez
,
L.
Soler
,
C.
Martínez-Cisneros
,
S.
Sánchez
, and
O. G.
Schmidt
, “
Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system
,”
Lab Chip
14
(
16
),
2914
2917
(
2014
).
100.
B.
Zhang
,
G.
Huang
,
L.
Wang
,
T.
Wang
,
L.
Liu
,
Z.
Di
,
X.
Liu
, and
Y.
Mei
, “
Rolled-up monolayer graphene tubular micromotors: Enhanced performance and antibacterial property
,”
Chem. - Asian J.
14
(
14
),
2479
2484
(
2019
).
101.
S.
Sanchez
,
A. A.
Solovev
,
S.
Schulze
, and
O. G.
Schmidt
, “
Controlled manipulation of multiple cells using catalytic microbots
,”
Chem. Commun.
47
(
2
),
698
700
(
2011
).
102.
D.
Kagan
,
S.
Campuzano
,
S.
Balasubramanian
,
F.
Kuralay
,
G. U.
Flechsig
, and
J.
Wang
, “
Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples
,”
Nano Lett.
11
(
5
),
2083
2087
(
2011
).
103.
Y.
Zhang
,
F.
Wang
,
J.
Chao
,
M.
Xie
,
H.
Liu
,
M.
Pan
,
E.
Kopperger
,
X.
Liu
,
Q.
Li
,
J.
Shi
,
L.
Wang
,
J.
Hu
,
L.
Wang
,
F. C.
Simmel
, and
C.
Fan
, “
DNA origami cryptography for secure communication
,”
Nat. Commun.
10
(
1
),
1
8
(
2019
).
104.
N.
Athreya
,
A.
Khandelwal
,
X.
Li
, and
J. P.
Leburton
, “
Electrically controlled nanofluidic DNA sluice for data storage applications
,”
ACS Appl. Nano Mater.
4
(
10
),
11063
11069
(
2021
).
105.
A.
Khandelwal
,
N.
Athreya
,
M. Q.
Tu
,
L. L.
Janavicius
,
Z.
Yang
,
O.
Milenkovic
,
J. P.
Leburton
,
C. M.
Schroeder
, and
X.
Li
, “
Self-assembled microtubular electrodes for on-chip low-voltage electrophoretic manipulation of charged particles and macromolecules
,”
Microsyst. Nanoeng.
8
(
1
),
1
12
(
2022
).
106.
Y.
Wu
,
Y.
Ren
,
Y.
Tao
,
L.
Hou
, and
H.
Jiang
, “
Large-scale single particle and cell trapping based on rotating electric field induced-charge electroosmosis
,”
Anal. Chem.
88
(
23
),
11791
11798
(
2016
).
107.
S.
Zhang
,
Y.
Zhai
,
R.
Peng
,
M.
Shayegannia
,
A. G.
Flood
,
J.
Qu
,
X.
Liu
,
N. P.
Kherani
, and
A. R.
Wheeler
, “
Assembly of topographical micropatterns with optoelectronic tweezers
,”
Adv. Opt. Mater.
7
(
20
),
1
7
(
2019
).
108.
Q.
Ma
,
H.
Ma
,
F.
Xu
,
X.
Wang
, and
W.
Sun
, “
Microfluidics in cardiovascular disease research: State of the art and future outlook
,”
Microsyst. Nanoeng.
7
(
1
),
1
19
(
2021
).
109.
S. R.
Goudu
,
H.
Kim
,
X.
Hu
,
B.
Lim
,
K.
Kim
,
S. R.
Torati
,
H.
Ceylan
,
D.
Sheehan
,
M.
Sitti
, and
C. G.
Kim
, “
Mattertronics for programmable manipulation and multiplex storage of pseudo-diamagnetic holes and label-free cells
,”
Nat. Commun.
12
(
1
),
1
13
(
2021
).
110.
Y.
Zhou
,
S.
Huang
, and
X.
Tian
, “
Magnetoresponsive surfaces for manipulation of nonmagnetic liquids: Design and applications
,”
Adv. Funct. Mater.
30
(
6
),
1
19
(
2020
).
111.
M.
Sesen
and
C.J.
Rowlands
, “
Thermally-actuated microfluidic membrane valve for point-of-care applications
,”
Microsyst. Nanoeng.
7
(
1
)
1
12
(
2021
).
112.
J.
Zhang
,
Z.
Wang
,
Z.
Wang
,
T.
Zhang
, and
L.
Wei
, “
Double-slit photoelectron interference in strong-field ionization of the neon dimer
,”
Nat. Commun.
10
(
1
),
1
10
(
2019
).
113.
M.
Wu
,
A.
Ozcelik
,
J.
Rufo
,
Z.
Wang
,
R.
Fang
, and
T.
Jun Huang
, “
Acoustofluidic separation of cells and particles
,”
Microsyst. Nanoeng.
5
(
1
),
1
18
(
2019
).
114.
C.
Wyatt Shields IV
,
C. D.
Reyes
, and
G. P.
López
, “
Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
,”
Lab Chip
15
(
5
),
1230
1249
(
2015
).
115.
J.
Xu
,
H.
Kawano
,
W.
Liu
,
Y.
Hanada
,
P.
Lu
,
A.
Miyawaki
,
K.
Midorikawa
, and
K.
Sugioka
, “
Controllable alignment of elongated microorganisms in 3D microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication
,”
Microsyst. Nanoeng.
3
(
1
),
1
9
(
2017
).
116.
D. L.
Huber
,
R. P.
Manginell
,
M. A.
Samara
,
B.
Il Kim
, and
B. C.
Bunker
, “
Programmed adsorption and release of proteins in a microfluidic device
,”
Science
301
(
5631
),
352
354
, (
2003
).
117.
R. J.
Montes
,
J. E.
Butler
, and
A. J. C.
Ladd
, “
Trapping DNA with a high throughput microfluidic device
,”
Electrophoresis
40
(
3
),
437
446
(
2019
).
118.
B.
Venzac
,
Y.
Liu
,
I.
Ferrante
,
P.
Vargas
,
A.
Yamada
,
R.
Courson
,
M.
Verhulsel
,
L.
Malaquin
,
J.-L.
Viovy
, and
S.
Descroix
, “
Sliding walls: A new paradigm for fluidic actuation and protocol implementation in microfluidics
,”
Microsyst. Nanoeng.
6
(
1
),
1
10
(
2020
).
119.
A. L.
Forget
,
C. C.
Dombrowski
,
I.
Amitani
, and
S. C.
Kowalczykowski
, “
Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy
,”
Nat. Protoc.
8
(
3
),
525
538
(
2013
).
120.
X.
Xuan
, “
Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications
,”
Electrophoresis
40
(
18–19
),
2484
2513
(
2019
).
121.
J.
Li
,
N. S.
Ha
,
T.
Leo; Liu
,
R. M.
van Dam
, and
C. J.
‘CJ’Kim
, “
Ionic-surfactant-mediated electro-dewetting for digital microfluidics
,”
Nature
572
(
7770
),
507
510
(
2019
).
122.
J. P.
Beech
,
K.
Keim
,
B. D.
Ho
,
C.
Guiducci
, and
J. O.
Tegenfeldt
, “
Active posts in deterministic lateral displacement devices
,”
Adv. Mater. Technol.
4
(
9
),
1900339
(
2019
).
123.
P.
Modarres
and
M.
Tabrizian
, “
Phase-controlled field-effect micromixing using AC electroosmosis
,”
Microsyst. Nanoeng.
6
(
1
),
60
(
2020
).
124.
A. A.
Solovev
,
S.
Sanchez
,
M.
Pumera
,
Y. F.
Mei
, and
O. C.
Schmidt
, “
Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects
,”
Adv. Funct. Mater.
20
(
15
),
2430
2435
(
2010
).
125.
L.
Huang
,
F.
Liang
,
Y.
Feng
,
P.
Zhao
, and
W.
Wang
, “
On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis
,”
Microsyst. Nanoeng.
6
(
1
),
1
14
(
2020
).
126.
M.
Baudoin
,
J. L.
Thomas
,
R.
Al Sahely
,
J. C.
Gerbedoen
,
Z.
Gong
,
A.
Sivery
,
O. B.
Matar
,
N.
Smagin
,
P.
Favreau
, and
A.
Vlandas
, “
Spatially selective manipulation of cells with single-beam acoustical tweezers
,”
Nat. Commun.
11
(
1
),
1
10
(
2020
).
127.
A.
Ozcelik
,
J.
Rufo
,
F.
Guo
,
Y.
Gu
,
P.
Li
,
J.
Lata
, and
T. J.
Huang
, “
Acoustic tweezers for the life sciences
,”
Nat. Methods
15
(
12
),
1021
1028
(
2018
).
128.
Y.
Xie
,
J.
Rufo
,
R.
Zhong
,
J.
Rich
,
P.
Li
,
K. W.
Leong
, and
T. J.
Huang
, “
Microfluidic isolation and enrichment of nanoparticles
,”
ACS Nano
14
(
12
),
16220
16240
(
2020
).
129.
P.
Paiè
,
F.
Bragheri
,
D.
Di Carlo
, and
R.
Osellame
, “
Particle focusing by 3D inertial microfluidics
,”
Microsyst. Nanoeng.
3
(
1
),
1
8
(
2017
).
130.
J.
Voldman
,
M.
Toner
,
M. L.
Gray
, and
M. A.
Schmidt
, “
Design and analysis of extruded quadrupolar dielectrophoretic traps
,”
J. Electrost.
57
(
1
),
69
90
(
2003
).
131.
A.
Pavesi
,
F.
Piraino
,
G. B.
Fiore
,
K. M.
Farino
,
M.
Moretti
, and
M.
Rasponi
, “
How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications
,”
Lab Chip
11
(
9
),
1593
1595
(
2011
).
132.
J. H.
So
and
M. D.
Dickey
, “
Inherently aligned microfluidic electrodes composed of liquid metal
,”
Lab Chip
11
(
5
),
905
911
(
2011
).
133.
V.
Varmazyari
,
H.
Habibiyan
,
H.
Ghafoorifard
,
M.
Ebrahimi
, and
S.
Ghafouri-Fard
, “
A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability
,”
Sci. Rep.
12
(
1)
,
1
14
(
2022
).
134.
L.
Wang
,
L.
Flanagan
, and
A. P.
Lee
, “
Side-wall vertical electrodes for lateral field microfluidic applications
,”
J. Microelectromech. Syst.
16
(
2
),
454
461
(
2007
).
135.
L.
Wang
,
L. A.
Flanagan
,
N. L.
Jeon
,
E.
Monuki
, and
A. P.
Lee
, “
Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry
,”
Lab Chip
7
(
9
),
1114
1120
(
2007
).
136.
M.
Kumar
,
N.
Palekar
,
A.
Kumar
,
M.
Hallot
,
C.
Boyaval
,
L.
Huang
,
G.
Wang
,
G.
Zhan
, and
P.
Pei
, “
A microfluidic chip integrated with 3D sidewall electrodes and wavy microchannel for cell focusing and separation
,”
J. Micromech. Microeng.
31
(
12
),
125011
(
2021
).
137.
K. P.
Nichols
,
J. C. T.
Eijkel
, and
H. J. G. E.
Gardeniers
, “
Nanochannels in SU-8 with floor and ceiling metal electrodes and integrated microchannels
,”
Lab Chip
8
(
1
),
173
175
(
2008
).
138.
S.
Zeinali
,
B.
Çetin
,
S. N. B.
Oliaei
, and
Y.
Karpat
, “
Fabrication of continuous flow microfluidics device with 3D electrode structures for high throughput DEP applications using mechanical machining
,”
Electrophoresis
36
(
13
),
1432
1442
(
2015
).
139.
P.
Huang
,
N.
Li
,
L.
Zeng
, and
Y.
Zhu
, “
Bi-loaded Cu hollow microtube electrodes for N2 electroreduction
,”
ACS Appl. Energy Mater.
5
(
9
),
11152
11158
(
2022
).
140.
P.
Garrido
,
M.
Montilla
,
E.
Cabruja
, and
E.
Valderrama
, “
Highly doped silicon microtubular electrodes for neural recording
,” in
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
(IEEE, Piscataway, NJ,
1996
), pp.
110
111
. (1).
141.
H.
Rabiee
,
L.
Ge
,
S.
Hu
,
H.
Wang
, and
Z.
Yuan
, “
Microtubular electrodes: An emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications
,”
Chem. Eng. J.
450
,
138476
(
2022
).
142.
T.
Coughlin
, “
Storage at the 2018 consumer electronics show [The Art of Storage]
,”
IEEE Consum. Electron. Mag.
7
(
5
),
48
49
(
2018
).
143.
K.
Wu
,
F.
Ober
,
S.
Hamlin
,
Q.
Guan
, and
D.
Li
, Early Evaluation of Intel Optane Non-Volatile Memory with HPC I/O Workloads, (2017).
144.
W.
Kim
,
A.
Chattopadhyay
,
A.
Siemon
,
E.
Linn
,
R.
Waser
, and
V.
Rana
, “
Multistate memristive tantalum oxide devices for ternary arithmetic
,”
Sci. Rep.
6
(
1
),
1
9
(
2016
).
145.
R. P.
Feynman
, “
There's plenty of room at the bottom
,”
J. Microelectromech. Syst.
1
(
1
),
60
66
(
1992
).
You do not currently have access to this content.