The blood–brain barrier is a key structure regulating the health of the brain and access of drugs and pathogens to neural tissue. Shear stress is a key regulator of the blood–brain barrier; however, the commonly used multi-well vitro models of the blood–brain barrier do not incorporate shear stress. In this work, we designed and validated a high-throughput system for simulating the blood–brain barrier that incorporates physiological flow and incorporates an optimized cellular model of the blood–brain barrier. This system can perform assays of blood–brain barrier function with shear stress, with 48 independent assays simultaneously. Using the high throughput assay, we conducted drug screening assays to explore the effects of compounds for opening or closing blood–brain barrier. Our studies revealed that assays with shear stress were more predictive and were able to identify compounds known to modify the blood–brain barrier function while static assays were not. Overall, we demonstrate an optimized, high throughput assay for simulating the blood–brain barrier that incorporates shear stress and is practical for use in drug screening and other high throughput studies of toxicology.

1.
N. J.
Abbott
,
A. A. K.
Patabendige
,
D. E. M.
Dolman
,
S. R.
Yusof
, and
D. J.
Begley
, “
Structure and function of the blood-brain barrier
,”
Neurobiol. Dis.
37
,
13
25
(
2010
).
2.
B.
Engelhardt
, “
Development of the blood-brain barrier
,”
Cell Tissue Res.
314
,
119
129
(
2003
).
3.
N. J.
Abbott
,
L.
Ronnback
, and
E.
Hansson
, “
Astrocyte-endothelial interactions at the blood-brain barrier
,”
Nat. Rev. Neurosci.
7
,
41
53
(
2006
).
4.
W. M.
Pardridge
, “
The blood-brain barrier: Bottleneck in brain drug development
,”
NeuroRx
2
,
3
14
(
2005
).
5.
K. S.
Saili
et al, “
Blood-brain barrier development: Systems modeling and predictive toxicology
,”
Birth Defects Res.
109
,
1680
1710
(
2017
).
6.
A.
Cash
and
M. H.
Theus
, “
Mechanisms of blood-brain barrier dysfunction in traumatic brain injury
,”
Int. J. Mol. Sci.
21
,
3344
(
2020
).
7.
S. E.
Storck
and
C. U.
Pietrzik
, “
The Blood brain-barrier and its role in Alzheimer's disease
,”
Neuroforum
24
,
A197
A205
(
2018
).
8.
X.
Wang
et al, “
Advances on fluid shear stress regulating blood-brain barrier
,”
Microvasc. Res.
128
,
103930
(
2020
).
9.
F.
Garcia-Polite
et al, “
Pulsatility and high shear stress deteriorate barrier phenotype in brain microvascular endothelium
,”
J. Cereb. Blood Flow Metab.
37
,
2614
2625
(
2017
).
10.
L.
Cucullo
,
M.
Hossain
,
V.
Puvenna
,
N.
Marchi
, and
D.
Janigro
, “
The role of shear stress in blood-brain barrier endothelial physiology
,”
BMC Neurosci.
12
,
40
(
2011
).
11.
A.
Spencer
and
A. B.
Baker
, “
High throughput label free measurement of cancer cell adhesion kinetics under hemodynamic flow
,”
Sci. Rep.
6
,
19854
(
2016
).
12.
A.
Spencer
et al, “
A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis
,”
Lab Chip
16
,
142
152
(
2016
).
13.
A.
Spencer
et al, “
Biomechanical regulation of breast cancer metastasis and progression
,”
Sci. Rep.
11
,
9838
(
2021
).
14.
C.
Spruell
and
A. B.
Baker
, “
Analysis of a high-throughput cone-and-plate apparatus for the application of defined spatiotemporal flow to cultured cells
,”
Biotechnol. Bioeng.
110
,
1782
1793
(
2013
).
15.
D. E.
Eigenmann
et al, “
Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies
,”
Fluids Barriers CNS
10
,
33
(
2013
).
16.
R. P.
Franke
,
M.
Gräfe
,
H.
Schnittler
,
D.
Seiffge
, and
C.
Mittermayer
, “
Induction of human vascular endothelial stress fibres by fluid shear stress
,”
Nature
307
, 648–649 (
1984
).
17.
M. M.
Thi
,
J. M.
Tarbell
,
S.
Weinbaum
, and
D. C.
Spray
, “
The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: A ‘‘bumper-car’’ model
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
16483
16488
(
2004
).
18.
G. E.
White
,
M. A.
Gimbrone
, JR
., and
K.
Fujiwara
, “
Factors influencing the expression of stress fibers in vascular endothelial cells In situ
,”
J. Cell Biol.
97
,
416
424
(
1983
).
19.
C. M.
Van Itallie
and
J. M.
Anderson
, “
Architecture of tight junctions and principles of molecular composition
,”
Semin. Cell Dev. Biol.
36
,
157
165
(
2014
).
20.
O.
Tornavaca
et al, “
ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation
,”
J. Cell Biol.
208
,
821
838
(
2015
).
21.
H.
Qosa
,
D. S.
Miller
,
P.
Pasinelli
, and
D.
Trotti
, “
Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders
,”
Brain Res.
1628
,
298
316
(
2015
).
22.
A.-C.
Luissint
,
C.
Artus
,
F.
Glacial
,
K.
Ganeshamoorthy
, and
P.-O.
Couraud
, “
Tight junctions at the blood brain barrier physiological architecture and disease-associated dysregulation
,”
Fluids Barriers CNS
9
,
23
(
2012
).
23.
H. C.
Bauer
,
I. A.
Krizbai
,
H.
Bauer
, and
A.
Traweger
, “
You shall not pass"-tight junctions of the blood brain barrier
,”
Front. Neurosci.
8
,
392
(
2014
).
24.
W. Y.
Liu
,
Z. B.
Wang
,
L. C.
Zhang
,
X.
Wei
, and
L.
Li
, “
Tight junction in blood-brain barrier: An overview of structure, regulation, and regulator substances
,”
CNS Neurosci. Ther.
18
,
609
615
(
2012
).
25.
L.
Gonzalez-Mariscal
,
A.
Betanzos
,
P.
Nava
, and
B. E.
Jaramillo
, “
Tight junction proteins
,”
Prog. Biophys. Mol. Biol.
81
,
1
44
(
2003
).
26.
C. H.
Lai
and
K. H.
Kuo
, “
The critical component to establish in vitro BBB model: Pericyte
,”
Brain Res. Rev.
50
,
258
265
(
2005
).
27.
K.
Yamamizu
et al, “
In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling
,”
Stem Cell Rep.
8
,
634
647
(
2017
).
28.
S.
Jackson
et al, “
The effect of regadenoson on the integrity of the human blood-brain barrier, a pilot study
,”
J. Neuro-Oncol.
132
,
513
519
(
2017
).
29.
L. L.
Rubin
,
D. E.
Hall
,
S.
Porter
,
K.
Barbu
,
C.
Cannon
,
H. C.
Homer
,
M.
Janatpour
,
C. W.
Liaw
,
K.
Manning
,
J.
Morales
,
L.
Tanner
,
K. J.
Tbmaselli
, and
F.
Bard
, “
A cell culture model of the blood-brain barrier
,”
J. Cell Biol.
115
,
1725
1735
(
1991
).
30.
A. J.
Carman
,
J. H.
Mills
,
A.
Krenz
,
D. G.
Kim
, and
M. S.
Bynoe
, “
Adenosine receptor signaling modulates permeability of the blood-brain barrier
,”
J. Neurosci.
31
,
13272
13280
(
2011
).
31.
J.
Lee
et al, “
A high throughput screening system for studying the effects of applied mechanical forces on reprogramming factor expression
,”
Sci. Rep.
10
,
15469
(
2020
).
32.
A. R.
Calabria
,
C.
Weidenfeller
,
A. R.
Jones
,
H. E.
de Vries
, and
E. V.
Shusta
, “
Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction
,”
J. Neurochem.
97
,
922
933
(
2006
).
33.
I. A.
Romero
et al, “
Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells
,”
Neurosci. Lett.
344
,
112
116
(
2003
).
34.
M. A.
Fleegal-DeMotta
,
S.
Doghu
, and
W. A.
Banks
, “
Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells
,”
J. Cereb. Blood Flow Metab.
29
,
640
647
(
2009
).
35.
O.
Tavassoly
,
T.
Sato
, and
I.
Tavassoly
, “
Inhibition of brain epidermal growth factor receptor activation: A novel target in neurodegenerative diseases and brain injuries
,”
Mol. Pharmacol.
98
,
13
22
(
2020
).
36.
M.
Yamamoto
et al, “
Phosphorylation of claudin-5 and occludin by rho kinase in brain endothelial cells
,”
Am. J. Pathol.
172
,
521
533
(
2008
).
37.
J. C.
Park
et al, “
Annexin A1 restores Abeta1-42 -induced blood-brain barrier disruption through the inhibition of RhoA-ROCK signaling pathway
,”
Aging Cell
16
,
149
161
(
2017
).
38.
A. Y.
Lai
and
J.
McLaurin
, “
Rho-associated protein kinases as therapeutic targets for both vascular and parenchymal pathologies in Alzheimer's disease
,”
J. Neurochem.
144
,
659
668
(
2018
).
39.
M. J.
Dorfel
and
O.
Huber
, “
A phosphorylation hotspot within the occludin C-terminal domain
,”
Ann. N. Y. Acad. Sci.
1257
,
38
44
(
2012
).
40.
A. M.
Stranahan
,
S.
Hao
,
A.
Dey
,
X.
Yu
, and
B.
Baban
, “
Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice
,”
J. Cereb. Blood Flow Metab.
36
,
2108
2121
(
2016
).
41.
G. S.
Zhang
et al, “
The gamma-secretase blocker DAPT reduces the permeability of the blood-brain barrier by decreasing the ubiquitination and degradation of occludin during permanent brain ischemia
,”
CNS Neurosci. Ther.
19
,
53
60
(
2013
).
42.
H. J.
Lin
et al, “
Gamma-secretase inhibitors attenuate neurotrauma and neurogenic acute lung injury in rats by rescuing the accumulation of hypertrophic microglia
,”
Cell. Physiol. Biochem.
44
,
1726
1740
(
2017
).
43.
S.
Demolli
et al, “
Shear stress-regulated miR-27b controls pericyte recruitment by repressing SEMA6A and SEMA6D
,”
Cardiovasc. Res.
113
,
681
691
(
2017
).
44.
J. L.
Williams
,
D.
Cartland
,
J. S.
Rudge
, and
S.
Egginton
, “
VEGF trap abolishes shear stress- and overload-dependent angiogenesis in skeletal muscle
,”
Microcirculation
13
,
499
509
(
2006
).
45.
A. I.
Casas
et al, “
Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke
,”
J. Clin. Invest.
129
,
1772
1778
(
2019
).
46.
Q.
Cui
,
Y.
Zhang
,
H.
Chen
, and
J.
Li
, “
Rho kinase: A new target for treatment of cerebral ischemia/reperfusion injury
,”
Neural Regen. Res.
8
,
1180
1189
(
2013
).
47.
C. L.
Gibson
,
K.
Srivastava
,
N.
Sprigg
,
P. M.
Bath
, and
U.
Bayraktutan
, “
Inhibition of rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions
,”
J. Neurochem.
129
,
816
826
(
2014
).
48.
T.
Murakami
,
T.
Frey
,
C.
Lin
, and
D. A.
Antonetti
, “
Protein kinase Cβ phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo
,”
Diabetes
61
,
1573
1583
(
2012
).
49.
B.
Shao
and
U.
Bayraktutan
, “
Hyperglycaemia promotes cerebral barrier dysfunction through activation of protein kinase C-beta
,”
Diabetes Obes. Metab.
15
,
993
999
(
2013
).
50.
Y. J.
Liao
et al, “
Oxidative damage in cerebral vessels of diabetic db/db mice
,”
Diabetes Metab. Res. Rev.
21
,
554
559
(
2005
).
51.
A.
Oddo
et al, “
Advances in microfluidic blood-brain barrier (BBB) models
,”
Trends Biotechnol.
37
,
1295
1314
(
2019
).
52.
M. W.
van der Helm
,
A. D.
van der Meer
,
J. C. T.
Eijkel
,
A.
van den Berg
, and
L. I.
Segerink
, “
Microfluidic organ-on-chip technology for blood-brain barrier research
,”
Tissue Barriers
4
,
e1142493
(
2016
).
53.
J. H.
Yeon
et al, “
Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures
,”
Biomed. Microdevices
14
,
1141
1148
(
2012
).
54.
H.
Xu
et al, “
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
,”
Sci. Rep.
6
,
36670
(
2016
).
55.
S.
Bang
et al, “
A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes
,”
Sci. Rep.
7
,
8083
(
2017
).
56.
M. A.
Kaisar
et al, “
New experimental models of the blood-brain barrier for CNS drug discovery
,”
Expert Opin. Drug Discov.
12
,
89
103
(
2017
).
57.
V.
Siddharthan
,
Y. V.
Kim
,
S.
Liu
, and
K. S.
Kim
, “
Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells
,”
Brain Res.
1147
,
39
50
(
2007
).
58.
B.
Prabhakarpandian
et al, “
SyM-BBB: A microfluidic blood brain barrier model
,”
Lab Chip
13
,
1093
1101
(
2013
).
59.
M. I.
Bogorad
,
J.
DeStefano
,
A. D.
Wong
, and
P. C.
Searson
, “
Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena
,”
Microcirculation
24
,
e12360
(
2017
).
60.
Y. I.
Wang
,
H. E.
Abaci
, and
M. L.
Shuler
, “
Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening
,”
Biotechnol. Bioeng.
114
,
184
194
(
2017
).
61.
L.
Jiang
,
S.
Li
,
J.
Zheng
,
Y.
Li
, and
H.
Huang
, “
Recent progress in microfluidic models of the blood-brain barrier
,”
Micromachines
10
,
375
(
2019
).
62.
S.
Bagchi
et al, “
In-vitro blood-brain barrier models for drug screening and permeation studies: An overview
,”
Drug Des. Devel. Ther.
13
,
3591
3605
(
2019
).
63.
J. D.
Wang
,
E. S.
Khafagy el
,
K.
Khanafer
,
S.
Takayama
, and
M. E. H.
ElSayed
, “
Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood-brain barrier
,”
Mol. Pharm.
13
,
895
906
(
2016
).
64.
J. J.
Jamieson
,
P. C.
Searson
, and
S.
Gerecht
, “
Engineering the human blood-brain barrier in vitro
,”
J. Biol. Eng.
11
,
37
(
2017
).
65.
F.
Sivandzade
and
L.
Cucullo
, “
In-vitro blood-brain barrier modeling: A review of modern and fast-advancing technologies
,”
J. Cereb. Blood Flow Metab.
38
,
1667
1681
(
2018
).
66.
L.
Cucullo
et al, “
Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs
,”
Epilepsia
48
,
505
516
(
2007
).
67.
L.
Cucullo
,
N.
Marchi
,
M.
Hossain
, and
D.
Janigro
, “
A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system
,”
J. Cereb. Blood Flow Metab.
31
,
767
777
(
2011
).
68.
L. M.
Griep
et al, “
BBB on chip: Microfluidic platform to mechanically and biochemically modulate blood-brain barrier function
,”
Biomed. Microdevices
15
,
145
150
(
2013
).
69.
T. B.
Terrell-Hall
,
A. G.
Ammer
,
J. I. G.
Griffith
, and
P. R.
Lockman
, “
Permeability across a novel microfluidic blood-tumor barrier model
,”
Fluids Barriers CNS
14
,
3
(
2017
).
70.
S.
Jackson
et al, “
Model systems for studying the blood-brain barrier: Applications and challenges
,”
Biomaterials
214
,
119217
(
2019
).
71.
A. K. H.
Achyuta
et al, “
A modular approach to create a neurovascular unit-on-a-chip
,”
Lab Chip
13
,
542
553
(
2013
).
72.
Y.
Koo
,
B. T.
Hawkins
, and
Y.
Yun
, “
Three-dimensional (3D) tetra-culture brain on chip platform for organophosphate toxicity screening
,”
Sci. Rep.
8
,
2841
(
2018
).
73.
R.
Booth
and
H.
Kim
, “
Characterization of a microfluidic in vitro model of the blood-brain barrier (muBBB)
,”
Lab Chip
12
,
1784
1792
(
2012
).
74.
D. T.
Phan
et al, “
Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface
,”
Exp. Biol. Med.
242
,
1669
1678
(
2017
).
75.
M.
Bonakdar
,
P. M.
Graybill
, and
R. V.
Davalos
, “
A microfluidic model of the blood-brain barrier to study permeabilization by pulsed electric fields
,”
RSC Adv.
7
,
42811
42818
(
2017
).
76.
M. S.
Collado
et al, “
Exposure of induced pluripotent stem cell-derived vascular endothelial and smooth muscle cells in coculture to hemodynamics induces primary vascular cell-like phenotypes
,”
Stem Cells Transl. Med.
6
,
1673
1683
(
2017
).
77.
R. E.
Feaver
et al, “
Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis
,”
JCI Insight
1
,
e90954
(
2016
).
78.
N. R.
Wevers
et al, “
A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport
,”
Fluids Barriers CNS
15
,
23
(
2018
).
79.
T.
Kurosawa
et al, “
Construction and functional evaluation of a three-dimensional blood-brain barrier model equipped with human induced pluripotent stem cell-derived brain microvascular endothelial cells
,”
Pharm. Res.
39
,
1535
1547
(
2022
).
80.
L.
de Haan
et al, “
A microfluidic 3D endothelium-on-a-chip model to study transendothelial migration of T cells in health and disease
,”
Int. J. Mol. Sci.
22
,
8234
(
2021
).
81.
C.
Poussin
et al, “
3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology
,”
ALTEX
37
,
47
63
(
2020
).
82.
S.
Fengler
et al, “
Human iPSC-derived brain endothelial microvessels in a multi-well format enable permeability screens of anti-inflammatory drugs
,”
Biomaterials
286
,
121525
(
2022
).
83.
M. T.
Rogers
et al, “
A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions
,”
Sci. Rep.
11
,
12225
(
2021
).
84.
K.
Tan
et al, “
Correction: A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions
,”
Lab Chip
20
,
3653
(
2020
).
85.
A. L.
Gard
et al, “
High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro
,”
Sci. Rep.
11
,
14961
(
2021
).
86.
E. M.
Shaughnessey
et al, “
Evaluation of rapid transepithelial electrical resistance (TEER) measurement as a metric of kidney toxicity in a high-throughput microfluidic culture system
,”
Sci. Rep.
12
,
13182
(
2022
).
87.
K.
Tan
et al, “
A high-throughput microfluidic microphysiological system (PREDICT-96) to recapitulate hepatocyte function in dynamic, re-circulating flow conditions
,”
Lab Chip
19
,
1556
1566
(
2019
).

Supplementary Material

You do not currently have access to this content.