Microfluidic devices, through their vast applicability as tools for miniaturized experimental setups, have become indispensable for cutting edge research and diagnostics. However, the high operational cost and the requirement of sophisticated equipment and clean room facility for the fabrication of these devices make their use unfeasible for many research laboratories in resource limited settings. Therefore, with the aim of increasing accessibility, in this article, we report a novel, cost-effective micro-fabrication technique for fabricating multi-layer microfluidic devices using only common wet-lab facilities, thereby significantly lowering the cost. Our proposed process-flow-design eliminates the need for a mastermold, does not require any sophisticated lithography tools, and can be executed successfully outside a clean room. In this work, we also optimized the critical steps (such as spin coating and wet etching) of our fabrication process and validated the process flow and the device by trapping and imaging Caenorhabditis elegans. The fabricated devices are effective in conducting lifetime assays and flushing out larvae, which are, in general, manually picked from Petri dishes or separated using sieves. Our technique is not only cost effective but also scalable, as it can be used to fabricate devices with multiple layers of confinements ranging from 0.6 to more than 50  μm, thus enabling the study of unicellular and multicellular organisms. This technique, therefore, has the potential to be adopted widely by many research laboratories for a variety of applications.

1.
L. Y.
Yeo
,
H. C.
Chang
,
P. P. Y.
Chan
, and
J. R.
Friend
, “
Microfluidic devices for bioapplications
,”
Small
7
(
1
),
12
48
(
2011
).
2.
T.
Tippo
,
C.
Thanachayanont
,
P.
Muthitamongkol
,
C.
Junin
,
M.
Hietschold
, and
A.
Thanachayanont
, “
The effects of solvents on the properties of ultra-thin poly (methyl methacrylate) films prepared by spin coating
,”
Thin Solid Films
546
,
180
184
(
2013
).
3.
V.
Mehta
and
S. N.
Rath
, “
3D printed microfluidic devices: A review focused on four fundamental manufacturing approaches and implications on the field of healthcare
,”
Bio-Des. Manuf.
4
(
2
),
311
343
(
2021
).
4.
S.
Araki
,
M.
Nakano
,
M.
Tsugane
,
F.
Sunaga
,
M.
Hattori
,
M.
Nakano
,
T.
Nagai
, and
H.
Suzuki
, “
A simple microfluidic device for live-imaging of the vertical section of epithelial cells
,”
Analyst
145
(
2
),
667
674
(
2020
).
5.
A.
Sontheimer-Phelps
,
B. A.
Hassell
, and
D. E.
Ingber
, “
Modelling cancer in microfluidic human organs-on-chips
,”
Nat. Rev. Cancer
19
(
2
),
65
81
(
2019
).
6.
C. E.
Stanley
,
G.
Grossmann
,
X.
Casadevall I Solvas
, and
A. J.
deMello
, “
Soil-on-a-chip: Microfluidic platforms for environmental organismal studies
,”
Lab Chip
16
,
228
241
(
2016
).
7.
P. M.
Mafla-Endara
,
C.
Arellano-Caicedo
,
K.
Aleklett
,
M.
Pucetaite
,
P.
Ohlsson
, and
E. C.
Hammer
, “
Microfluidic chips provide visual access to in situ soil ecology
,”
Commun. Biol.
4
(
1
),
889
(
2021
).
8.
K. M.
Schultz
and
E. M.
Furst
, “
High-throughput rheology in a microfluidic device
,”
Lab Chip
11
,
3802
3809
(
2011
).
9.
Y.
Xing
,
L.
Zhao
,
Z.
Cheng
,
C.
Lv
,
F.
Yu
, and
F.
Yu
, “
Microfluidics-based sensing of biospecies
,”
ACS Appl. Bio Mater.
4
(
3
),
2160
2191
(
2021
).
10.
J.
Yue
,
F. H.
Falke
,
J. C.
Schouten
, and
T.
Alexander Nijhuis
, “
Microreactors with integrated UV/Vis spectroscopic detection for online process analysis under segmented flow
,”
Lab Chip
13
,
4855
4863
(
2013
).
11.
P.
Kim
,
K. W.
Kwon
,
M. C.
Park
,
S. H.
Lee
,
S. M.
Kim
, and
K. Y.
Suh
, “
Soft lithography for microfluidics: A review
,”
BioChip J.
2
(
1
),
1
11
(
2008
).
12.
K.
Ren
,
Y.
Chen
, and
H.
Wu
, “
New materials for microfluidics in biology
,”
Curr. Opin. Biotechnol.
25
,
78
85
(
2014
).
13.
Y.
Fan
,
S.
Liu
, and
Y.
Zhang
, “
Direct bonding of polymer/glass-based microfluidic chips with dry film photoresist
,”
Microsyst. Technol.
24
(
3
),
1659
1665
(
2018
).
14.
A.
Mata
,
A. J.
Fleischman
, and
S.
Roy
, “
Fabrication of multi-layer SU-8 microstructures
,”
J. Micromech. Microeng.
16
(
2
),
276
284
(
2006
).
15.
R. T.
Kelly
,
A. M.
Sheen
, and
S.
Jambovane
, “
Multilayer microfluidic devices created from a single photomask
,”
RSC Adv.
3
,
20138
20142
(
2013
).
16.
X.
Li
,
Z. T. F.
Yu
,
D.
Geraldo
,
S.
Weng
,
N.
Alve
,
W.
Dun
,
A.
Kini
,
K.
Patel
,
R.
Shu
,
F.
Zhang
,
G.
Li
,
Q.
Jin
, and
J.
Fu
, “
Desktop aligner for fabrication of multilayer microfluidic devices
,”
Rev. Sci. Instrum.
86
(
7
),
075008
(
2015
).
17.
T.
Nguyen
,
T.
Sarkar
,
T.
Tran
,
S. M.
Moinuddin
,
D.
Saha
, and
F.
Ahsan
, “
Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment
,”
Micromachines
13
(
8
),
1357
(
2022
).
18.
V.
Guglielmotti
,
N.
Andrés Saffioti
,
A.
Laura Tohmé
,
M.
Gambarotta
,
G.
Corthey
, and
D.
Pallarola
, “
A portable and affordable aligner for the assembly of microfluidic devices
,”
HardwareX
12
,
e00348
(
2022
).
19.
M.
Altissimo
, “
E-beam lithography for micro-nanofabrication
,”
Biomicrofluidics
4
(
2
),
026503
(
2010
).
20.
C.
Iliescu
,
H.
Taylor
,
M.
Avram
,
J.
Miao
, and
S.
Franssila
, “
A practical guide for the fabrication of microfluidic devices using glass and silicon
,”
Biomicrofluidics
6
(
1
),
016505
(
2012
).
21.
P.
Dixit
and
K.
Henttinen
, “Via technologies for MEMS,” in Handbook of Silicon Based MEMS Materials and Technologies, Micro and Nano Technologies, 2nd ed., edited by M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, M. Paulasto-Kröckel, and V. Lindroos (William Andrew Publishing, Boston, MA, 2015), Chap. 38, pp. 694–712.
22.
P.
Abgrall
and
A.-M.
Gué
, “
Lab-on-chip technologies: Making a microfluidic network and coupling it into a complete microsystem—A review
,”
J. Micromech. Microeng.
17
(
5
),
R15
R49
(
2007
).
23.
I.
Rodriguez
,
P.
Spicar-Mihalic
,
C. L.
Kuyper
,
G. S.
Fiorini
, and
D. T.
Chiu
, “
Rapid prototyping of glass microchannels
,”
Anal. Chim. Acta
496
(
1–2
),
205
215
(
2003
).
24.
H.
Sharma
,
D.
Nguyen
,
A.
Chen
,
V.
Lew
, and
M.
Khine
, “
Unconventional low-cost fabrication and patterning techniques for point of care diagnostics
,”
Ann. Biomed. Eng.
39
(
4
),
1313
1327
(
2011
).
25.
S.
Prakash
and
S.
Kumar
, “
Fabrication of microchannels: A review
,”
Proc. Inst. Mech. Eng., Part B
229
(
8
),
1273
1288
(
2015
).
26.
H. T.
Nguyen
,
H.
Thach
,
E.
Roy
,
K.
Huynh
, and
C. M.
Tu Perrault
, “
Low-cost, accessible fabrication methods for microfluidics research in low-resource settings
,”
Micromachines
9
,
1
10
(
2018
).
27.
A.
Bahadorimehr
, and
B. Y.
Majlis
, “
Fabrication of glass-based microfluidic devices with photoresist as mask
,”
Inform. MIDEM
41
,
193
196
(
2011
).
28.
S. K.
Tiwari
,
S.
Bhat
, and
K. K.
Mahato
, “
Design and fabrication of low-cost microfluidic channel for biomedical application
,”
Sci. Rep.
10
,
1
14
(
2020
).
29.
L.
Zhang
,
W.
Wang
,
X. J.
Ju
,
R.
Xie
,
Z.
Liu
, and
L.
Yin Chu
, “
Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching
,”
RSC Adv.
5
(
8
),
5638
5646
(
2015
).
30.
S. I.
Funano
,
N.
Ota
, and
Y.
Tanaka
, “
A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery
,”
Lab Chip
21
(
11
),
2244
2254
(
2021
).
31.
A.-G.
Niculescu
,
C.
Chircov
,
A.
Cǎtǎlina Bîrcǎ
, and
A.
Mihai Grumezescu
, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
(
4
),
2011
(
2021
).
32.
G.
Gharib
,
İ.
Bütün
,
Z.
Muganlı
,
G.
Kozalak
,
İ.
Namlı
,
S. S.
Sarraf
,
V. E.
Ahmadi
,
E.
Toyran
,
A. J.
van Wijnen
, and
A.
Koşar
, “
Biomedical applications of microfluidic devices: A review
,”
Biosensors
12
(
11
),
1023
(
2022
).
33.
F.
Kotz
,
M.
Mader
,
N.
Dellen
,
P.
Risch
,
A.
Kick
,
D.
Helmer
, and
B. E.
Rapp
, “
Fused deposition modeling of microfluidic chips in polymethylmethacrylate
,”
Micromachines
11
(
9
),
873
(
2020
).
34.
B.
Carnero
,
C.
Bao-Varela
,
A. I.
Gómez-Varela
,
E.
Álvarez
, and
M. T.
Flores-Arias
, “
Microfluidic devices manufacturing with a stereolithographic printer for biological applications
,”
Mater. Sci. Eng. C
129
,
112388
(
2021
).
35.
Y.
Xu
,
F.
Qi
,
H.
Mao
,
S.
Li
,
Y.
Zhu
,
J.
Gong
,
L.
Wang
,
N.
Malmstadt
, and
Y.
Chen
, “
In-situ transfer vat photopolymerization for transparent microfluidic device fabrication
,”
Nat. Commun.
13
(
1
),
918
(
2022
).
36.
G.
van der Velden
,
D.
Fan
, and
U.
Staufer
, “
Fabrication of a microfluidic device by using two-photon lithography on a positive photoresist
,”
Micro Nano Eng.
7
,
100054
(
2020
).
37.
P.
Kim
,
S. E.
Lee
,
H. S.
Jung
,
H. Y.
Lee
,
T.
Kawai
, and
K. Y.
Suh
, “
Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels
,”
Lab Chip
6
(
1
),
54
59
(
2006
).
38.
A.
Khademhosseini
,
K. Y.
Suh
,
S.
Jon
,
G.
Eng
,
J.
Yeh
,
G.-J.
Chen
, and
R.
Langer
, “
A soft lithographic approach to fabricate patterned microfluidic channels
,”
Anal. Chem.
76
(
13
),
3675
3681
(
2004
).
39.
M.
Rahman
,
H.
Edwards
,
N.
Birze
,
R.
Gabrilska
,
K. P.
Rumbaugh
,
J.
Blawzdziewicz
, and
N. J.
Szewczyk
, “
NemaLife chip: A micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans
,”
Sci. Rep.
10
,
1
19
(
2020
).
40.
A.
Borók
,
K.
Laboda
, and
A.
Bonyár
, “
PDMS bonding technologies for microfluidic applications: A review
,”
Biosensors
11
,
292
(
2021
).
41.
T.
Stiernagle
, “Maintenance of C. elegans,” in
WormBook
(The C. elegans Research Community, WormBook, 2006), pp. 1551–1850.
42.
J.
Apfeld
, and
S.
Alper
, “
What can we learn about human disease from the nematode C. elegans?
,”
Methods Mol. Biol.
1706
,
53
75
(
2018
).
43.
COMSOL Multiphysics reference manual, version 5.4; see www.comsol.com.
44.
M.
Zhang
,
J.
Wu
,
L.
Wang
,
K.
Xiao
, and
W.
Wen
, “
A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips
,”
Lab Chip
10
(
9
),
1199
1203
(
2010
).
45.
S.
Zhang
,
F.
Li
,
T.
Zhou
,
G.
Wang
, and
Z.
Li
, “
Caenorhabditis elegans as a useful model for studying aging mutations
,”
Front. Endocrinol.
11
,
1
9
(
2020
).
46.
G. L.
Sutphin
, and
M.
Kaeberlein
, “
Measuring Caenorhabditis elegans life span on solid media
,”
J. Vis. Exp.
27
,
e1152
(
2009
).
47.
Y.-J.
You
,
J.
Kim
,
D. M.
Raizen
, and
L.
Avery
, “
Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: A model for satiety
,”
Cell Metab.
7
(
3
),
249
257
(
2008
).
48.
S.
Gandhi
,
J.
Santelli
,
D. H.
Mitchell
,
S. J.
Wesley
, and
D. R.
Sanadi
, “
A simple method for maintaining large, aging populations of Caenorhabditis elegans
,”
Mech. Ageing Dev.
12
(
2
),
137
150
(
1980
).
49.
Y.
Kato
,
M.
Miyaji
, and
Q.-M.
Zhang-Akiyama
, “
FUdR extends the lifespan of the short-lived AP endonuclease mutant in C. elegans in a fertility-dependent manner
,”
Genes Genet. Syst.
91
(
4
),
201
207
(
2016
).
50.
J. M.
Van Raamsdonk
and
S.
Hekimi
, “
FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1
,”
Mech. Ageing Dev.
132
(
10
),
519
521
(
2011
).

Supplementary Material

You do not currently have access to this content.