Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited—in part—by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.

1.
M. U.
Ahmed
,
I.
Saaem
,
P. C.
Wu
, and
A. S.
Brown
, “
Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine
,”
Crit. Rev. Biotechnol.
34
(
2
),
180
196
(
2014
).
2.
G. S.
Ginsburg
and
S. B.
Haga
, “
Translating genomic biomarkers into clinically useful diagnostics
,”
Expert Rev. Mol. Diagn.
6
(
2
),
179
191
(
2006
).
3.
A. A.
Alzu’bi
,
L.
Zhou
, and
V. J. M.
Watzlaf
, “
Genetic variations and precision medicine
,”
Perspect. Health Inf. Manag.
16
(
Spring
),
1a
(
2019
).
4.
J. D.
Ma
,
K. C.
Lee
, and
G. M.
Kuo
, “
Clinical application of pharmacogenomics
,”
J. Pharm. Pract.
25
(
4
),
417
427
(
2012
).
5.
R. B. R.
León-Cachón
,
J. A.
Ascacio-Martínez
, and
H. A.
Barrera-Saldaña
, “
Individual response to drug therapy: Bases and study approaches
,”
Rev. Invest. Clin.
64
(
4
),
364
376
(
2012
).
6.
N.
Limaye
, “
Pharmacogenomics, theranostics and personalized medicine—The complexities of clinical trials: Challenges in the developing world
,”
Appl. Transl. Genom.
2
,
17
21
(
2013
).
7.
Center for Drug Evaluation and Research, “Table of Pharmacogenomic Biomarkers in Drug Labeling,” FDA, (2022).
8.
S. B.
Haga
, “
Challenges of development and implementation of point of care pharmacogenetic testing
,”
Expert Rev. Mol. Diagn.
16
(
9
),
949
960
(
2016
).
9.
Center for Devices and Radiological Health, “Nucleic Acid Based Tests,” FDA, (2023).
10.
J. J.
Lim
,
J.
Goh
,
M. B. M. A.
Rashid
, and
E. K.
Chow
, “
Maximizing efficiency of artificial intelligence-driven drug combination optimization through minimal resolution experimental design
,”
Adv. Ther.
3
(
4
),
1900122
(
2020
).
11.
A.
Zarrinpar
,
D.-K.
Lee
,
A.
Silva
,
N.
Datta
,
T.
Kee
,
C.
Eriksen
,
K.
Weigle
,
V.
Agopian
,
F.
Kaldas
,
D.
Farmer
,
S. E.
Wang
,
R.
Busuttil
,
C.-M.
Ho
, and
D.
Ho
, “
Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform
,”
Sci. Transl. Med.
8
(
333
),
333ra49
(
2016
).
12.
D.
Ho
,
S. R.
Quake
,
E. R. B.
McCabe
,
W. J.
Chng
,
E. K.
Chow
,
X.
Ding
,
B. D.
Gelb
,
G. S.
Ginsburg
,
J.
Hassenstab
,
C.-M.
Ho
,
W. C.
Mobley
,
G. P.
Nolan
,
S. T.
Rosen
,
P.
Tan
,
Y.
Yen
, and
A.
Zarrinpar
, “
Enabling technologies for personalized and precision medicine
,”
Trends Biotechnol.
38
(
5
),
497
518
(
2020
).
13.
B. H.
Davis
,
G.
DeFrank
,
N. A.
Limdi
, and
S.
Harada
, “
Validation of the spartan RX CYP2C19 genotyping assay utilizing blood samples
,”
Clin. Transl. Sci.
13
(
2
),
260
264
(
2020
).
14.
J. D.
Roberts
,
G. A.
Wells
,
M. R.
Le May
,
M.
Labinaz
,
C.
Glover
,
M.
Froeschl
,
A.
Dick
,
J.-F.
Marquis
,
E.
O’Brien
,
S.
Goncalves
,
I.
Druce
,
A.
Stewart
,
M. H.
Gollob
, and
D. Y. F.
So
, “
Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): A prospective, randomised, proof-of-concept trial
,”
Lancet
379
(
9827
),
1705
1711
(
2012
).
15.
Y.
Zhou
,
A. R.
Armstead
,
G. M.
Coshatt
,
N. A.
Limdi
, and
S.
Harada
, “
Comparison of two point-of-care CYP2C19 genotyping assays for genotype-guided antiplatelet therapy
,”
Ann. Clin. Lab Sci.
47
(
6
),
738
743
(
2017
).
16.
Z. E.
Holcomb
,
E. L.
Tsalik
,
C. W.
Woods
, and
M. T.
McClain
, “
Host-based peripheral blood gene expression analysis for diagnosis of infectious diseases
,”
J. Clin. Microbiol.
55
(
2
),
360
368
(
2017
).
17.
F.
Chibon
, “
Cancer gene expression signatures—The rise and fall?
,”
Eur. J. Cancer
49
(
8
),
2000
2009
(
2013
).
18.
N.
Ravi
,
G.
Rizzi
,
S. E.
Chang
,
P.
Cheung
,
P. J.
Utz
, and
S. X.
Wang
, “
Quantification of cDNA on GMR biosensor array towards point-of-care gene expression analysis
,”
Biosens. Bioelectron.
130
,
338
343
(
2019
).
19.
N.
Ravi
,
S. E.
Chang
,
L. M.
Franco
,
S. C. S.
Nagamani
,
P.
Khatri
,
P. J.
Utz
, and
S. X.
Wang
, “
A GMR-based assay for quantification of the human response to influenza
,”
Biosens. Bioelectron.
205
,
114086
(
2022
).
20.
J.
Maertzdorf
,
G.
McEwen
,
J.
Weiner
,
S.
Tian
,
E.
Lader
,
U.
Schriek
,
H.
Mayanja-Kizza
,
M.
Ota
,
J.
Kenneth
, and
S. H.
Kaufmann
, “
Concise gene signature for point-of-care classification of tuberculosis
,”
EMBO Mol. Med.
8
(
2
),
86
95
(
2016
).
21.
M.
Andres-Terre
,
H. M.
McGuire
,
Y.
Pouliot
,
E.
Bongen
,
T. E.
Sweeney
,
C. M.
Tato
, and
P.
Khatri
, “
Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses
,”
Immunity
43
(
6
),
1199
1211
(
2015
).
22.
G. S.
Ginsburg
and
H. F.
Willard
, “
Genomic and personalized medicine: Foundations and applications
,”
Transl. Res.
154
(
6
),
277
287
(
2009
).
23.
S.
Gupta
,
K.
Chaudhary
,
R.
Kumar
,
A.
Gautam
,
J. S.
Nanda
,
S. K.
Dhanda
,
S. K.
Brahmachari
, and
G. P. S.
Raghava
, “
Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine
,”
Sci. Rep.
6
(
1
),
23857
(
2016
).
24.
H. F. M.
Kamel
and
H. S. A. B.
Al-Amodi
, “
Exploitation of gene expression and cancer biomarkers in paving the path to era of personalized medicine
,”
Genomics Proteomics Bioinf.
15
(
4
),
220
235
(
2017
).
25.
T. E.
Sweeney
,
H. R.
Wong
, and
P.
Khatri
, “
Robust classification of bacterial and viral infections via integrated host gene expression diagnostics
,”
Sci. Transl. Med.
8
(
346
),
346ra91
(
2016
).
26.
M. C.
Remmel
,
S. M.
Coyle
,
M. W.
Eshoo
,
T. E.
Sweeney
, and
D. C.
Rawling
, “
Diagnostic host gene expression analysis by quantitative reverse transcription loop-mediated isothermal amplification to discriminate between bacterial and viral infections
,”
Clin. Chem.
68
(
4
),
550
560
(
2022
).
27.
S. A.
Scott
, “
Clinical pharmacogenomics: Opportunities and challenges at point of care
,”
Clin. Pharmacol. Ther.
93
(
1
),
33
35
(
2013
).
28.
H.
Wang
,
J. A.
Miller
,
M.
Verghese
,
M.
Sibai
,
D.
Solis
,
K. O.
Mfuh
, and
B.
Jiang
, “
Multiplex SARS-CoV-2 genotyping reverse transcriptase PCR for population-level variant screening and epidemiologic surveillance
,”
J. Clin. Microbiol.
59
,
e0085921
(
2021
).
29.
A.
Hassibi
,
A.
Manickam
,
R.
Singh
,
S.
Bolouki
,
R.
Sinha
,
K. B.
Jirage
,
M. W.
McDermott
,
B.
Hassibi
,
H.
Vikalo
,
G.
Mazarei
,
L.
Pei
,
L.
Bousse
,
M.
Miller
,
M.
Heshami
,
M. P.
Savage
,
M. T.
Taylor
,
N.
Gamini
,
N.
Wood
,
P.
Mantina
,
P.
Grogan
,
P.
Kuimelis
,
P.
Savalia
,
S.
Conradson
,
Y.
Li
,
R. B.
Meyer
,
E.
Ku
,
J.
Ebert
,
B. A.
Pinsky
,
G.
Dolganov
,
T.
Van
,
K. A.
Johnson
,
P.
Naraghi-Arani
,
R. G.
Kuimelis
, and
G.
Schoolnik
, “
Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip
,”
Nat. Biotechnol.
36
(
8
),
738
745
(
2018
).
30.
Z.
Tsuchihashi
and
N. C.
Dracopoli
, “
Progress in high throughput SNP genotyping methods
,”
Pharmacogenomics J.
2
(
2
),
103
110
(
2002
).
31.
A.
Oehme
,
G.
Gaschler
, and
E.
Straube
, “
Genotyping of chlamydia trachomatis strains from cultured isolates and nucleic acid amplification test-positive specimens
,”
Int. J. Med. Microbiol.
293
(
2–3
),
225
228
(
2003
).
32.
S.
Kim
and
A.
Misra
, “
SNP genotyping: Technologies and biomedical applications
,”
Annu. Rev. Biomed. Eng.
9
(
1
),
289
320
(
2007
).
33.
H. D.
VanGuilder
,
K. E.
Vrana
, and
W. M.
Freeman
, “
Twenty-five years of quantitative PCR for gene expression analysis
,”
BioTechniques
44
(
5
),
619
626
(
2008
).
34.
J.
Huggett
,
C.
Green
, and
A.
Zumla
, “
Nucleic acid detection and quantification in the developing world
,”
Biochem. Soc. Trans.
37
(
2
),
419
423
(
2009
).
35.
J.
Kuang
,
X.
Yan
,
A. J.
Genders
,
C.
Granata
, and
D. J.
Bishop
, “
An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research
,”
PLoS One
13
(
5
),
e0196438
(
2018
).
36.
A.
Giulietti
,
L.
Overbergh
,
D.
Valckx
,
B.
Decallonne
,
R.
Bouillon
, and
C.
Mathieu
, “
An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression
,”
Methods
25
(
4
),
386
401
(
2001
).
37.
T.
Kang
,
J.
Lu
,
T.
Yu
,
Y.
Long
, and
G.
Liu
, “
Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example
,”
Biosens. Bioelectron.
206
,
114109
(
2022
).
38.
M. A.
Dineva
,
L.
Mahilum-Tapay
, and
H.
Lee
, “
Sample preparation: A challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings
,”
Analyst
132
(
12
),
1193
(
2007
).
39.
Y.
Xu
,
T.
Wang
,
Z.
Chen
,
L.
Jin
,
Z.
Wu
,
J.
Yan
,
X.
Zhao
,
L.
Cai
,
Y.
Deng
,
Y.
Guo
,
S.
Li
, and
N.
He
, “
The point-of-care-testing of nucleic acids by chip, cartridge and paper sensors
,”
Chin. Chem. Lett.
32
(
12
),
3675
3686
(
2021
).
40.
M.
Zarei
, “
Advances in point-of-care technologies for molecular diagnostics
,”
Biosens. Bioelectron.
98
,
494
506
(
2017
).
41.
J. R.
Choi
, “
Development of point-of-care biosensors for COVID-19
,”
Front. Chem.
8
,
517
(
2020
).
42.
S.
Scott
,
N.
Abul-Husn
,
A.
Owusu Obeng
,
S.
Sanderson
, and
O.
Gottesman
, “
Implementation and utilization of genetic testing in personalized medicine
,”
Pharmacogenomics Pers. Med.
2014
,
227
(
2014
).
43.
O.
Morozova
and
M. A.
Marra
, “
Applications of next-generation sequencing technologies in functional genomics
,”
Genomics
92
(
5
),
255
264
(
2008
).
44.
Z.
Liu
,
L.
Zhu
,
R.
Roberts
, and
W.
Tong
, “
Toward clinical implementation of next-generation sequencing-based genetic testing in rare diseases: Where are we?
,”
Trends Genet.
35
(
11
),
852
867
(
2019
).
45.
K.
Zhang
,
X.
Yang
,
G.
Lin
,
Y.
Han
, and
J.
Li
, “
Molecular genetic testing and diagnosis strategies for dystrophinopathies in the era of next generation sequencing
,”
Clin. Chim. Acta
491
,
66
73
(
2019
).
46.
M.
Wang
,
R.
Zhang
, and
J.
Li
, “
CRISPR/Cas systems redefine nucleic acid detection: Principles and methods
,”
Biosens. Bioelectron.
165
,
112430
(
2020
).
47.
G. M.
Blumenthal
,
E.
Mansfield
, and
R.
Pazdur
, “
Next-generation sequencing in oncology in the era of precision medicine
,”
JAMA Oncol.
2
(
1
),
13
(
2016
).
48.
E. L.
van Dijk
,
H.
Auger
,
Y.
Jaszczyszyn
, and
C.
Thermes
, “
Ten years of next-generation sequencing technology
,”
Trends Genet.
30
(
9
),
418
426
(
2014
).
49.
S. K.
Sia
and
L. J.
Kricka
, “
Microfluidics and point-of-care testing
,”
Lab Chip
8
(
12
),
1982
(
2008
).
50.
J. H.
McDermott
,
J.
Burn
,
D.
Donnai
, and
W. G.
Newman
, “
The rise of point-of-care genetics: How the SARS-CoV-2 pandemic will accelerate adoption of genetic testing in the acute setting
,”
Eur. J. Hum. Genet.
29
(
6
),
891
893
(
2021
).
51.
A.
Niemz
,
T. M.
Ferguson
, and
D. S.
Boyle
, “
Point-of-care nucleic acid testing for infectious diseases
,”
Trends Biotechnol.
29
(
5
),
240
250
(
2011
).
52.
H.
Chen
,
K.
Liu
,
Z.
Li
, and
P.
Wang
, “
Point of care testing for infectious diseases
,”
Clin. Chim. Acta
493
,
138
147
(
2019
).
53.
J. R.
Choi
,
R.
Tang
,
S.
Wang
,
W. A. B.
Wan Abas
,
B.
Pingguan-Murphy
, and
F.
Xu
, “
Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics
,”
Biosens. Bioelectron.
74
,
427
439
(
2015
).
54.
R.
Paul
,
E.
Ostermann
, and
Q.
Wei
, “
Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases
,”
Biosens. Bioelectron.
169
,
112592
(
2020
).
55.
S.
Goldberg
, in
2D PAGE Sample Preparation and Fractionation
, edited by
A.
Posch
(
Humana Press
,
Totowa, NJ
,
2008
), pp.
3
22
.
56.
N.
Ali
,
R. D. C. P.
Rampazzo
,
A. D. T.
Costa
, and
M. A.
Krieger
, “
Current nucleic acid extraction methods and their implications to point-of-care diagnostics
,”
BioMed Res. Int.
2017
,
1
13
(
2017
).
57.
A.
Ayoib
,
U.
Hashim
,
S. C. B.
Gopinath
, and
M. K.
Md Arshad
, “
DNA extraction on bio-chip: History and preeminence over conventional and solid-phase extraction methods
,”
Appl. Microbiol. Biotechnol.
101
(
22
),
8077
8088
(
2017
).
58.
S.
Petralia
and
S.
Conoci
, “
PCR technologies for point of care testing: Progress and perspectives
,”
ACS Sens.
2
(
7
),
876
891
(
2017
).
59.
R.
Tang
,
M.
Li
,
X.
Yan
,
M.
Xie
,
L. N.
Liu
,
Z.
Li
, and
F.
Xu
, “
Comparison of paper-based nucleic acid extraction materials for point-of-care testing applications
,”
Cellulose
29
,
2479
2495
(
2022
).
60.
R.
Tang
,
H.
Yang
,
J. R.
Choi
,
Y.
Gong
,
J.
Hu
,
T.
Wen
,
X.
Li
,
B.
Xu
,
Q.
Mei
, and
F.
Xu
, “
Paper-based device with on-chip reagent storage for rapid extraction of DNA from biological samples
,”
Microchim. Acta
184
(
7
),
2141
2150
(
2017
).
61.
Y.
Fu
,
X.
Zhou
, and
D.
Xing
, “
Integrated paper-based detection chip with nucleic acid extraction and amplification for automatic and sensitive pathogen detection
,”
Sens. Actuators B
261
,
288
296
(
2018
).
62.
J.
Kang
,
C.
Park
,
J.
Lee
,
J.
Namkung
,
S. Y.
Hwang
, and
Y. S.
Kim
, “
Automated nucleic acids purification from fecal samples on a microfluidic cartridge
,”
BioChip J.
11
(
1
),
76
84
(
2017
).
63.
See http://www.lucigen.com/QuickExtract-DNA-Extraction-Solution/ for “QuickExtract DNA extraction solution” (last accessed March 17, 2022).
64.
G. I.
Lopez-Lopes
,
R.
de Cassia Compagnoli Carmona
,
V. O.
Silva
,
C. M.
Ahagon
,
L. S.
do Prado
,
F. P.
dos Santos
,
D. B. B.
da Silva
,
K. C.
de Oliveira Santos
,
M. A.
Benega
,
W. N.
Ribeiro
,
A.
Cilli
,
E. M.
Matsuda
,
A. M.
Sardinha Afonso
,
M. d. C.
Sampaio Tavares Timenetsky
, and
L. F.
de Macedo Brígido
, SARS-CoV-2 RNA Detection Using Pooling of Self-Collected Samples: Simple Protocol May Foster Asymptomatic Surveillance [Infectious Diseases (except HIV/AIDS), 2020].
65.
L. T.
Nguyen
,
S. R.
Rananaware
,
B. L. M.
Pizzano
,
B. T.
Stone
, and
P. K.
Jain
, “
Clinical validation of engineered CRISPR/Cas12a for rapid SARS-CoV-2 detection
,”
Commun. Med.
2
(
1
),
7
(
2022
).
66.
A. S.
de Olazarra
,
D. L.
Cortade
, and
S. X.
Wang
, “
From saliva to SNP: Non-invasive, point-of-care genotyping for precision medicine applications using recombinase polymerase amplification and giant magnetoresistive nanosensors
,”
Lab Chip
22
(
11
),
2131
2144
(
2022
).
67.
F.
Cui
,
M.
Rhee
,
A.
Singh
, and
A.
Tripathi
, “
Microfluidic sample preparation for medical diagnostics
,”
Annu. Rev. Biomed. Eng.
17
(
1
),
267
286
(
2015
).
68.
J.
Park
,
D. H.
Han
, and
J.-K.
Park
, “
Towards practical sample preparation in point-of-care testing: User-friendly microfluidic devices
,”
Lab Chip
20
(
7
),
1191
1203
(
2020
).
69.
S.
Raja
,
J.
Ching
,
L.
Xi
,
S. J.
Hughes
,
R.
Chang
,
W.
Wong
,
W.
McMillan
,
W. E.
Gooding
,
K. S.
McCarty
,
M.
Chestney
,
J. D.
Luketich
, and
T. E.
Godfrey
, “
Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing
,”
Clin. Chem.
51
(
5
),
882
890
(
2005
).
70.
J.
Zhang
,
X.
Su
,
J.
Xu
,
J.
Wang
,
J.
Zeng
,
C.
Li
,
W.
Chen
,
T.
Li
,
X.
Min
,
D.
Zhang
,
S.
Zhang
,
S.
Ge
,
J.
Zhang
, and
N.
Xia
, “
A point of care platform based on microfluidic chip for nucleic acid extraction in less than 1 minute
,”
Biomicrofluidics
13
(
3
),
034102
(
2019
).
71.
H.
Yang
,
Z.
Chen
,
X.
Cao
,
Z.
Li
,
S.
Stavrakis
,
J.
Choo
,
A. J.
deMello
,
P. D.
Howes
, and
N.
He
, “
A sample-in-digital-answer-out system for rapid detection and quantitation of infectious pathogens in bodily fluids
,”
Anal. Bioanal. Chem.
410
(
27
),
7019
7030
(
2018
).
72.
J.
Yin
,
Y.
Suo
,
Z.
Zou
,
J.
Sun
,
S.
Zhang
,
B.
Wang
,
Y.
Xu
,
D.
Darland
,
J. X.
Zhao
, and
Y.
Mu
, “
Integrated microfluidic systems with sample preparation and nucleic acid amplification
,”
Lab Chip
19
(
17
),
2769
2785
(
2019
).
73.
M. L.
Cunha
,
S. S.
da Silva
,
M. C.
Stracke
,
D. L.
Zanette
,
M. N.
Aoki
, and
L.
Blanes
, “
Sample preparation for lab-on-a-chip systems in molecular diagnosis: A review
,”
Anal. Chem.
94
(
1
),
41
58
(
2022
).
74.
S.
Kim
,
J.
De Jonghe
,
A. B.
Kulesa
,
D.
Feldman
,
T.
Vatanen
,
R. P.
Bhattacharyya
,
B.
Berdy
,
J.
Gomez
,
J.
Nolan
,
S.
Epstein
, and
P. C.
Blainey
, “
High-throughput automated microfluidic sample preparation for accurate microbial genomics
,”
Nat. Commun.
8
(
1
),
13919
(
2017
).
75.
P.
Coupland
, “
Microfluidics for the upstream pipeline of DNA sequencing—A worthy application?
,”
Lab Chip
10
(
5
),
544
547
(
2010
).
76.
H.
Kim
,
M. S.
Bartsch
,
R. F.
Renzi
,
J.
He
,
J. L.
Van de Vreugde
,
M. R.
Claudnic
, and
K. D.
Patel
, “
Automated digital microfluidic sample preparation for next-generation DNA sequencing
,”
J. Assoc. Lab. Autom.
16
(
6
),
405
414
(
2011
).
77.
B.
Coelho
,
B.
Veigas
,
E.
Fortunato
,
R.
Martins
,
H.
Águas
,
R.
Igreja
, and
P.
Baptista
, “
Digital microfluidics for nucleic acid amplification
,”
Sensors
17
(
7
),
1495
(
2017
).
78.
S. R.
Jangam
,
D. H.
Yamada
,
S. M.
McFall
, and
D. M.
Kelso
, “
Rapid, point-of-care extraction of human immunodeficiency virus type 1 proviral DNA from whole blood for detection by real-time PCR
,”
J. Clin. Microbiol.
47
(
8
),
2363
2368
(
2009
).
79.
S. A.
Byrnes
,
J. D.
Bishop
,
L.
Lafleur
,
J. R.
Buser
,
B.
Lutz
, and
P.
Yager
, “
One-step purification and concentration of DNA in porous membranes for point-of-care applications
,”
Lab Chip
15
(
12
),
2647
2659
(
2015
).
80.
N. M.
Rodriguez
,
J. C.
Linnes
,
A.
Fan
,
C. K.
Ellenson
,
N. R.
Pollock
, and
C. M.
Klapperich
, “
Paper-based RNA extraction, in situ isothermal amplification, and lateral flow detection for low-cost, rapid diagnosis of influenza A (H1N1) from clinical specimens
,”
Anal. Chem.
87
(
15
),
7872
7879
(
2015
).
81.
J. T.
Connelly
,
J. P.
Rolland
, and
G. M.
Whitesides
, “
‘Paper machine’ for molecular diagnostics
,”
Anal. Chem.
87
(
15
),
7595
7601
(
2015
).
82.
S.-M.
Wang
,
S.-Y.
Hu
,
W.
Chen
,
F.
Chen
,
F.-H.
Zhao
,
W.
He
,
X.-M.
Ma
,
Y.-Q.
Zhang
,
J.
Wang
,
P.
Sivasubramaniam
, and
Y.-L.
Qiao
, “
Feasibility and accuracy evaluation of three human papillomavirus assays for FTA card-based sampling: A pilot study in cervical cancer screening
,”
BMC Cancer
15
,
848
(
2015
).
83.
J.
Choi
, “
Portable GMR biosensor platform with smartphone interface
,”
Doctoral dissertation
(
Stanford University
,
2015
).
84.
K. T. L.
Trinh
,
R. A.
Stabler
, and
N. Y.
Lee
, “
Fabrication of a foldable all-in-one point-of-care molecular diagnostic microdevice for the facile identification of multiple pathogens
,”
Sens. Actuators B
314
,
128057
(
2020
).
85.
K. T. L.
Trinh
,
T. N. D.
Trinh
, and
N. Y.
Lee
, “
Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens
,”
Biosens. Bioelectron.
135
,
120
128
(
2019
).
86.
R. H.
Tang
,
L. N.
Liu
,
S. F.
Zhang
,
X. C.
He
,
X. J.
Li
,
F.
Xu
,
Y. H.
Ni
, and
F.
Li
, “
A review on advances in methods for modification of paper supports for use in point-of-care testing
,”
Microchim. Acta
186
(
8
),
521
(
2019
).
87.
A. V.
Govindarajan
,
S.
Ramachandran
,
G. D.
Vigil
,
P.
Yager
, and
K. F.
Böhringer
, “
A low cost point-of-care viscous sample preparation device for molecular diagnosis in the developing world; an example of microfluidic origami
,”
Lab Chip
12
(
1
),
174
181
(
2012
).
88.
K.
Jones
, in
Lateral Flow Immunoassay
, edited by
R.
Wong
and
H.
Tse
(
Humana Press
,
Totowa, NJ
,
2009
), pp.
1
15
.
89.
J. R.
Choi
,
K. W.
Yong
,
R.
Tang
,
Y.
Gong
,
T.
Wen
,
F.
Li
,
B.
Pingguan-Murphy
,
D.
Bai
, and
F.
Xu
, “
Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing
,”
Trends Anal. Chem.
93
,
37
50
(
2017
).
90.
W.
Gan
,
B.
Zhuang
,
P.
Zhang
,
J.
Han
,
C.-X.
Li
, and
P.
Liu
, “
A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types
,”
Lab Chip
14
(
19
),
3719
3728
(
2014
).
91.
L.
Magro
,
C.
Escadafal
,
P.
Garneret
,
B.
Jacquelin
,
A.
Kwasiborski
,
J.-C.
Manuguerra
,
F.
Monti
,
A.
Sakuntabhai
,
J.
Vanhomwegen
,
P.
Lafaye
, and
P.
Tabeling
, “
Paper microfluidics for nucleic acid amplification testing (NAAT) of infectious diseases
,”
Lab Chip
17
(
14
),
2347
2371
(
2017
).
92.
K. A.
Hagan
,
C. R.
Reedy
,
M. L.
Uchimoto
,
D.
Basu
,
D. A.
Engel
, and
J. P.
Landers
, “
An integrated, valveless system for microfluidic purification and reverse transcription-PCR amplification of RNA for detection of infectious agents
,”
Lab Chip
11
(
5
),
957
961
(
2011
).
93.
N. Y.
Lee
, “
A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices
,”
Microchim. Acta
185
(
6
),
285
(
2018
).
94.
C. D.
Ahrberg
,
A.
Manz
, and
B. G.
Chung
, “
Polymerase chain reaction in microfluidic devices
,”
Lab Chip
16
(
20
),
3866
3884
(
2016
).
95.
M. B.
Kulkarni
and
S.
Goel
, “
Advances in continuous-flow based microfluidic PCR devices—A review
,”
Eng. Res. Express
2
(
4
),
042001
(
2020
).
96.
S.
Li
,
D. Y.
Fozdar
,
M. F.
Ali
,
H.
Li
,
D.
Shao
,
D. M.
Vykoukal
,
J.
Vykoukal
,
P. N.
Floriano
,
M.
Olsen
,
J. T.
McDevitt
,
P. R. C.
Gascoyne
, and
S.
Chen
, “
A continuous-flow polymerase chain reaction microchip with regional velocity control
,”
J. Microelectromech. Syst.
15
(
1
),
223
236
(
2006
).
97.
J.
Wang
,
J.
Wang
,
L.
Feng
, and
T.
Lin
, “
Fluid mixing in droplet-based microfluidics with a serpentine microchannel
,”
RSC Adv.
5
(
126
),
104138
104144
(
2015
).
98.
S. S.
Kuntaegowdanahalli
,
A. A. S.
Bhagat
,
G.
Kumar
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle separation in spiral microchannels
,”
Lab Chip
9
(
20
),
2973
(
2009
).
99.
C.
Zhang
,
J.
Xu
,
J.
Wang
, and
H.
Wang
, “
Continuous-flow polymerase chain reaction microfluidics by using spiral capillary channel embedded on copper
,”
Anal. Lett.
40
(
3
),
497
511
(
2007
).
100.
V. L.
Kopparthy
and
N. D.
Crews
, “
A versatile oscillating-flow microfluidic PCR system utilizing a thermal gradient for nucleic acid analysis
,”
Biotechnol. Bioeng.
117
(
5
),
1525
1532
(
2020
).
101.
W.
Wang
,
Z.-X.
Li
,
R.
Luo
,
S.-H.
,
A.-D.
Xu
, and
Y.-J.
Yang
, “
Droplet-based micro oscillating-flow PCR chip
,”
J. Micromech. Microeng.
15
(
8
),
1369
1377
(
2005
).
102.
J.
Tan
,
J. H.
Xu
,
S. W.
Li
, and
G. S.
Luo
, “
Drop dispenser in a cross-junction microfluidic device: Scaling and mechanism of break-up
,”
Chem. Eng. J.
136
(
2–3
),
306
311
(
2008
).
103.
J. H.
Xu
,
S. W.
Li
,
J.
Tan
,
Y. J.
Wang
, and
G. S.
Luo
, “
Preparation of highly monodisperse droplet in a T-junction microfluidic device
,”
AIChE J.
52
(
9
),
3005
3010
(
2006
).
104.
J.
Zhang
,
M.
Li
,
W. H.
Li
, and
G.
Alici
, “
Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows
,”
J. Micromech. Microeng.
23
(
8
),
085023
(
2013
).
105.
O.
Strohmeier
,
N.
Marquart
,
D.
Mark
,
G.
Roth
,
R.
Zengerle
, and
F.
von Stetten
, “
Real-time PCR based detection of a panel of food-borne pathogens on a centrifugal microfluidic ‘LabDisk’ with on-disk quality controls and standards for quantification
,”
Anal. Methods
6
(
7
),
2038
(
2014
).
106.
S.
Smith
,
D.
Mager
,
A.
Perebikovsky
,
E.
Shamloo
,
D.
Kinahan
,
R.
Mishra
,
S.
Torres Delgado
,
H.
Kido
,
S.
Saha
,
J.
Ducrée
,
M.
Madou
,
K.
Land
, and
J.
Korvink
, “
CD-based microfluidics for primary care in extreme point-of-care settings
,”
Micromachines
7
(
2
),
22
(
2016
).
107.
J.
Ducrée
,
S.
Haeberle
,
S.
Lutz
,
S.
Pausch
,
F.
von Stetten
, and
R.
Zengerle
, “
The centrifugal microfluidic bio-disk platform
,”
J. Micromech. Microeng.
17
(
7
),
S103
S115
(
2007
).
108.
D.
Khodakov
,
J.
Li
,
J. X.
Zhang
, and
D. Y.
Zhang
, “
Highly multiplexed rapid DNA detection with single-nucleotide specificity via convective PCR in a portable device
,”
Nat. Biomed. Eng.
5
(
7
),
702
712
(
2021
).
109.
F.
Ahmad
and
S. A.
Hashsham
, “
Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: A review
,”
Anal. Chim. Acta
733
,
1
15
(
2012
).
110.
P.
Neuzil
, “
Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes
,”
Nucleic Acids Res.
34
(
11
),
e77
(
2006
).
111.
M. A.
Northrup
,
C.
Gonzalez
,
D.
Hadley
,
R. F.
Hills
,
P.
Landre
,
S.
Lehew
,
R.
Saw
,
J. J.
Sninsky
, and
R.
Watson
, in
Proceedings of the International Solid-State Sensors and Actuators Conference—TRANSDUCERS ’95
(
IEEE
,
Stockholm
,
1995
), pp.
764
767
.
112.
S. H.
Lee
,
S.-W.
Kim
,
J. Y.
Kang
, and
C. H.
Ahn
, “
A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics
,”
Lab Chip
8
(
12
),
2121
(
2008
).
113.
C.
Zhang
,
J.
Xu
,
W.
Ma
, and
W.
Zheng
, “
PCR microfluidic devices for DNA amplification
,”
Biotechnol. Adv.
24
(
3
),
243
284
(
2006
).
114.
G. A.
Obande
and
K. K.
Banga Singh
, “
Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections
,”
Infect. Drug Resist.
13
,
455
483
(
2020
).
115.
P.
Craw
and
W.
Balachandran
, “
Isothermal nucleic acid amplification technologies for point-of-care diagnostics: A critical review
,”
Lab Chip
12
(
14
),
2469
(
2012
).
116.
C.-C.
Chang
,
C.-C.
Chen
,
S.-C.
Wei
,
H.-H.
Lu
,
Y.-H.
Liang
, and
C.-W.
Lin
, “
Diagnostic devices for isothermal nucleic acid amplification
,”
Sensors
12
(
6
),
8319
8337
(
2012
).
117.
P.
Gill
and
A.
Ghaemi
, “
“Nucleic acid isothermal amplification technologies—A review,” nucleosides
,”
Nucleosides Nucleotides Nucleic Acids
27
(
3
),
224
243
(
2008
).
118.
K.
Loens
,
T.
Beck
,
D.
Ursi
,
M.
Overdijk
,
P.
Sillekens
,
H.
Goossens
, and
M.
Ieven
, “
Evaluation of different nucleic acid amplification techniques for the detection of M. pneumoniae, C. pneumoniae and Legionella spp. in respiratory specimens from patients with community-acquired pneumonia
,”
J. Microbiol. Methods
73
(
3
),
257
262
(
2008
).
119.
K. A.
Curtis
,
D. L.
Rudolph
, and
S. M.
Owen
, “
Rapid detection of HIV-1 by reverse-transcription, loop-mediated isothermal amplification (RT-LAMP)
,”
J. Virol. Methods
151
(
2
),
264
270
(
2008
).
120.
A.
Ganguli
,
A.
Mostafa
,
J.
Berger
,
M. Y.
Aydin
,
F.
Sun
,
S. A. S. D.
Ramirez
,
E.
Valera
,
B. T.
Cunningham
,
W. P.
King
, and
R.
Bashir
, “
Rapid isothermal amplification and portable detection system for SARS-CoV-2
,”
Proc. Natl. Acad. Sci. U.S.A.
117
(
37
),
22727
22735
(
2020
).
121.
G.
Choi
,
T.
Prince
,
J.
Miao
,
L.
Cui
, and
W.
Guan
, “
Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening
,”
Biosens. Bioelectron.
115
,
83
90
(
2018
).
122.
F. B.
Myers
,
R. H.
Henrikson
,
L.
Xu
, and
L. P.
Lee
, in
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEEE
,
Boston, MA
,
2011
), pp.
3668
3671
.
123.
E. S.
Yamanaka
,
L. A.
Tortajada-Genaro
,
N.
Pastor
, and
Á
Maquieira
, “
Polymorphism genotyping based on loop-mediated isothermal amplification and smartphone detection
,”
Biosens. Bioelectron.
109
,
177
183
(
2018
).
124.
P.
Gill
and
A.
Hadian Amree
, “
AS-LAMP: A new and alternative method for genotyping
,”
Avicenna J. Med. Biotechnol.
12
(
1
),
2
8
(
2020
).
125.
S.
Kersting
,
V.
Rausch
,
F. F.
Bier
, and
M.
von Nickisch-Rosenegk
, “
Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens
,”
Microchim. Acta
181
(
13–14
),
1715
1723
(
2014
).
126.
J.
Chen
,
Y.
Xu
,
H.
Yan
,
Y.
Zhu
,
L.
Wang
,
Y.
Zhang
,
Y.
Lu
, and
W.
Xing
, “
Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification
,”
Lab Chip
18
(
16
),
2441
2452
(
2018
).
127.
D.
Cherkaoui
,
D.
Huang
,
B. S.
Miller
,
V.
Turbé
, and
R. A.
McKendry
, “
Harnessing recombinase polymerase amplification for rapid multi-gene detection of SARS-CoV-2 in resource-limited settings
,”
Biosens. Bioelectron.
189
,
113328
(
2021
).
128.
N.
Singpanomchai
,
Y.
Akeda
,
K.
Tomono
,
A.
Tamaru
,
P.
Santanirand
, and
P.
Ratthawongjirakul
, “
Rapid detection of multidrug-resistant tuberculosis based on allele-specific recombinase polymerase amplification and colorimetric detection
,”
PLoS One
16
(
6
),
e0253235
(
2021
).
129.
B.
Ma
,
J.
Fang
,
W.
Lin
,
X.
Yu
,
C.
Sun
, and
M.
Zhang
, “
A simple and efficient method for potential point-of-care diagnosis of human papillomavirus genotypes: Combination of isothermal recombinase polymerase amplification with lateral flow dipstick and reverse dot blot
,”
Anal. Bioanal. Chem.
411
(
28
),
7451
7460
(
2019
).
130.
M.
Ortiz
,
M.
Jauset-Rubio
,
D.
Kodr
,
A.
Simonova
,
M.
Hocek
, and
C. K.
O’Sullivan
, “
Solid-phase recombinase polymerase amplification using ferrocene-labelled dNTPs for electrochemical detection of single nucleotide polymorphisms
,”
Biosens. Bioelectron.
198
,
113825
(
2022
).
131.
W.
Chantratita
,
W.
Pongtanapisit
,
W.
Piroj
,
C.
Srichunrasmi
, and
S.
Seesuai
, “
Development and comparison of the real-time amplification based methods—NASBA-Beacon, RT-PCR Taqman and RT-PCR hybridization probe assays—for the qualitative detection of SARS coronavirus
,”
Southeast Asian J. Trop. Med. Public Health
35
(
3
),
623
629
(
2004
).
132.
M.
Damen
,
P.
Sillekens
,
H. T. M.
Cuypers
,
I.
Frantzen
, and
R.
Melsert
, “
Characterization of the quantitative HCV NASBA assay
,”
J. Virol. Methods
82
(
1
),
45
54
(
1999
).
133.
C.
Berard
,
M.-A.
Cazalis
,
P.
Leissner
, and
B.
Mougin
, “
DNA nucleic acid sequence-based amplification-based genotyping for polymorphism analysis
,”
BioTechniques
37
(
4
),
680
686
(
2004
).
134.
N.
Kaur
and
B. J.
Toley
, “
Paper-based nucleic acid amplification tests for point-of-care diagnostics
,”
Analyst
143
(
10
),
2213
2234
(
2018
).
135.
W.
Wu
,
S.
Zhao
,
Y.
Mao
,
Z.
Fang
,
X.
Lu
, and
L.
Zeng
, “
A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification
,”
Anal. Chim. Acta
861
,
62
68
(
2015
).
136.
J. H.
Park
,
H.
Jang
,
Y. K.
Jung
,
Y. L.
Jung
,
I.
Shin
,
D.-Y.
Cho
, and
H. G.
Park
, “
A mass spectrometry-based multiplex SNP genotyping by utilizing allele-specific ligation and strand displacement amplification
,”
Biosens. Bioelectron.
91
,
122
127
(
2017
).
137.
D.
Andresen
,
M.
von Nickisch-Rosenegk
, and
F. F.
Bier
, “
Helicase dependent on chip-amplification and its use in multiplex pathogen detection
,”
Clin. Chim. Acta
403
(
1–2
),
244
248
(
2009
).
138.
A.
Sedighi
,
C.
Oberc
,
V.
Whitehall
, and
P. C. H.
Li
, “
NanoHDA: A nanoparticle-assisted isothermal amplification technique for genotyping assays
,”
Nano Res.
10
(
1
),
12
21
(
2017
).
139.
Y.
Li
,
S. A.
Jortani
,
B.
Ramey-Hartung
,
E.
Hudson
,
B.
Lemieux
, and
H.
Kong
, “
Genotyping three SNPs affecting warfarin drug response by isothermal real-time HDA assays
,”
Clin. Chim. Acta
412
(
1–2
),
79
85
(
2011
).
140.
J.
Song
,
M. G.
Mauk
,
B. A.
Hackett
,
S.
Cherry
,
H. H.
Bau
, and
C.
Liu
, “
Instrument-free point-of-care molecular detection of Zika virus
,”
Anal. Chem.
88
(
14
),
7289
7294
(
2016
).
141.
W.
Zhou
,
J.
Su
,
Y.
Chai
,
R.
Yuan
, and
Y.
Xiang
, “
Naked eye detection of trace cancer biomarkers based on biobarcode and enzyme-assisted DNA recycling hybrid amplifications
,”
Biosens. Bioelectron.
53
,
494
498
(
2014
).
142.
T. J.
Moehling
,
G.
Choi
,
L. C.
Dugan
,
M.
Salit
, and
R. J.
Meagher
, “
LAMP diagnostics at the point-of-care: Emerging trends and perspectives for the developer community
,”
Expert Rev. Mol. Diagn.
21
(
1
),
43
61
(
2021
).
143.
T.
Notomi
,
Y.
Mori
,
N.
Tomita
, and
H.
Kanda
, “
Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects
,”
J. Microbiol.
53
(
1
),
1
5
(
2015
).
144.
Z.
Ali
,
R.
Aman
,
A.
Mahas
,
G. S.
Rao
,
M.
Tehseen
,
T.
Marsic
,
R.
Salunke
,
A. K.
Subudhi
,
S. M.
Hala
,
S. M.
Hamdan
,
A.
Pain
,
F. S.
Alofi
,
A.
Alsomali
,
A. M.
Hashem
,
A.
Khogeer
,
N. A. M.
Almontashiri
,
M.
Abedalthagafi
,
N.
Hassan
, and
M. M.
Mahfouz
, “
iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2
,”
Virus Res.
288
,
198129
(
2020
).
145.
M.
Chaouch
, “
Loop-mediated isothermal amplification (LAMP): An effective molecular point-of-care technique for the rapid diagnosis of coronavirus SARS-CoV-2
,”
Rev. Med. Virol.
31
(
6
),
e2215
(
2021
).
146.
R.
Augustine
,
A.
Hasan
,
S.
Das
,
R.
Ahmed
,
Y.
Mori
,
T.
Notomi
,
B.
Kevadiya
, and
A.
Thakor
, “
Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic
,”
Biology
9
(
8
),
182
(
2020
).
147.
M.
Varona
and
J. L.
Anderson
, “
Advances in mutation detection using loop-mediated isothermal amplification
,”
ACS Omega
6
(
5
),
3463
3469
(
2021
).
148.
K.
Mavridis
,
N.
Wipf
,
S.
Medves
,
I.
Erquiaga
,
P.
Müller
, and
J.
Vontas
, “
Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector Anopheles gambiae
,”
Parasites Vectors
12
(
1
),
9
(
2019
).
149.
S.-C.
Liao
,
J.
Peng
,
M. G.
Mauk
,
S.
Awasthi
,
J.
Song
,
H.
Friedman
,
H. H.
Bau
, and
C.
Liu
, “
Smart cup: A minimally-instrumented, smartphone-based point-of-care molecular diagnostic device
,”
Sens. Actuators B
229
,
232
238
(
2016
).
150.
I. M.
Lobato
and
C. K.
O’Sullivan
, “
Recombinase polymerase amplification: Basics, applications and recent advances
,”
Trends Anal. Chem.
98
,
19
35
(
2018
).
151.
O.
Piepenburg
,
C. H.
Williams
,
D. L.
Stemple
, and
N. A.
Armes
, “
DNA detection using recombination proteins
,”
PLoS Biol.
4
(
7
),
e204
(
2006
).
152.
J.
Li
,
J.
Macdonald
, and
F.
von Stetten
, “
Review: A comprehensive summary of a decade development of the recombinase polymerase amplification
,”
Analyst
144
(
1
),
31
67
(
2019
).
153.
R.
Aman
,
T.
Marsic
,
G.
Sivakrishna Rao
,
A.
Mahas
,
Z.
Ali
,
M.
Alsanea
,
A.
Al-Qahtani
,
F.
Alhamlan
, and
M.
Mahfouz
, “
iSCAN-V2: A One-Pot RT-RPA–CRISPR/Cas12b assay for point-of-care SARS-CoV-2 detection
,”
Front. Bioeng. Biotechnol.
9
,
800104
(
2022
).
154.
A. J.
Heeroma
and
C.
Gwenin
, “
Development of solid-phase RPA on a lateral flow device for the detection of pathogens related to sepsis
,”
Sensors
20
(
15
),
4182
(
2020
).
155.
P.
Patel
,
A.
Abd El Wahed
,
O.
Faye
,
P.
Prüger
,
M.
Kaiser
,
S.
Thaloengsok
,
S.
Ubol
,
A.
Sakuntabhai
,
I.
Leparc-Goffart
,
F. T.
Hufert
,
A. A.
Sall
,
M.
Weidmann
, and
M.
Niedrig
, “
A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the Chikungunya Virus
,”
PLOS Negl. Trop. Dis.
10
(
9
),
e0004953
(
2016
).
156.
M. D.
Moore
and
L.-A.
Jaykus
, “
Development of a recombinase polymerase amplification assay for detection of epidemic human noroviruses
,”
Sci. Rep.
7
(
1
),
40244
(
2017
).
157.
A.
Lázaro
,
E. S.
Yamanaka
,
Á
Maquieira
, and
L. A.
Tortajada-Genaro
, “
Allele-specific ligation and recombinase polymerase amplification for the detection of single nucleotide polymorphisms
,”
Sens. Actuators B
298
,
126877
(
2019
).
158.
E. S.
Yamanaka
,
L. A.
Tortajada-Genaro
, and
Á
Maquieira
, “
Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection
,”
Microchim. Acta
184
(
5
),
1453
1462
(
2017
).
159.
C.
Warmt
,
C. K.
Fenzel
,
J.
Henkel
, and
F. F.
Bier
, “
Using Cy5-dUTP labelling of RPA-amplicons with downstream microarray analysis for the detection of antibiotic resistance genes
,”
Sci. Rep.
11
(
1
),
20137
(
2021
).
160.
I. L. G.
Law
,
J. F. C.
Loo
,
H. C.
Kwok
,
H. Y.
Yeung
,
C. C. H.
Leung
,
M.
Hui
,
S. Y.
Wu
,
H. S.
Chan
,
Y. W.
Kwan
,
H. P.
Ho
, and
S. K.
Kong
, “
Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by recombinase polymerase amplification
,”
Anal. Biochem.
544
,
98
107
(
2018
).
161.
Z. A.
Crannell
,
B.
Rohrman
, and
R.
Richards-Kortum
, “
Equipment-free incubation of recombinase polymerase amplification reactions using body heat
,”
PLoS One
9
(
11
),
e112146
(
2014
).
162.
M.
Kong
,
Z.
Li
,
J.
Wu
,
J.
Hu
,
Y.
Sheng
,
D.
Wu
,
Y.
Lin
,
M.
Li
,
X.
Wang
, and
S.
Wang
, “
A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification
,”
Talanta
205
,
120155
(
2019
).
163.
J. C.
Rolando
,
E.
Jue
,
J. T.
Barlow
, and
R. F.
Ismagilov
, “
Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification
,”
Nucleic Acids Res.
48
(
7
),
e42
(
2020
).
164.
Y.
Kimura
,
M. J. L.
de Hoon
,
S.
Aoki
,
Y.
Ishizu
,
Y.
Kawai
,
Y.
Kogo
,
C. O.
Daub
,
A.
Lezhava
,
E.
Arner
, and
Y.
Hayashizaki
, “
Optimization of turn-back primers in isothermal amplification
,”
Nucleic Acids Res.
39
(
9
),
e59
(
2011
).
165.
D.
Lee
,
M.
La Mura
,
T. R.
Allnutt
, and
W.
Powell
, “
Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences
,”
BMC Biotechnol.
9
(
1
),
7
(
2009
).
166.
Y.
Yang
,
X.
Qin
,
Y.
Sun
,
G.
Cong
,
Y.
Li
, and
Z.
Zhang
, “
Development of isothermal recombinase polymerase amplification assay for rapid detection of porcine circovirus type 2
,”
BioMed Res. Int.
2017
,
1
8
(
2017
).
167.
U.
Obahiagbon
,
J. T.
Smith
,
M.
Zhu
,
B. A.
Katchman
,
H.
Arafa
,
K. S.
Anderson
, and
J. M.
Blain Christen
, “
A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications
,”
Biosens. Bioelectron.
117
,
153
160
(
2018
).
168.
F. B.
Myers
and
L. P.
Lee
, “
Innovations in optical microfluidic technologies for point-of-care diagnostics
,”
Lab Chip
8
(
12
),
2015
(
2008
).
169.
F.
Liu
,
J.
Zou
,
X.
Luo
,
Y.
Liu
,
C.
Huang
,
X.
He
, and
Y.
Wang
, “
A point-of-care chemiluminescence immunoassay for pepsinogen I enables large-scale community health screening
,”
Anal. Bioanal. Chem.
413
(
17
),
4493
4500
(
2021
).
170.
Y.
Wang
,
E. E.
Dzakah
,
Y.
Kang
,
Y.
Cai
,
P.
Wu
,
B.
Tang
, and
R.
Li
, “
A sensitive and rapid chemiluminescence immunoassay for point-of-care testing (POCT) of copeptin in serum based on high-affinity monoclonal antibodies via cytokine-assisted immunization
,”
Int. J. Nanomed.
14
,
4293
4307
(
2019
).
171.
D.
Zhang
,
L.
Huang
,
B.
Liu
,
H.
Ni
,
L.
Sun
,
E.
Su
,
H.
Chen
,
Z.
Gu
, and
X.
Zhao
, “
Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags
,”
Biosens. Bioelectron.
106
,
204
211
(
2018
).
172.
O. J. R.
Clarke
,
B. L.
Goodall
,
H. P.
Hui
,
N.
Vats
, and
C. L.
Brosseau
, “
Development of a SERS-based rapid vertical flow assay for point-of-care diagnostics
,”
Anal. Chem.
89
(
3
),
1405
1410
(
2017
).
173.
J. H.
Granger
,
N. E.
Schlotter
,
A. C.
Crawford
, and
M. D.
Porter
, “
Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS)
,”
Chem. Soc. Rev.
45
(
14
),
3865
3882
(
2016
).
174.
H.
Marks
,
M.
Schechinger
,
J.
Garza
,
A.
Locke
, and
G.
Coté
, “
Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care
,”
Nanophotonics
6
(
4
),
681
701
(
2017
).
175.
D.
Harpaz
,
B.
Koh
,
R. S.
Marks
,
R. C. S.
Seet
,
I.
Abdulhalim
, and
A. I. Y.
Tok
, “
Point-of-Care surface plasmon resonance biosensor for stroke biomarkers NT-proBNP and S100β using a functionalized gold chip with specific antibody
,”
Sensors
19
(
11
),
2533
(
2019
).
176.
D.-S.
Wang
and
S.-K.
Fan
, “
Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications
,”
Sensors
16
(
8
),
1175
(
2016
).
177.
J.-H.
Qu
,
H.
Ordutowski
,
C.
Van Tricht
,
R.
Verbruggen
,
A.
Barcenas Gallardo
,
M.
Bulcaen
,
M.
Ciwinska
,
C.
Gutierrez Cisneros
,
C.
Devriese
,
S.
Guluzade
,
X.
Janssens
,
S.
Kornblum
,
Y.
Lu
,
N.
Marolt
,
C.
Nanjappan
,
E.
Rutten
,
E.
Vanhauwaert
,
N.
Geukens
,
D.
Thomas
,
F.
Dal Dosso
,
S.
Safdar
,
D.
Spasic
, and
J.
Lammertyn
, “
Point-of-care therapeutic drug monitoring of adalimumab by integrating a FO-SPR biosensor in a self-powered microfluidic cartridge
,”
Biosens. Bioelectron.
206
,
114125
(
2022
).
178.
H. T.
Chorsi
,
Y.
Zhu
, and
J. X. J.
Zhang
, “
Patterned plasmonic surfaces—Theory, fabrication, and applications in biosensing
,”
J. Microelectromech. Syst.
26
(
4
),
718
739
(
2017
).
179.
M. R.
Hartman
,
R. C. H.
Ruiz
,
S.
Hamada
,
C.
Xu
,
K. G.
Yancey
,
Y.
Yu
,
W.
Han
, and
D.
Luo
, “
Point-of-care nucleic acid detection using nanotechnology
,”
Nanoscale
5
(
21
),
10141
(
2013
).
180.
E. A.
Pumford
,
J.
Lu
,
I.
Spaczai
,
M. E.
Prasetyo
,
E. M.
Zheng
,
H.
Zhang
, and
D. T.
Kamei
, “
Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics
,”
Biosens. Bioelectron.
170
,
112674
(
2020
).
181.
N. A.
Tanner
,
Y.
Zhang
, and
T. C.
Evans
, “
Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes
,”
BioTechniques
58
(
2
),
59
68
(
2015
).
182.
D.
Xiong
,
W.
Dai
,
J.
Gong
,
G.
Li
,
N.
Liu
,
W.
Wu
,
J.
Pan
,
C.
Chen
,
Y.
Jiao
,
H.
Deng
,
J.
Ye
,
X.
Zhang
,
H.
Huang
,
Q.
Li
,
L.
Xue
,
X.
Zhang
, and
G.
Tang
, “
Rapid detection of SARS-CoV-2 with CRISPR-Cas12a
,”
PLoS Biol.
18
(
12
),
e3000978
(
2020
).
183.
A.
Lau
,
C.
Ren
, and
L. P.
Lee
, “
Critical review on where CRISPR meets molecular diagnostics
,”
Prog. Biomed. Eng.
3
(
1
),
012001
(
2021
).
184.
C.-S.
Zhu
,
C.-Y.
Liu
,
X.-Y.
Qiu
,
S.-S.
Xie
,
W.-Y.
Li
,
L.
Zhu
, and
L.-Y.
Zhu
, “
Novel nucleic acid detection strategies based on CRISPR-Cas systems: From construction to application
,”
Biotechnol. Bioeng.
117
(
7
),
2279
2294
(
2020
).
185.
J.
Wang
, “
Electrochemical biosensors: Towards point-of-care cancer diagnostics
,”
Biosens. Bioelectron.
21
(
10
),
1887
1892
(
2006
).
186.
T. G.
Drummond
,
M. G.
Hill
, and
J. K.
Barton
, “
Electrochemical DNA sensors
,”
Nat. Biotechnol.
21
(
10
),
1192
1199
(
2003
).
187.
D. R.
Baselt
,
G. U.
Lee
,
M.
Natesan
,
S. W.
Metzger
,
P. E.
Sheehan
, and
R. J.
Colton
, “
A biosensor based on magnetoresistance technology
,”
Biosens. Bioelectron.
13
(
7–8
),
731
739
(
1998
).
188.
R.
Edelstein
, “
The BARC biosensor applied to the detection of biological warfare agents
,”
Biosens. Bioelectron.
14
(
10–11
),
805
813
(
2000
).
189.
M. M.
Miller
,
P. E.
Sheehan
,
R. L.
Edelstein
,
C. R.
Tamanaha
,
L.
Zhong
,
S.
Bounnak
,
L. J.
Whitman
, and
R. J.
Colton
, “
A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection
,”
J. Magn. Magn. Mater.
225
(
1–2
),
138
144
(
2001
).
190.
L.
Xu
,
H.
Yu
,
M. S.
Akhras
,
S.-J.
Han
,
S.
Osterfeld
,
R. L.
White
,
N.
Pourmand
, and
S. X.
Wang
, “
Giant magnetoresistive biochip for DNA detection and HPV genotyping
,”
Biosens. Bioelectron.
24
(
1
),
99
103
(
2008
).
191.
D. M.
Bruls
,
T. H.
Evers
,
J. A. H.
Kahlman
,
P. J. W.
van Lankvelt
,
M.
Ovsyanko
,
E. G. M.
Pelssers
,
J. J. H. B.
Schleipen
,
F. K.
de Theije
,
C. A.
Verschuren
,
T.
van der Wijk
,
J. B. A.
van Zon
,
W. U.
Dittmer
,
A. H. J.
Immink
,
J. H.
Nieuwenhuis
, and
M. W. J.
Prins
, “
Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles
,”
Lab Chip
9
(
24
),
3504
(
2009
).
192.
S. A. M.
Martins
,
V. C.
Martins
,
F. A.
Cardoso
,
J.
Germano
,
M.
Rodrigues
,
C.
Duarte
,
R.
Bexiga
,
S.
Cardoso
, and
P. P.
Freitas
, “
Biosensors for on-farm diagnosis of mastitis
,”
Front. Bioeng. Biotechnol.
7
,
186
(
2019
).
193.
A.
De Marcellis
,
C.
Reig
,
M.-D.
Cubells-Beltrán
,
J.
Madrenas
,
J. D.
Santos
,
S.
Cardoso
, and
P. P.
Freitas
, “
Monolithic integration of GMR sensors for standard CMOS-IC current sensing
,”
Solid-State Electron.
135
,
100
104
(
2017
).
194.
S.
Liang
,
P.
Sutham
,
K.
Wu
,
K.
Mallikarjunan
, and
J.-P.
Wang
, “
Giant magnetoresistance biosensors for food safety applications
,”
Sensors
22
(
15
),
5663
(
2022
).
195.
D.
Su
,
K.
Wu
,
R.
Saha
,
J.
Liu
, and
J.-P.
Wang
, “
Magnetic nanotechnologies for early cancer diagnostics with liquid biopsies: A review
,”
JCMT
2020
,
19
(
2020
).
196.
K.
Wu
,
R.
Saha
,
D.
Su
,
V. D.
Krishna
,
J.
Liu
,
M. C.-J.
Cheeran
, and
J.-P.
Wang
, “
Magnetic-nanosensor-based virus and pathogen detection strategies before and during COVID-19
,”
ACS Appl. Nano Mater.
3
(
10
),
9560
9580
(
2020
).
197.
C.
Wang
,
M.
Liu
,
Z.
Wang
,
S.
Li
,
Y.
Deng
, and
N.
He
, “
Point-of-care diagnostics for infectious diseases: From methods to devices
,”
Nano Today
37
,
101092
(
2021
).
198.
See http://www.axxin.com/Molecular-T8.php for “Axxin T8-ISO” (last accessed March 17, 2022).
199.
See http://www.axxin.com/Molecular-T16.php for “Axxin T16-ISO” (last accessed March 17, 2022).
200.
See http://www.optigene.co.uk/instruments/instrument-genie-ii/ for “Genie II” (last accessed March 17, 2022).
201.
A. Y.
Trick
,
J. H.
Melendez
,
F.-E.
Chen
,
L.
Chen
,
A.
Onzia
,
A.
Zawedde
,
E.
Nakku-Joloba
,
P.
Kyambadde
,
E.
Mande
,
J.
Matovu
,
M.
Atuheirwe
,
R.
Kwizera
,
E. A.
Gilliams
,
Y.-H.
Hsieh
,
C. A.
Gaydos
,
Y. C.
Manabe
,
M. M.
Hamill
, and
T.-H.
Wang
, “
A portable magnetofluidic platform for detecting sexually transmitted infections and antimicrobial susceptibility
,”
Sci. Transl. Med.
13
(
593
),
eabf6356
(
2021
).
202.
E.
Huang
,
Y.
Wang
,
N.
Yang
,
B.
Shu
,
G.
Zhang
, and
D.
Liu
, “
A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens
,”
Anal. Bioanal. Chem.
413
(
7
),
1787
1798
(
2021
).
203.
B.
Shu
,
C.
Zhang
, and
D.
Xing
, “
A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics
,”
Biosens. Bioelectron.
97
,
360
368
(
2017
).
204.
D. J.
Shin
,
A. Y.
Trick
,
Y.-H.
Hsieh
,
D. L.
Thomas
, and
T.-H.
Wang
, “
Sample-to-answer droplet magnetofluidic platform for point-of-care hepatitis c viral load quantitation
,”
Sci. Rep.
8
(
1
),
9793
(
2018
).
205.
C.
Zhu
,
A.
Hu
,
J.
Cui
,
K.
Yang
,
X.
Zhu
,
Y.
Liu
,
G.
Deng
, and
L.
Zhu
, “
A lab-on-a-chip device integrated DNA extraction and solid phase PCR array for the genotyping of high-risk HPV in clinical samples
,”
Micromachines
10
(
8
),
537
(
2019
).
206.
G.
Czilwik
,
T.
Messinger
,
O.
Strohmeier
,
S.
Wadle
,
F.
von Stetten
,
N.
Paust
,
G.
Roth
,
R.
Zengerle
,
P.
Saarinen
,
J.
Niittymäki
,
K.
McAllister
,
O.
Sheils
,
J.
O’Leary
, and
D.
Mark
, “
Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation
,”
Lab Chip
15
(
18
),
3749
3759
(
2015
).
207.
J.
Jie
,
S.
Hu
,
W.
Liu
,
Q.
Wei
,
Y.
Huang
,
X.
Yuan
,
L.
Ren
,
M.
Tan
, and
Y.
Yu
, “
Portable and battery-powered PCR device for DNA amplification and fluorescence detection
,”
Sensors
20
(
9
),
2627
(
2020
).
208.
D. V.
Vezenov
,
B. T.
Mayers
,
R. S.
Conroy
,
G. M.
Whitesides
,
P. T.
Snee
,
Y.
Chan
,
D. G.
Nocera
, and
M. G.
Bawendi
, “
A low-threshold, high-efficiency microfluidic waveguide laser
,”
J. Am. Chem. Soc.
127
(
25
),
8952
8953
(
2005
).
209.
S.
Balslev
,
A. M.
Jorgensen
,
B.
Bilenberg
,
K. B.
Mogensen
,
D.
Snakenborg
,
O.
Geschke
,
J. P.
Kutter
, and
A.
Kristensen
, “
Lab-on-a-chip with integrated optical transducers
,”
Lab Chip
6
(
2
),
213
217
(
2006
).
210.
J. A.
Chediak
,
Z.
Luo
,
J.
Seo
,
N.
Cheung
,
L. P.
Lee
, and
T. D.
Sands
, “
Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems
,”
Sens. Actuators, A
111
(
1
),
1
7
(
2004
).
211.
D.
Dobnik
,
D.
Štebih
,
A.
Blejec
,
D.
Morisset
, and
J.
Žel
, “
Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection
,”
Sci. Rep.
6
(
1
),
35451
(
2016
).
212.
P.
Bollella
and
L.
Gorton
, “
Enzyme based amperometric biosensors
,”
Curr. Opin. Electrochem.
10
,
157
173
(
2018
).
213.
B.
Golichenari
,
R.
Nosrati
,
A.
Farokhi-Fard
,
M.
Faal Maleki
,
S. M.
Gheibi Hayat
,
K.
Ghazvini
,
F.
Vaziri
, and
J.
Behravan
, “
Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers
,”
Crit. Rev. Biotechnol.
39
(
8
),
1056
1077
(
2019
).
214.
C.
Singhal
,
M.
Khanuja
,
N.
Chaudhary
,
C. S.
Pundir
, and
J.
Narang
, “
Detection of Chikungunya virus DNA using two-dimensional MoS2 nanosheets based disposable biosensor
,”
Sci. Rep.
8
(
1
),
7734
(
2018
).
215.
S.
Brosel-Oliu
,
O.
Mergel
,
N.
Uria
,
N.
Abramova
,
P.
van Rijn
, and
A.
Bratov
, “
3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics
,”
Lab Chip
19
(
8
),
1436
1447
(
2019
).
216.
J. S.
Daniels
and
N.
Pourmand
, “
Label-free impedance biosensors: Opportunities and challenges
,”
Electroanalysis
19
(
12
),
1239
1257
(
2007
).
217.
D. W.
Kimmel
,
G.
LeBlanc
,
M. E.
Meschievitz
, and
D. E.
Cliffel
, “
Electrochemical sensors and biosensors
,”
Anal. Chem.
84
(
2
),
685
707
(
2012
).
218.
A.
Bratov
,
N.
Abramova
, and
A.
Ipatov
, “
Recent trends in potentiometric sensor arrays—a review
,”
Anal. Chim. Acta
678
(
2
),
149
159
(
2010
).
219.
M. Y.
Lee
,
H. R.
Lee
,
C. H.
Park
,
S. G.
Han
, and
J. H.
Oh
, “
Organic transistor-based chemical sensors for wearable bioelectronics
,”
Acc. Chem. Res.
51
(
11
),
2829
2838
(
2018
).
220.
A.
Matsumoto
and
Y.
Miyahara
, “
Current and emerging challenges of field effect transistor based bio-sensing
,”
Nanoscale
5
(
22
),
10702
(
2013
).
221.
L.
Syedmoradi
,
A.
Ahmadi
,
M. L.
Norton
, and
K.
Omidfar
, “
A review on nanomaterial-based field effect transistor technology for biomarker detection
,”
Microchim. Acta
186
(
11
),
739
(
2019
).
222.
K.
Hsieh
,
B. S.
Ferguson
,
M.
Eisenstein
,
K. W.
Plaxco
, and
H. T.
Soh
, “
Integrated electrochemical microsystems for genetic detection of pathogens at the point of care
,”
Acc. Chem. Res.
48
(
4
),
911
920
(
2015
).
223.
W.
Zhang
,
R.
Wang
,
F.
Luo
,
P.
Wang
, and
Z.
Lin
, “
Miniaturized electrochemical sensors and their point-of-care applications
,”
Chin. Chem. Lett.
31
(
3
),
589
600
(
2020
).
224.
M.
Montagnana
,
M.
Caputo
,
D.
Giavarina
, and
G.
Lippi
, “
Overview on self-monitoring of blood glucose
,”
Clin. Chim. Acta
402
(
1–2
),
7
13
(
2009
).
225.
See http://cuehealth.com/ for “Cue” (last accessed March 18, 2022).
226.
H. E.
Kim
,
A.
Schuck
,
S. H.
Lee
,
Y.
Lee
,
M.
Kang
, and
Y.-S.
Kim
, “
Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests
,”
Biosens. Bioelectron.
182
,
113168
(
2021
).
227.
I.
Pennisi
,
J.
Rodriguez-Manzano
,
A.
Moniri
,
M.
Kaforou
,
J. A.
Herberg
,
M.
Levin
, and
P.
Georgiou
, “
Translation of a host blood RNA signature distinguishing bacterial from viral infection into a platform suitable for development as a point-of-care test
,”
JAMA Pediatr.
175
(
4
),
417
(
2021
).
228.
K.
Malpartida-Cardenas
,
N.
Miscourides
,
J.
Rodriguez-Manzano
,
L.-S.
Yu
,
N.
Moser
,
J.
Baum
, and
P.
Georgiou
, “
Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS lab-on-chip platform
,”
Biosens. Bioelectron.
145
,
111678
(
2019
).
229.
J. A.
Herberg
,
M.
Kaforou
,
V. J.
Wright
,
H.
Shailes
,
H.
Eleftherohorinou
,
C. J.
Hoggart
,
M.
Cebey-López
,
M. J.
Carter
,
V. A.
Janes
,
S.
Gormley
,
C.
Shimizu
,
A. H.
Tremoulet
,
A. M.
Barendregt
,
A.
Salas
,
J.
Kanegaye
,
A. J.
Pollard
,
S. N.
Faust
,
S.
Patel
,
T.
Kuijpers
,
F.
Martinón-Torres
,
J. C.
Burns
,
L. J. M.
Coin
,
M.
Levin
, and
for the IRIS Consortium
, “
Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children
,”
JAMA
316
(
8
),
835
(
2016
).
230.
Y.
Liu
,
B.
Lu
,
Y.
Tang
,
Y.
Du
, and
B.
Li
, “
Real-time gene analysis based on a portable electrochemical microfluidic system
,”
Electrochem. Commun.
111
,
106665
(
2020
).
231.
S.
Campuzano
,
M.
Pedrero
,
P.
Yáñez-Sedeño
, and
J. M.
Pingarrón
, “
New challenges in point of care electrochemical detection of clinical biomarkers
,”
Sens. Actuators B
345
,
130349
(
2021
).
232.
M. J.
Russo
,
M.
Han
,
P. E.
Desroches
,
C. S.
Manasa
,
J.
Dennaoui
,
A. F.
Quigley
,
R. M. I.
Kapsa
,
S. E.
Moulton
,
R. M.
Guijt
,
G. W.
Greene
, and
S. M.
Silva
, “
Antifouling strategies for electrochemical biosensing: Mechanisms and performance toward point of care based diagnostic applications
,”
ACS Sensors
6
(
4
),
1482
1507
(
2021
).
233.
J.
Schotter
,
P. B.
Kamp
,
A.
Becker
,
A.
Pühler
,
G.
Reiss
, and
H.
Brückl
, “
Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection
,”
Biosens. Bioelectron.
19
(
10
),
1149
1156
(
2004
).
234.
A.
Pai
,
A.
Khachaturian
,
S.
Chapman
,
A.
Hu
,
H.
Wang
, and
A.
Hajimiri
, “
A handheld magnetic sensing platform for antigen and nucleic acid detection
,”
Analyst
139
(
6
),
1403
1411
(
2014
).
235.
O.
Pashchenko
,
T.
Shelby
,
T.
Banerjee
, and
S.
Santra
, “
A comparison of optical, electrochemical, magnetic, and colorimetric point-of-care biosensors for infectious disease diagnosis
,”
ACS Infect. Dis.
4
(
8
),
1162
1178
(
2018
).
236.
S.-E.
Kim
,
M. V.
Tieu
,
S. Y.
Hwang
, and
M.-H.
Lee
, “
Magnetic particles: Their applications from sample preparations to biosensing platforms
,”
Micromachines
11
(
3
),
302
(
2020
).
237.
D. A.
Hall
,
S. X.
Wang
,
B.
Murmann
, and
R. S.
Gaster
, in
Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(
IEEE
,
Paris
,
2010
), pp.
1779
1782
.
238.
M.
Koets
,
T.
van der Wijk
,
J. T. W. M.
van Eemeren
,
A.
van Amerongen
, and
M. W. J.
Prins
, “
Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor
,”
Biosens. Bioelectron.
24
(
7
),
1893
1898
(
2009
).
239.
G.
Rizzi
,
J.-R.
Lee
,
C.
Dahl
,
P.
Guldberg
,
M.
Dufva
,
S. X.
Wang
, and
M. F.
Hansen
, “
Simultaneous profiling of DNA mutation and methylation by melting analysis using magnetoresistive biosensor array
,”
ACS Nano
11
(
9
),
8864
8870
(
2017
).
240.
V. D.
Krishna
,
K.
Wu
,
D.
Su
,
M. C. J.
Cheeran
,
J.-P.
Wang
, and
A.
Perez
, “
Nanotechnology: Review of concepts and potential application of sensing platforms in food safety
,”
Food Microbiol.
75
,
47
54
(
2018
).
241.
S. J.
Osterfeld
,
H.
Yu
,
R. S.
Gaster
,
S.
Caramuta
,
L.
Xu
,
S.-J.
Han
,
D. A.
Hall
,
R. J.
Wilson
,
S.
Sun
,
R. L.
White
,
R. W.
Davis
,
N.
Pourmand
, and
S. X.
Wang
, “
Multiplex protein assays based on real-time magnetic nanotag sensing
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
52
),
20637
20640
(
2008
).
242.
S.-J.
Han
,
L.
Xu
,
H.
Yu
,
R. J.
Wilson
,
R. L.
White
,
N.
Pourmand
, and
S. X.
Wang
, in
2006 International Electron Devices Meeting
(
IEEE
,
San Francisco, CA
,
2006
), pp.
1
4
.
243.
J.
Nesvet
,
G.
Rizzi
, and
S. X.
Wang
, “
Highly sensitive detection of DNA hypermethylation in melanoma cancer cells
,”
Biosens. Bioelectron.
124-125
,
136
142
(
2019
).
244.
E.
Ng
,
C.
Yao
,
T. O.
Shultz
,
S.
Ross-Howe
, and
S. X.
Wang
, “
Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at point-of-care
,”
Nanomed.: Nanotechnol. Biol. Med.
16
,
10
19
(
2019
).
245.
C.
Yao
,
E.
Ng
, and
S. X.
Wang
, “
An automated and mobile magnetoresistive biosensor system for early hepatocellular carcinoma diagnosis
,”
Biosens. Bioelectron.
202
,
113982
(
2022
).
246.
J.
Choi
,
A. W.
Gani
,
D. J. B.
Bechstein
,
J.-R.
Lee
,
P. J.
Utz
, and
S. X.
Wang
, “
Portable, one-step, and rapid GMR biosensor platform with smartphone interface
,”
Biosens. Bioelectron.
85
,
1
7
(
2016
).
247.
D. J. B.
Bechstein
,
J.-R.
Lee
,
E.
Ng
, and
S. X.
Wang
, in
2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)
(
IEEE
,
Anchorage, AK
,
2015
), pp.
1637
1640
.
248.
J.
Hu
,
S.
Wang
,
L.
Wang
,
F.
Li
,
B.
Pingguan-Murphy
,
T. J.
Lu
, and
F.
Xu
, “
Advances in paper-based point-of-care diagnostics
,”
Biosens. Bioelectron.
54
,
585
597
(
2014
).
249.
T.
Mahmoudi
,
M.
de la Guardia
, and
B.
Baradaran
, “
Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends
,”
Trends Anal. Chem.
125
,
115842
(
2020
).
250.
N.
Ravi
,
D. L.
Cortade
,
E.
Ng
, and
S. X.
Wang
, “
Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape
,”
Biosens. Bioelectron.
165
,
112454
(
2020
).
251.
S.
Arshavsky-Graham
and
E.
Segal
, “
Lab-on-a-chip devices for point-of-care medical diagnostics, microfluidics in biotechnology
,”
Adv. Biochem. Eng. Biotechnol.
179
,
1
19
(
2020
).
252.
Y.
Jia
,
H.
Sun
,
J.
Tian
,
Q.
Song
, and
W.
Zhang
, “
Paper-based point-of-care testing of SARS-CoV-2
,”
Front. Bioeng. Biotechnol.
9
,
773304
(
2021
).
253.
L.
Zhang
,
Y.
Zhang
,
C.
Wang
,
Q.
Feng
,
F.
Fan
,
G.
Zhang
,
X.
Kang
,
X.
Qin
,
J.
Sun
,
Y.
Li
, and
X.
Jiang
, “
Integrated microcapillary for sample-to-answer nucleic acid pretreatment, amplification, and detection
,”
Anal. Chem.
86
(
20
),
10461
10466
(
2014
).
254.
B.
Ngom
,
Y.
Guo
,
X.
Wang
, and
D.
Bi
, “
Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: A review
,”
Anal. Bioanal. Chem.
397
(
3
),
1113
1135
(
2010
).
255.
L.
Liu
,
D.
Yang
, and
G.
Liu
, “
Signal amplification strategies for paper-based analytical devices
,”
Biosens. Bioelectron.
136
,
60
75
(
2019
).
256.
S.
Kasetsirikul
,
M. J. A.
Shiddiky
, and
N.-T.
Nguyen
, “
Challenges and perspectives in the development of paper-based lateral flow assays
,”
Microfluid. Nanofluidics
24
(
2
),
17
(
2020
).
257.
M. A.
Dineva
,
D.
Candotti
,
F.
Fletcher-Brown
,
J.-P.
Allain
, and
H.
Lee
, “
Simultaneous visual detection of multiple viral amplicons by dipstick assay
,”
J. Clin. Microbiol.
43
(
8
),
4015
4021
(
2005
).
258.
R.
Barrangou
and
J.
van der Oost
,
CRISPR-Cas Systems
(
Springer
,
Berlin
,
2013
).
259.
Q.
Song
,
X.
Sun
,
Z.
Dai
,
Y.
Gao
,
X.
Gong
,
B.
Zhou
,
J.
Wu
, and
W.
Wen
, “
Point-of-care testing detection methods for COVID-19
,”
Lab Chip
21
(
9
),
1634
1660
(
2021
).
260.
C. C.
Rossi
,
T.
Souza-Silva
,
A. V.
Araújo-Alves
, and
M.
Giambiagi-deMarval
, “
CRISPR-Cas systems features and the gene-reservoir role of coagulase-negative staphylococci
,”
Front. Microbiol.
8
,
1545
(
2017
).
261.
M. M.
Kaminski
,
O. O.
Abudayyeh
,
J. S.
Gootenberg
,
F.
Zhang
, and
J. J.
Collins
, “
CRISPR-based diagnostics
,”
Nat. Biomed. Eng.
5
(
7
),
643
656
(
2021
).
262.
K. S.
Makarova
and
E. V.
Koonin
, in
CRISPR
, edited by
M.
Lundgren
,
E.
Charpentier
, and
P. C.
Fineran
(
Springer New York
,
New York, NY
,
2015
), pp.
47
75
.
263.
K. S.
Makarova
,
D. H.
Haft
,
R.
Barrangou
,
S. J. J.
Brouns
,
E.
Charpentier
,
P.
Horvath
,
S.
Moineau
,
F. J. M.
Mojica
,
Y. I.
Wolf
,
A. F.
Yakunin
,
J.
van der Oost
, and
E. V.
Koonin
, “
Evolution and classification of the CRISPR–Cas systems
,”
Nat. Rev. Microbiol.
9
(
6
),
467
477
(
2011
).
264.
L.
Cong
,
F. A.
Ran
,
D.
Cox
,
S.
Lin
,
R.
Barretto
,
N.
Habib
,
P. D.
Hsu
,
X.
Wu
,
W.
Jiang
,
L. A.
Marraffini
, and
F.
Zhang
, “
Multiplex genome engineering using CRISPR/Cas systems
,”
Science
339
(
6121
),
819
823
(
2013
).
265.
B.
Chen
,
L. A.
Gilbert
,
B. A.
Cimini
,
J.
Schnitzbauer
,
W.
Zhang
,
G.-W.
Li
,
J.
Park
,
E. H.
Blackburn
,
J. S.
Weissman
,
L. S.
Qi
, and
B.
Huang
, “
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
,”
Cell
155
(
7
),
1479
1491
(
2013
).
266.
R. U.
Sheth
,
S. S.
Yim
,
F. L.
Wu
, and
H. H.
Wang
, “
Multiplex recording of cellular events over time on CRISPR biological tape
,”
Science
358
(
6369
),
1457
1461
(
2017
).
267.
M.
Vatankhah
,
A.
Azizi
,
A.
Sanajouyan Langeroudi
,
S.
Ataei Azimi
,
I.
Khorsand
,
M. A.
Kerachian
, and
J.
Motaei
, “
CRISPR-based biosensing systems: A way to rapidly diagnose COVID-19
,”
Crit. Rev. Clin. Lab. Sci.
58
(
4
),
225
241
(
2021
).
268.
R.
Nouri
,
Z.
Tang
,
M.
Dong
,
T.
Liu
,
A.
Kshirsagar
, and
W.
Guan
, “
CRISPR-based detection of SARS-CoV-2: A review from sample to result
,”
Biosens. Bioelectron.
178
,
113012
(
2021
).
269.
C.
Chiu
, “
Cutting-edge infectious disease diagnostics with CRISPR
,”
Cell Host Microbe
23
(
6
),
702
704
(
2018
).
270.
R.
Aman
,
A.
Mahas
, and
M.
Mahfouz
, “
Nucleic acid detection using CRISPR/Cas biosensing technologies
,”
ACS Synth. Biol.
9
(
6
),
1226
1233
(
2020
).
271.
A.
Kostyusheva
,
S.
Brezgin
,
Y.
Babin
,
I.
Vasilyeva
,
D.
Glebe
,
D.
Kostyushev
, and
V.
Chulanov
, “
CRISPR-Cas systems for diagnosing infectious diseases
,”
Methods
203
,
431
(
2022
).
272.
J. S.
Gootenberg
,
O. O.
Abudayyeh
,
M. J.
Kellner
,
J.
Joung
,
J. J.
Collins
, and
F.
Zhang
, “
Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6
,”
Science
360
(
6387
),
439
444
(
2018
).
273.
J. S.
Gootenberg
,
O. O.
Abudayyeh
,
J. W.
Lee
,
P.
Essletzbichler
,
A. J.
Dy
,
J.
Joung
,
V.
Verdine
,
N.
Donghia
,
N. M.
Daringer
,
C. A.
Freije
,
C.
Myhrvold
,
R. P.
Bhattacharyya
,
J.
Livny
,
A.
Regev
,
E. V.
Koonin
,
D. T.
Hung
,
P. C.
Sabeti
,
J. J.
Collins
, and
F.
Zhang
, “
Nucleic acid detection with CRISPR-Cas13a/C2c2
,”
Science
356
(
6336
),
438
442
(
2017
).
274.
L. B.
Harrington
,
D.
Burstein
,
J. S.
Chen
,
D.
Paez-Espino
,
E.
Ma
,
I. P.
Witte
,
J. C.
Cofsky
,
N. C.
Kyrpides
,
J. F.
Banfield
, and
J. A.
Doudna
, “
Programmed DNA destruction by miniature CRISPR-Cas14 enzymes
,”
Science
362
(
6416
),
839
842
(
2018
).
275.
M. J.
Kellner
,
J. G.
Koob
,
J. S.
Gootenberg
,
O. O.
Abudayyeh
, and
F.
Zhang
, “
SHERLOCK: Nucleic acid detection with CRISPR nucleases
,”
Nat. Protoc.
14
(
10
),
2986
3012
(
2019
).
276.
R.
Hajian
,
S.
Balderston
,
T.
Tran
,
T.
deBoer
,
J.
Etienne
,
M.
Sandhu
,
N. A.
Wauford
,
J.-Y.
Chung
,
J.
Nokes
,
M.
Athaiya
,
J.
Paredes
,
R.
Peytavi
,
B.
Goldsmith
,
N.
Murthy
,
I. M.
Conboy
, and
K.
Aran
, “
Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor
,”
Nat. Biomed. Eng.
3
(
6
),
427
437
(
2019
).
277.
S.-Y.
Li
,
Q.-X.
Cheng
,
J.-M.
Wang
,
X.-Y.
Li
,
Z.-L.
Zhang
,
S.
Gao
, and
R.-B.
Cao
, “
CRISPR-Cas12a-assisted nucleic acid detection
,”
Cell Discovery
4
,
20
(
2018
).
278.
L.
Li
,
S.
Li
,
N.
Wu
,
J.
Wu
,
G.
Wang
,
G.
Zhao
, and
J.
Wang
, “
HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation
,”
ACS Synth. Biol.
8
(
10
),
2228
2237
(
2019
).
279.
J. S.
Chen
,
E.
Ma
,
L. B.
Harrington
,
M.
Da Costa
,
X.
Tian
,
J. M.
Palefsky
, and
J. A.
Doudna
, “
CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
,”
Science
360
(
6387
),
436
439
(
2018
).
280.
E.
Xiong
,
L.
Jiang
,
T.
Tian
,
M.
Hu
,
H.
Yue
,
M.
Huang
,
W.
Lin
,
Y.
Jiang
,
D.
Zhu
, and
X.
Zhou
, “
Simultaneous dual-gene diagnosis of SARS-CoV-2 based on CRISPR/Cas9-mediated lateral flow assay
,”
Angew. Chem. Int. Ed.
60
(
10
),
5307
5315
(
2021
).
281.
X.
Ding
,
K.
Yin
,
Z.
Li
,
R. V.
Lalla
,
E.
Ballesteros
,
M. M.
Sfeir
, and
C.
Liu
, “
Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay
,”
Nat. Commun.
11
(
1
),
4711
(
2020
).
282.
C.
Lucia
,
P.-B.
Federico
, and
G. C.
Alejandra
,
An Ultrasensitive, Rapid, and Portable Coronavirus SARS-CoV-2 Sequence Detection Method Based on CRISPR-Cas12
(
Molecular Biology
,
2020
).
283.
J. P.
Broughton
,
X.
Deng
,
G.
Yu
,
C. L.
Fasching
,
V.
Servellita
,
J.
Singh
,
X.
Miao
,
J. A.
Streithorst
,
A.
Granados
,
A.
Sotomayor-Gonzalez
,
K.
Zorn
,
A.
Gopez
,
E.
Hsu
,
W.
Gu
,
S.
Miller
,
C.-Y.
Pan
,
H.
Guevara
,
D. A.
Wadford
,
J. S.
Chen
, and
C. Y.
Chiu
, “
CRISPR–Cas12-based detection of SARS-CoV-2
,”
Nat. Biotechnol.
38
(
7
),
870
874
(
2020
).
284.
J. E.
van Dongen
,
J. T. W.
Berendsen
,
R. D. M.
Steenbergen
,
R. M. F.
Wolthuis
,
J. C. T.
Eijkel
, and
L. I.
Segerink
, “
Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities
,”
Biosens. Bioelectron.
166
,
112445
(
2020
).
285.
D.
Samanta
,
S. B.
Ebrahimi
,
N.
Ramani
, and
C. A.
Mirkin
, “
Enhancing CRISPR-Cas-mediated detection of nucleic acid and Non-nucleic acid targets using enzyme-labeled reporters
,”
J. Am. Chem. Soc.
144
(
36
),
16310
16315
(
2022
).
286.
P. S.
Dittrich
and
A.
Manz
, “
Lab-on-a-chip: Microfluidics in drug discovery
,”
Nat. Rev. Drug Discovery
5
(
3
),
210
218
(
2006
).
287.
W.
Su
,
X.
Gao
,
L.
Jiang
, and
J.
Qin
, “
Microfluidic platform towards point-of-care diagnostics in infectious diseases
,”
J. Chromatogr., A
1377
,
13
26
(
2015
).
288.
J.
West
,
M.
Becker
,
S.
Tombrink
, and
A.
Manz
, “
Micro total analysis systems: Latest achievements
,”
Anal. Chem.
80
(
12
),
4403
4419
(
2008
).
289.
W.
Jung
,
J.
Han
,
J.-W.
Choi
, and
C. H.
Ahn
, “
Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies
,”
Microelectron. Eng.
132
,
46
57
(
2015
).
290.
H.
Zhu
,
Z.
Fohlerová
,
J.
Pekárek
,
E.
Basova
, and
P.
Neužil
, “
Recent advances in lab-on-a-chip technologies for viral diagnosis
,”
Biosens. Bioelectron.
153
,
112041
(
2020
).
291.
S. W.
Dutse
and
N. A.
Yusof
, “
Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview
,”
Sensors
11
(
6
),
5754
5768
(
2011
).
292.
C.
Tymm
,
J.
Zhou
,
A.
Tadimety
,
A.
Burklund
, and
J. X. J.
Zhang
, “
Scalable COVID-19 detection enabled by lab-on-chip biosensors
,”
Cell. Mol. Bioeng.
13
(
4
),
313
329
(
2020
).
293.
S.
Petralia
,
R.
Verardo
,
E.
Klaric
,
S.
Cavallaro
,
E.
Alessi
, and
C.
Schneider
, “
In-check system: A highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples
,”
Sens. Actuators B
187
,
99
105
(
2013
).
294.
A. Y.
Trick
,
F. E.
Chen
,
L.
Chen
,
P. W.
Lee
,
A. C.
Hasnain
,
H. H.
Mostafa
,
K. C.
Carroll
, and
T. H.
Wang
, “
Point-of-care platform for rapid multiplexed detection of SARS-CoV-2 variants and respiratory pathogens
,”
Adv. Mater. Technol.
7
,
2101013
(
2022
).
295.
B. S.
Batule
,
Y.
Seok
, and
M.-G.
Kim
, “
Paper-based nucleic acid testing system for simple and early diagnosis of mosquito-borne RNA viruses from human serum
,”
Biosens. Bioelectron.
151
,
111998
(
2020
).
296.
B.
Ning
,
T.
Yu
,
S.
Zhang
,
Z.
Huang
,
D.
Tian
,
Z.
Lin
,
A.
Niu
,
N.
Golden
,
K.
Hensley
,
B.
Threeton
,
C. J.
Lyon
,
X.-M.
Yin
,
C. J.
Roy
,
N. S.
Saba
,
J.
Rappaport
,
Q.
Wei
, and
T. Y.
Hu
, “
A smartphone-read ultrasensitive and quantitative saliva test for COVID-19
,”
Sci. Adv.
7
(
2
),
eabe3703
(
2021
).
297.
C.
Zhang
,
Y.
Yao
,
J.-L.
Zhu
,
S.-N.
Zhang
,
S.-S.
Zhang
,
H.
Wei
,
W.-L.
Hui
, and
Y.-L.
Cui
, “
Establishment and application of a real-time loop-mediated isothermal amplification system for the detection of CYP2C19 polymorphisms
,”
Sci. Rep.
6
(
1
),
26533
(
2016
).
298.
J.
Yin
,
Z.
Zou
,
Z.
Hu
,
S.
Zhang
,
F.
Zhang
,
B.
Wang
,
S.
Lv
, and
Y.
Mu
, “
A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens
,”
Lab Chip
20
(
5
),
979
986
(
2020
).
299.
T.-H.
Kim
,
J.
Park
,
C.-J.
Kim
, and
Y.-K.
Cho
, “
Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens
,”
Anal. Chem.
86
(
8
),
3841
3848
(
2014
).
300.
H.
Deng
,
A.
Jayawardena
,
J.
Chan
,
S. M.
Tan
,
T.
Alan
, and
P.
Kwan
, “
An ultra-portable, self-contained point-of-care nucleic acid amplification test for diagnosis of active COVID-19 infection
,”
Sci. Rep.
11
(
1
),
15176
(
2021
).
301.
J. R.
Choi
,
J.
Hu
,
R.
Tang
,
Y.
Gong
,
S.
Feng
,
H.
Ren
,
T.
Wen
,
X.
Li
,
W. A. B.
Wan Abas
,
B.
Pingguan-Murphy
, and
F.
Xu
, “
An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care
,”
Lab Chip
16
(
3
),
611
621
(
2016
).
302.
T.
Nguyen
,
V. A.
Chidambara
,
S. Z.
Andreasen
,
M.
Golabi
,
V. N.
Huynh
,
Q. T.
Linh
,
D. D.
Bang
, and
A.
Wolff
, “
Point-of-care devices for pathogen detections: The three most important factors to realise towards commercialization
,”
Trends Anal. Chem.
131
,
116004
(
2020
).
303.
D. K.
Soucek
,
L. E.
Dumkow
,
K. M.
VanLangen
, and
A. P.
Jameson
, “
Cost justification of the biofire filmarray meningitis/encephalitis panel versus standard of care for diagnosing meningitis in a community hospital
,”
J. Pharm. Pract.
32
(
1
),
36
40
(
2019
).
304.
Z.
Li
,
Y.
Bai
,
M.
You
,
J.
Hu
,
C.
Yao
,
L.
Cao
, and
F.
Xu
, “
Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care
,”
Biosens. Bioelectron.
177
,
112952
(
2021
).
305.
A. S.
Piatek
,
M.
Van Cleeff
,
H.
Alexander
,
W. L.
Coggin
,
M.
Rehr
,
S.
Van Kampen
,
T. M.
Shinnick
, and
Y.
Mukadi
, “
Genexpert for TB diagnosis: Planned and purposeful implementation
,”
Glob. Health: Sci. Pract.
1
(
1
),
18
23
(
2013
).
306.
J.
Mason
,
CADTH Issues in Emerging Health Technologies
(
Canadian Agency for Drugs and Technologies in Health
,
Ottawa, ON
,
2016
).
307.
See http://www.fishersci.com/shop/products/accula-sars-cov-2-test-kit/COV4100 for “Thermo Fisher Scientific Accula SARS-CoV-2 Test” (last accessed March 21, 2022).
308.
S. R.
Morris
,
C. C.
Bristow
,
M. R.
Wierzbicki
,
M.
Sarno
,
L.
Asbel
,
A.
French
,
C. A.
Gaydos
,
L.
Hazan
,
L.
Mena
,
P.
Madhivanan
,
S.
Philip
,
S.
Schwartz
,
C.
Brown
,
D.
Styers
,
T.
Waymer
, and
J. D.
Klausner
, “
Performance of a single-use, rapid, point-of-care PCR device for the detection of Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis: A cross-sectional study
,”
Lancet Infect. Dis.
21
(
5
),
668
676
(
2021
).
309.
S. H.
Katsanis
and
N.
Katsanis
, “
Molecular genetic testing and the future of clinical genomics
,”
Nat. Rev. Genet.
14
(
6
),
415
426
(
2013
).
310.
P. M.
Barrett
and
E. J.
Topol
, “
Point-of-care genetic testing—a new frontier explored
,”
Nat. Rev. Cardiol.
9
(
6
),
315
316
(
2012
).
311.
See http://www.illumina.com/systems/sequencing-platforms.html for “Illumina sequencing platforms” (last accessed March 25, 2022).
312.
See http://nanoporetech.com/products/minion for “MinION” (last accessed March 25, 2022).
313.
A.
Pembaur
,
E.
Sallard
,
P. P.
Weil
,
J.
Ortelt
,
P.
Ahmad-Nejad
, and
J.
Postberg
, “
Simplified point-of-care full SARS-CoV-2 genome sequencing using nanopore technology
,”
Microorganisms
9
(
12
),
2598
(
2021
).
314.
Y.
Liu
,
P.
Jeraldo
,
H.
Mendes-Soares
,
T.
Masters
,
A. E.
Asangba
,
H.
Nelson
,
R.
Patel
,
N.
Chia
, and
M.
Walther-Antonio
, “
Amplification of femtograms of bacterial DNA within 3h using a digital microfluidics platform for MinION sequencing
,”
ACS Omega
6
(
39
),
25642
25651
(
2021
).
315.
J.
Quick
,
N. J.
Loman
,
S.
Duraffour
,
J. T.
Simpson
,
E.
Severi
,
L.
Cowley
,
J. A.
Bore
,
R.
Koundouno
,
G.
Dudas
,
A.
Mikhail
,
N.
Ouédraogo
,
B.
Afrough
,
A.
Bah
,
J. H. J.
Baum
,
B.
Becker-Ziaja
,
J. P.
Boettcher
,
M.
Cabeza-Cabrerizo
,
Á
Camino-Sánchez
,
L. L.
Carter
,
J.
Doerrbecker
,
T.
Enkirch
,
I. G.
Dorival
,
N.
Hetzelt
,
J.
Hinzmann
,
T.
Holm
,
L. E.
Kafetzopoulou
,
M.
Koropogui
,
A.
Kosgey
,
E.
Kuisma
,
C. H.
Logue
,
A.
Mazzarelli
,
S.
Meisel
,
M.
Mertens
,
J.
Michel
,
D.
Ngabo
,
K.
Nitzsche
,
E.
Pallasch
,
L. V.
Patrono
,
J.
Portmann
,
J. G.
Repits
,
N. Y.
Rickett
,
A.
Sachse
,
K.
Singethan
,
I.
Vitoriano
,
R. L.
Yemanaberhan
,
E. G.
Zekeng
,
T.
Racine
,
A.
Bello
,
A. A.
Sall
,
O.
Faye
,
O.
Faye
,
N.
Magassouba
,
C. V.
Williams
,
V.
Amburgey
,
L.
Winona
,
E.
Davis
,
J.
Gerlach
,
F.
Washington
,
V.
Monteil
,
M.
Jourdain
,
M.
Bererd
,
A.
Camara
,
H.
Somlare
,
A.
Camara
,
M.
Gerard
,
G.
Bado
,
B.
Baillet
,
D.
Delaune
,
K. Y.
Nebie
,
A.
Diarra
,
Y.
Savane
,
R. B.
Pallawo
,
G. J.
Gutierrez
,
N.
Milhano
,
I.
Roger
,
C. J.
Williams
,
F.
Yattara
,
K.
Lewandowski
,
J.
Taylor
,
P.
Rachwal
,
D. J.
Turner
,
G.
Pollakis
,
J. A.
Hiscox
,
D. A.
Matthews
,
M. K. O.
Shea
,
A.
McD. Johnston
,
D.
Wilson
,
E.
Hutley
,
E.
Smit
,
A.
Di Caro
,
R.
Wölfel
,
K.
Stoecker
,
E.
Fleischmann
,
M.
Gabriel
,
S. A.
Weller
,
L.
Koivogui
,
B.
Diallo
,
S.
Keïta
,
A.
Rambaut
,
P.
Formenty
,
S.
Günther
, and
M. W.
Carroll
, “
Real-time, portable genome sequencing for Ebola surveillance
,”
Nature
530
(
7589
),
228
232
(
2016
).
316.
L. E.
Kafetzopoulou
,
K.
Efthymiadis
,
K.
Lewandowski
,
A.
Crook
,
D.
Carter
,
J.
Osborne
, and
E.
Aarons
, “
Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples
,”
Eurosurveillance
23
,
1800228
(
2018
).
317.
M.
Wang
,
A.
Fu
,
B.
Hu
,
Y.
Tong
,
R.
Liu
,
Z.
Liu
,
J.
Gu
,
B.
Xiang
,
J.
Liu
,
W.
Jiang
,
G.
Shen
,
W.
Zhao
,
D.
Men
,
Z.
Deng
,
L.
Yu
,
W.
Wei
,
Y.
Li
, and
T.
Liu
, “
Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses
,”
Small
16
(
32
),
2002169
(
2020
).
318.
S. E.
Manzoor
,
S.
Zaman
,
C.
Whalley
,
D.
Inglis
,
A.
Bosworth
,
M.
Kidd
,
S.
Shabir
,
N.
Quraishi
,
C. A.
Green
,
T.
Iqbal
, and
A. D.
Beggs
,
Multi-Modality Detection of SARS-CoV-2 in Faecal Donor Samples for Transplantation and in Asymptomatic Emergency Surgical Admissions
(
Gastroenterology
,
2021
).
319.
X.
Huang
,
D.
Xu
,
J.
Chen
,
J.
Liu
,
Y.
Li
,
J.
Song
,
X.
Ma
, and
J.
Guo
, “
Smartphone-based analytical biosensors
,”
Analyst
143
(
22
),
5339
5351
(
2018
).
320.
N.
Lane
,
E.
Miluzzo
,
H.
Lu
,
D.
Peebles
,
T.
Choudhury
, and
A.
Campbell
, “
A survey of mobile phone sensing
,”
IEEE Commun. Mag.
48
(
9
),
140
150
(
2010
).
321.
X.
Xu
,
X.
Wang
,
J.
Hu
,
Y.
Gong
,
L.
Wang
,
W.
Zhou
, and
X.
Li
, “
A smartphone-based on-site nucleic acid testing platform at point-of-care settings
,”
Electrophoresis
40
,
914
(
2018
).
322.
X.
Xu
,
A.
Akay
,
H.
Wei
,
S.
Wang
,
B.
Pingguan-Murphy
,
B.-E.
Erlandsson
,
X.
Li
,
W.
Lee
,
J.
Hu
,
L.
Wang
, and
F.
Xu
, “
Advances in smartphone-based point-of-care diagnostics
,”
Proc. IEEE
103
(
2
),
236
247
(
2015
).
323.
V. K.
Rajendran
,
P.
Bakthavathsalam
,
P. L.
Bergquist
, and
A.
Sunna
, “
Smartphone technology facilitates point-of-care nucleic acid diagnosis: A beginner’s guide
,”
Crit. Rev. Clin. Lab. Sci.
58
(
2
),
77
100
(
2021
).
324.
R. D.
Stedtfeld
,
D. M.
Tourlousse
,
G.
Seyrig
,
T. M.
Stedtfeld
,
M.
Kronlein
,
S.
Price
,
F.
Ahmad
,
E.
Gulari
,
J. M.
Tiedje
, and
S. A.
Hashsham
, “
Gene-Z: A device for point of care genetic testing using a smartphone
,”
Lab Chip
12
(
8
),
1454
(
2012
).
325.
J.
Liu
,
Z.
Geng
,
Z.
Fan
,
J.
Liu
, and
H.
Chen
, “
Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018)
,”
Biosens. Bioelectron.
132
,
17
37
(
2019
).
326.
M.
Moore
, “
The evolution of telemedicine
,”
Future Gener. Comput. Syst.
15
(
2
),
245
254
(
1999
).
327.
A. G.
Ekeland
,
A.
Bowes
, and
S.
Flottorp
, “
Effectiveness of telemedicine: A systematic review of reviews
,”
Int. J. Med. Inform.
79
(
11
),
736
771
(
2010
).
328.
J. Y.
Kim
and
K.
Lewandrowski
, “
Point-of-care testing informatics
,”
Clin. Lab. Med.
29
(
3
),
449
461
(
2009
).
329.
R. W.
Peeling
, “
Diagnostics in a digital age: An opportunity to strengthen health systems and improve health outcomes
,”
Int. Health
7
(
6
),
384
389
(
2015
).
330.
K.
Dyer
,
J. H.
Nichols
,
M.
Taylor
,
R.
Miller
, and
J.
Saltz
, “
Development of a universal connectivity and data management system
,”
Crit. Care Nurs. Q.
24
(
1
),
25
38
(
2001
).
331.
C. B.
Cook
,
E.
Moghissi
,
R.
Joshi
,
G. L.
Kongable
, and
V. J.
Abad
, “
Inpatient point-of-care bedside glucose testing: Preliminary data on use of connectivity informatics to measure hospital glycemic control
,”
Diabetes Technol. Ther.
9
(
6
),
493
500
(
2007
).
332.
K. M. J.
Floré
,
T.
Fiers
, and
J. R.
Delanghe
, “
Critical evaluation of connectivity-based point of care testing systems of glucose in a hospital environment
,”
Clin. Chem. Lab. Med.
46
,
1763
1768
(
2008
).
333.
S. B.
Haga
and
W.
Burke
, “
Pharmacogenetic testing: Not as simple as it seems
,”
Genet. Med.
10
(
6
),
391
395
(
2008
).
You do not currently have access to this content.