In this paper, the combination of two algorithms, a cell counting algorithm and a velocity algorithm based on a Digital Particle Image Velocimetry (DPIV) method, is presented to study the collective behavior of micro-particles in response to hydrodynamic stimuli. A wide experimental campaign was conducted using micro-particles of different natures and diameters (from 5 to 16μm), such as living cells and silica beads. The biological fluids were injected at the inlet of a micro-channel with an external oscillating flow, and the process was monitored in an investigated area, simultaneously, through a CCD camera and a photo-detector. The proposed data analysis procedure is based on the DPIV-based algorithm to extrapolate the micro-particles velocities and a custom counting algorithm to obtain the instantaneous micro-particles number. The counting algorithm was easily integrated with the DPIV-based algorithm, to automatically run the analysis to different videos and to post-process the results in time and frequency domain. The performed experiments highlight the difference in the micro-particles hydrodynamic responses to external stimuli and the possibility to associate them with the micro-particles physical properties. Furthermore, in order to overcome the hardware and software requirements for the development of a real-time approach, it was also investigated the possibility to detect the flows by photo-detector signals as an alternative to camera acquisition. The photo-detector signals were compared with the velocity trends as a proof of concept for further simplification and speed-up of the data acquisition and analysis. The algorithm flexibility underlines the potential of the proposed methodology to be suitable for real-time detection in embedded systems.

1.
A.
Cossarizza
,
H. D.
Chang
,
A.
Radbruch
,
M.
Akdis
,
I.
Andrä
,
F.
Annunziato
,
P.
Bacher
,
V.
Barnaba
,
L.
Battistini
,
W. M.
Bauer
, and
S.
Baumgart
, “
Guidelines for the use of flow cytometry and cell sorting in immunological studies
,”
Eur. J. Immunol.
47
(
10
),
1584
1797
(
2017
).
2.
H.
Cong
,
F. C.
Loo
,
J.
Chen
,
Y.
Wang
,
S. K.
Kong
, and
H. P.
Ho
, “
Target trapping and in situ single-cell genetic marker detection with a focused optical beam
,”
Biosens. Bioelectron.
133
,
236
242
(
2019
).
3.
P. K.
Dagur
and
J. P.
McCoy
, Jr.
, “
Collection, storage, and preparation of human blood cells
,”
Curr. Protoc. Cytom.
73
(
1
),
5.1.1
5.1.16
(
2015
).
4.
S.
Losserand
,
G.
Coupier
, and
T.
Podgorski
, “
Migration velocity of red blood cells in microchannels
,”
Microvasc. Res.
124
,
30
36
(
2019
).
5.
A.
Arboix
,
C.
Jiménez
,
J.
Massons
,
O.
Parra
, and
C.
Besses
, “
Hematological disorders: A commonly unrecognized cause of acute stroke
,”
Exp. Rev. Hematol.
9
(
9
),
891
901
(
2016
).
6.
A.
Vembadi
,
A.
Menachery
, and
M. A.
Qasaimeh
, “
Cell cytometry: Review and perspective on biotechnological advances
,”
Front. Bioeng. Biotechnol.
7
,
147
(
2019
).
7.
S.
Gupta
,
K.
Ramesh
,
S.
Ahmed
, and
V.
Kakkar
, “
Lab-on-chip technology: A review on design trends and future scope in biomedical applications
,”
Int. J. Bio-Sci. Bio-Technol.
8
(
5
),
311
322
(
2016
).
8.
A. M.
Streets
and
Y.
Huang
, “
Chip in a lab: Microfluidics for next generation life science research
,”
Biomicrofluidics
7
(
1
),
011302
(
2013
).
9.
D.
Mark
,
S.
Haeberle
,
G.
Roth
,
F.
Von Stetten
, and
R.
Zengerle
, “Microfluidic labon-a-chip platforms: requirements, characteristics and applications,”
Chem. Soc. Rev.
39
, 1153–1182 (2010).
10.
M.
Salve
,
K.
Amreen
,
P. K.
Pattnaik
, and
S.
Goel
, “
Integrated microfluidic device with carbon-thread microelectrodes for electrochemical DNA elemental analysis
,”
IEEE Trans. Nanobiosci.
21
,
322
329
(
2021
).
11.
H. Y.
Tan
and
Y. C.
Toh
, “
What can microfluidics do for human microbiome research?
,”
Biomicrofluidics
14
(
5
),
051303
(
2020
).
12.
D. B.
Weibel
and
G. M.
Whitesides
, “
Applications of microfluidics in chemical biology
,”
Curr. Opin. Chem. Biol.
10
(
6
),
584
591
(
2006
).
13.
D.
Janasek
,
J.
Franzke
, and
A.
Manz
, “
Scaling and the design of miniaturized chemical-analysis systems
,”
Nature
442
(
7101
),
374
380
(
2006
).
14.
G.
Ochoa-Vazquez
,
B.
Kharisov
,
A.
Arizmendi-Morquecho
,
A.
Cario
,
C.
Aymonier
,
S.
Marre
, and
I.
López
, “
Microfluidics and surface-enhanced Raman spectroscopy: A perfect match for new analytical tools
,”
IEEE Trans. Nanobiosci.
18
(
4
),
558
566
(
2019
).
15.
G.
Aubry
and
H.
Lu
, “
A perspective on optical developments in microfluidic platforms for Caenorhabditis elegans research
,”
Biomicrofluidics
8
(
1
),
011301
(
2014
).
16.
L.
Novak
,
P.
Neuzil
,
J.
Pipper
,
Y.
Zhang
, and
S.
Lee
, “
An integrated fluorescence detection system for lab-on-a-chip applications
,”
Lab Chip
7
(
1
),
27
29
(
2007
).
17.
I.
Grabowska
,
M.
Sajnoga
,
M.
Juchniewicz
,
M.
Chudy
,
A.
Dybko
, and
Z.
Brzozka
, “
Microfluidic system with electrochemical and optical detection
,”
Microelectron. Eng.
84
(
5–8
),
1741
1743
(
2007
).
18.
N.
Azizipour
,
R.
Avazpour
,
D. H.
Rosenzweig
,
M.
Sawan M
, and
A.
Ajji
, “
Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip
,”
Micromachines
11
(
6
),
599
(
2020
).
19.
K. D.
Seo
,
B. K.
Kwak
,
S.
Sanchez
, and
D. S.
Kim
, “
Microfluidic-assisted fabrication of flexible and location traceable organo-motor
,”
IEEE Trans. Nanobiosci.
14
(
3
),
298
304
(
2015
).
20.
P.
Chen
,
S.
Li
,
Y.
Guo
,
X.
Zeng
, and
B. F.
Liu
, “
A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis
,”
Anal. Chim. Acta
1125
,
94
113
(
2020
).
21.
J.
Sibbitts
,
K. A.
Sellens
,
S.
Jia
,
S. A.
Klasner
, and
C. T.
Culbertson
, “
Cellular analysis using microfluidics
,”
Anal. Chem.
90
(
1
),
65
85
(
2017
).
22.
M.
Rothbauer
,
H.
Zirath
, and
P.
Ertl
, “
Recent advances in microfluidic technologies for cell-to-cell interaction studies
,”
Lab Chip
18
(
2
),
249
270
(
2018
).
23.
A. G.
Koutsiaris
,
D. S.
Mathioulakis
, and
S.
Tsangaris
, “
Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries
,”
Meas. Sci. Technol.
10
(
11
),
1037
(
1999
).
24.
C. D.
Meinhart
,
S. T.
Wereley
, and
J. G.
Santiago
, “
PIV measurements of a microchannel flow
,”
Exp. Fluids
27
(
5
),
414
419
(
1999
).
25.
A. G.
Koutsiaris
, “Digital micro PIV (μPIV) and velocity profiles in vitro and in vivo,” in
The Particle Image Velocimetry—Characteristics, Limits and Possible Applications
(Intech Open, 2012).
26.
S.
Pradeep
and
T. A.
Zangle
, “
Quantitative phase velocimetry measures bulk intracellular transport of cell mass during the cell cycle
,”
Sci. Rep.
12
(
1
),
1
14
(
2022
).
27.
T. N.
Kim
,
P. W.
Goodwill
,
Y.
Chen
,
S. M.
Conolly
,
C. B.
Schaffer
,
D.
Liepmann
, and
R. A.
Wang
, “
Line-scanning particle image velocimetry: An optical approach for quantifying a wide range of blood flow speeds in live animals
,”
PLoS One
7
(
6
),
1
–13 (
2012
).
28.
M.
Pereyra
,
A.
Drusko
,
F.
Krämer
,
F.
Strobl
,
E. H.
Stelzer
, and
F.
Matthäus
, “
QuickPIV: Efficient 3D particle image velocimetry software applied to quantifying cellular migration during embryogenesis
,”
BMC Bioinformatics
22
(
1
),
1
20
(
2021
).
29.
M. F.
Sampedro
,
G. L.
Miño
,
C. D.
Galetto
, and
V.
Sigot
, “
Spatio-temporal analysis of collective migration in vivo by particle image velocimetry
,”
Phys. Biol.
18
(
6
),
066008
(
2021
).
30.
F.
Cairone
,
D.
Ortiz
,
P. J.
Cabrales
,
M.
Intaglietta M
, and
M.
Bucolo
, “
Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry
,”
Microvasc. Res.
116
,
77
86
(
2018
).
31.
F.
Cairone
,
D.
Mirabella
,
P. J.
Cabrales
,
M.
Intaglietta
, and
M.
Bucolo
, “
Quantitative analysis of spatial irregularities in RBCs flows
,”
Chaos, Solitons Fractals
115
,
349
355
(
2018
).
32.
S.
Sunardi
,
A.
Yudhana
, and
S.
Saifullah
, “
Identity analysis of egg based on digital and thermal imaging: Image processing and counting object concept
,”
Int. J. Electr. Comput. Eng.
7
(
1
),
200
(
2017
).
33.
T.
Liu
,
W.
Wu
,
Chen
,
C.
Sun
,
X.
Zhu
, and
W.
Guo
, “
Automated image-processing for counting seedlings in a wheat field
,”
Precis. Agric.
17
(
4
),
392
406
(
2016
).
34.
N.
Ab Azar
,
A.
Babakhani
,
A.
Broumandnia
, and
K.
Sepanloo
, “
A novel method for detecting and counting overlapping tracks in SSNTD by image processing techniques
,”
Radiat. Meas.
91
,
36
43
(
2016
).
35.
Y. H.
Toh
,
T. M.
Ng
, and
B. K.
Liew
, “
Automated fish counting using image processing
,” in
International Conference on Computational Intelligence and Software Engineering
(IEEE, 2009), pp. 1–5.
36.
H.
Zhang
,
C. H.
Chon
,
X.
Pan
, and
D.
Li
, “
Methods for counting particles in microfluidic applications
,”
Microfluid. Nanofluid.
7
(
6
),
739
749
(
2009
).
37.
D.
Huh
,
W.
Gu
,
Y.
Kamotani
,
J. B.
Grotberg
, and
S.
Takayama
, “
Microfluidics for flow cytometric analysis of cells and particles
,”
Physiol. Meas.
26
(
3
),
R73
(
2005
).
38.
T.
Hou
,
H.
Chang
,
H.
Jiang
,
P.
Wang
,
N.
Li
,
Y.
Song
, and
D.
Li
, “
Smartphone based microfluidic lab-on-chip device for real-time detection, counting and sizing of living algae
,”
Measurement
187
,
110304
(
2022
).
39.
F.
Schembri
and
M.
Bucolo
, “
Periodic input flows tuning nonlinear twophase dynamics in a snake microchannel
,”
Microfluid. Nanofluid.
11
,
189
197
(
2011
).
40.
F.
Schembri
,
F.
Sapuppo
, and
M.
Bucolo
, “
Experimental identification of nonlinear dynamics in microfluidic bubbles flow
,”
Nonlinear Dyn.
67
,
2807
2819
(
2012
).
41.
S.
Gagliano
,
G.
Stella
, and
M.
Bucolo
, “
Real-time detection of slug velocity in microchannels
,”
Micromachines
11
(
3
),
241
(
2020
).
42.
F.
Cairone
,
S.
Davi
,
G.
Stella
,
F.
Guarino
,
G.
Recca
,
G.
Cicala
, and
M.
Bucolo
, “
3D-printed micro-optofluidic device for chemical fluids and cells detection
,”
Biomed. Microdevices
22
,
37
(
2020
).
43.
A. G.
Koutsiaris
, “
Loss of field of view due to optical mismatch at the inner diametric plane of cylindrical artificial microvessels
,”
Results Opt.
8
,
100241
(
2022
).
44.
F.
Cairone
,
S.
Gagliano
, and
M.
Bucolo
, “
Experimental study on the slug flow in a serpentine microchannel
,”
Exp. Therm. Fluid Sci.
76
, 34–44 (2016).
45.
M. R.
Green
and
J.
Sambrook
, “
Estimation of cell number by hemocytometry counting
,”
Cold Spring Harb. Protoc.
11
,
732
–734 (
2019
).
46.
W.
Thielicke
and
E. J.
Stamhuis
, “
PIVlab towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB
,”
J. Open Res. Software
2
(
1
),
e30
(
2014
).
47.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH Image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
(
7
),
671
675
(
2012
).
48.
J. S.
Turner
and
J. S.
Turner
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
1979
).
You do not currently have access to this content.