Breast cancer metastasis involves complex mechanisms, particularly when patients are undergoing chemotherapy. In tissues, tumor cells encounter cell–cell interactions, cell–microenvironment interactions, complex nutrient, and drug gradients. Currently, two-dimensional cell culture systems and animal models are challenging to observe and analyze cell responses to microenvironments with various physical and bio-chemical conditions, and microfluidic technology has been systematically developed to address this dilemma. In this study, we have constructed a combined chemotherapy evaluation chip (CCEC) based on microfluidic technology. The chip possesses 192 diamond-shaped microchambers containing MDA-MB-231-RFP cells, and each microchamber is composed of collagen to mimic breast cancer and its surrounding microenvironment. In addition, by adding medium containing different drugs to the medium channels of CCEC, composite drug (paclitaxel+gemcitabine+7rh and paclitaxel+fluorouracil+PP2) concentration gradients, and single drug (paclitaxel, gemcitabine, 7rh, fluorouracil, PP2) concentration gradients have been established in the five collagen regions, respectively, so that each localized microchamber in the regions has a unique drug microenvironment. In this way, we evaluated the composite and single chemotherapy efficacy on the same chip by statistically analyzing their effects on the numbers and migration of the cell. The quantitative results in CCECs reveal that the inhibition effects on the numbers and migration of MDA-MB-231-RFP cell under the composite drug gradients are more optimal than those of the single drugs. Besides, the cancer cell inhibition effect between the groups composed of two drugs has also been compared, that is the paclitaxel+gemcitabine, paclitaxel+fluorouracil, and paclitaxel+PP2 have better cell numbers and migration inhibition effects than paclitaxel+7rh. The results indicate that the bio-mimetic and high-throughput combined chemotherapy evaluation platform can serve as a more efficient and accurate tool for preclinical drug development and screening.

1.
D.
Liu
,
X.
Liu
,
Y.
Zhang
,
Q.
Wang
, and
J.
Lu
,
Bioengineered
7
(
5
),
321
326
(
2016
).
2.
A. J.
Redig
and
S. S.
McAllister
,
J. Intern. Med.
274
(
2
),
113
126
(
2013
).
3.
X.
Yue
,
T. D.
Nguyen
,
V.
Zellmer
,
S.
Zhang
, and
P.
Zorlutuna
,
Biomaterials
170
,
37
48
(
2018
).
4.
S.
Talukdar
and
S. C.
Kundu
,
Adv. Funct. Mater.
22
(
22
),
4778
4788
(
2012
).
5.
A. L.
Radtke
and
M. M.
Herbst-Kralovetz
,
J. Vis. Exp.
62
,
e3868
(
2012
).
6.
J. S.
Harunaga
and
K. M.
Yamada
,
Matrix Biol.
30
(
7–8
),
363
368
(
2011
).
7.
H.
Tian
,
J.
Pang
,
K.
Qin
,
W.
Yuan
,
J.
Kong
,
H.
Ma
,
J.
He
,
X.
Yang
,
Y.
Luo
,
Y.
Lu
,
B.
Lin
, and
T.
Liu
,
Biotechnol. J.
15
(
2
),
1900107
(
2020
).
8.
X. J.
Li
,
A. V.
Valadez
,
P.
Zuo
, and
Z.
Nie
,
Bioanalysis
4
(
12
),
1509
1525
(
2012
).
9.
O. E.
Atat
,
Z.
Farzaneh
,
M.
Pourhamzeh
,
F.
Taki
,
R.
Abi-Habib
,
M.
Vosough
, and
M.
El-Sibai
,
Hum. Cell
35
(
1
),
23
36
(
2022
).
10.
K. M.
Yamada
and
E.
Cukierman
,
Cell
130
(
4
),
601
610
(
2007
).
11.
X.
Zhang
,
M.
Karim
,
M. M.
Hasan
,
J.
Hooper
,
R.
Wahab
,
S.
Roy
, and
T. A.
Al-Hilal
,
Cancers
14
(
3
),
648
(
2022
).
12.
E.
Lee
,
H. G.
Song
, and
C. S.
Chen
,
Curr. Opin. Chem. Eng.
11
,
20
27
(
2016
).
13.
R.
Kalot
,
R.
Mhanna
, and
R.
Talhouk
,
Pharmacol. Ther.
237
,
108156
(
2022
).
14.
N.
Dhiman
,
P.
Kingshott
,
H.
Sumer
,
C. S.
Sharma
, and
S. N.
Rath
,
Biosens. Bioelectron.
137
,
236
254
(
2019
).
15.
H.
Wang
,
G.
Tan
,
L.
Dong
,
L.
Cheng
,
K.
Li
,
Z.
Wang
, and
H.
Luo
,
Plos One
7
(
4
),
e34210
(
2012
).
16.
K. M.
Ibiyeye
,
N.
Nordin
,
M.
Ajat
, and
A. B. Z.
Zuki
,
Front. Oncol.
9
,
599
(
2019
).
17.
S. S.
Qi
,
J. H.
Sun
,
H. H.
Yu
, and
S. Q.
Yu
,
Drug Deliv.
24
(
1
),
1909
1926
(
2017
).
18.
D. L.
Jardim
,
D. D. M.
Gagliato
,
M.
Nikanjam
,
D. A.
Barkauskas
, and
R.
Kurzrock
,
Oncolmmunology
9
(
1
),
e1710052
(
2019
).
19.
C. M.
Bachelard
,
E.
Coquan
,
P.
Rusquec
,
X.
Paoletti
, and
C. L.
Tourneau
,
EClinicalMedicine
40
,
101130
(
2021
).
20.
M. K.
Yan
,
N. R.
Adler
,
N.
Heriot
,
C.
Shang
,
J. R.
Zalcberg
,
S.
Evans
,
R.
Wolfe
, and
V. J.
Mar
,
Asia-Pac. J. Clin. Oncol.
18
(
4
),
344
352
(
2022
).
21.
D. B.
Fogel
,
Contemp. Clin. Trials Commun.
11
,
156
164
(
2018
).
22.
T.
Baltazar
,
N. S.
Kajave
,
M.
Rodriguez
,
S.
Chakraborty
,
B.
Jiang
,
A.
Skardal
,
V.
Kishore
,
J. S.
Pober
, and
M. Z.
Albanna
,
J. Biomed. Mater. Res. B Appl. Biomater.
110
(
10
),
2323
2337
(
2022
).
23.
O.
De Wever
,
A.
Hendrix
,
A.
De Boeck
,
W.
Westbroek
,
G.
Braems
,
S.
Emami
,
M.
Sabbah
,
C.
Gespach
, and
M.
Bracke
,
Int. J. Dev. Biol.
54
(
5
),
887
896
(
2010
).
24.
W.
Sun
,
C. T.
Lim
, and
N. A.
Kurniawan
,
J. R. Soc. Interface
11
(
99
),
20140638
(
2014
).
25.
J.
Plou
,
Y.
Juste-Lanas
,
V.
Olivares
,
C.
delAmo
,
C.
Borau
, and
J. M.
Garcia-Aznar
,
Sci. Rep.
8
(
1
),
12723
(
2018
).
26.
J. E.
Kim
,
D. S.
Reynolds
,
M. H.
Zaman
, and
M.
Mak
,
Integr. Biol.
10
(
4
),
232
241
(
2018
).
27.
J.
Yao
,
G.
Li
,
Y.
Jiao
,
Y.
Zheng
,
Y.
Liu
,
G.
Wang
,
L.
Zhou
,
H.
Zhang
,
X.
Zhang
,
J.
Shuai
,
Q.
Fan
,
F.
Ye
,
S.
Lou
,
G.
Chen
,
K.
Song
,
Y.
Liao
, and
L.
Liu
,
Lab Chip
21
(
15
),
3004
3018
(
2021
).
28.
M. R.
Carvalho
,
D.
Barata
,
L. M.
Teixeira
,
S.
Giselbrecht
,
R. L.
Reis
,
J. M.
Oliveira
,
R.
Truckenmüller
, and
P.
Habibovic
,
Sci. Adv.
5
(
5
),
eaaw1317
(
2019
).
29.
Y.
Pei
,
X.
Wang
,
W.
Huang
,
P.
Liu
, and
L.
Zhang
,
Cellulose
20
(
4
),
1897
1909
(
2013
).
30.
Y.
Jiao
and
S.
Torquato
,
Phys. Biol.
9
(
3
),
036009
(
2012
).
31.
T. M.
Abu Samaan
,
M.
Samec
,
A.
Liskova
,
P.
Kubatka
, and
D.
Busselberg
,
Biomolecules
9
(
12
),
789
(
2019
).
32.
S.
Murray
,
E.
Briasoulis
,
H.
Linardou
,
D.
Bafaloukos
, and
C.
Papadimitriou
,
Cancer Treat. Rev.
38
(
7
),
890
903
(
2012
).
33.
C.
Delfino
,
G.
Caccia
,
L. R.
Gonzales
,
E.
Mickiewicz
,
J.
Rodger
,
L.
Balbiani
,
D. F.
Morales
,
A. Z.
Comba
, and
C.
Brosio
,
Oncology
66
(
1
),
18
23
(
2004
).
34.
B.
Wirk
and
E.
Perez
,
Semin. Oncol.
33
(
1
),
S6
S14
(
2006
).
35.
M.
Gao
,
L.
Duan
,
J.
Luo
,
L.
Zhang
,
X.
Lu
,
Y.
Zhang
,
Z.
Zhang
,
Z.
Tu
,
Y.
Xu
,
X.
Ren
, and
K.
Ding
,
J. Med. Chem.
56
(
8
),
3281
3295
(
2013
).
36.
Q. P.
Lu
,
W. D.
Chen
,
J. R.
Peng
,
Y. D.
Xu
,
Q.
Cai
,
G. K.
Feng
,
K.
Ding
,
X. F.
Zhu
, and
Z.
Guan
,
Oncol. Lett.
12
(
5
),
3598
3608
(
2016
).
37.
B.
Xiao
,
L.
Ma
, and
D.
Merlin
,
Expert Opin. Drug Deliv.
14
(
1
),
65
73
(
2017
).
38.
F.
Cappuzzo
,
F.
Mazzoni
,
A.
Gennari
,
S.
Donati
,
B.
Salvadori
,
C.
Orlandini
,
G. L.
Cetto
,
A.
Molino
,
E.
Galligioni
,
M.
Mansutti
,
S.
Tumolo
,
A.
Lucentini
,
F.
Valduga
,
S.
Bartolini
,
L.
Crino
, and
P. F.
Conte
,
Br. J. Cancer
90
(
1
),
31
35
(
2004
).
39.
K. Y.
Aguilera
,
H.
Huang
,
W.
Du
,
M. M.
Hagopian
,
Z.
Wang
,
S.
Hinz
,
T. H.
Hwang
,
H.
Wang
,
J. B.
Fleming
,
D. H.
Castrillon
,
X.
Ren
,
K.
Ding
, and
R. A.
Brekken
,
Mol. Cancer Ther.
16
(
11
),
2473
2485
(
2017
).
40.
A.
Krtolica
,
C. O. D.
Solorzano
,
S.
Lockett
, and
J.
Campisi
,
Cytometry
49
(
2
),
73
82
(
2002
).
41.
W.
Zhang
,
M.
Feng
,
G.
Zheng
,
Y.
Chen
,
X.
Wang
,
B.
Pen
,
J.
Yin
,
Y.
Yu
, and
Z.
He
,
Biochem. Biophys. Res. Commun.
417
(
2
),
679
685
(
2012
).
42.
N.
Yamamoto
,
P.
Jiang
,
M.
Yang
,
M.
Xu
,
K.
Yamauchi
,
H.
Tsuchiya
,
K.
Tomita
,
G. M.
Wahl
,
A. R.
Moossa
, and
R. M.
Hoffman
,
Cancer Res.
64
(
12
),
4251
4256
(
2004
).
43.
M. P.
Sanchez-Bailon
,
A.
Calcabrini
,
D.
Gomez-Dominguez
,
B.
Morte
,
E.
Martin-Forero
,
G.
Gomez-Lopez
,
A.
Molinari
,
K. U.
Wagner
, and
J.
Martin-Perez
,
Cell. Signal.
24
(
6
),
1276
1286
(
2012
).
44.
J. S.
Nam
,
Y.
Ino
,
M.
Sakamoto
, and
S.
Hirohashi
,
Clin. Cancer Res.
8
(
7
),
2430
2436
(
2002
).
45.
Y. H.
Chan
,
G. J.
Chang
,
Y. J.
Lai
,
W. J.
Chen
,
S. H.
Chang
,
L. M.
Hung
,
C. T.
Kuo
, and
Y. H.
Yeh
,
Cardiovasc. Diabetol.
18
(
1
),
125
(
2019
).
46.
L.
Castro-Sanchez
,
A.
Soto-Guzman
,
M.
Guaderrama-Diaz
,
P.
Cortes-Reynosa
, and
E. P.
Salazar
,
Clin. Exp. Metastasis
28
(
5
),
463
477
(
2011
).
47.
E. G.
Graham
,
E. M.
Wailes
, and
N. H.
Levi-Polyachenko
,
J. Biomed. Nanotechnol.
12
(
2
),
308
319
(
2016
).

Supplementary Material

You do not currently have access to this content.