Paper has attracted significant attention recently as a microfluidic component and platform, especially in passive pumping devices due to its porous and uniform absorbing nature. Many investigations on 1D and 2D fluid flows were carried out. However, no experimental work has been reported on the three-dimensional effect in porous geometry to improve pumping characteristics in microchannels. Therefore, in this study, the fluid flow in 3D paper-based passive pumps was investigated in microchannels using cylindrical pumps. The effect of pump diameter, porosity, and programmability was investigated to achieve desired flow variations. The results indicated that the flow rate of water increased with an increase in the diameter and porosity of paper pumps. Maximum flow rates achieved for 14 mm diameter pumps of 0.5 and 0.7 porosities were 5.29 mm3/s (317.4 μl/min) and 6.97 mm3/s (418.2 μl/min), respectively. The total volume of fluid imbibition ranged between 266 and 567 μl for 8 and 14 mm diameter pumps, respectively. Moreover, 3D passive pumps can transport larger volumes of liquid with an improved flow rate, programmability, and control, in addition to being inexpensive and simple to design and fabricate. Most importantly, a single 3D paper pump showed an increasing, decreasing, and constant flow rate all in a single microchannel. With these benefits, the passive pumps can further improve the pumping characteristics of microfluidic platforms enabling a cost effective and programmable point-of-care diagnostic device.

1.
B.
Weigl
,
G.
Domingo
,
P.
LaBarre
, and
J.
Gerlach
,
Lab Chip
8
(
12
),
1999
2014
(
2008
).
2.
L.
Xu
,
A.
Wang
,
X.
Li
, and
K. W.
Oh
,
Biomicrofluidics
14
(
3
),
031503
(
2020
).
3.
S.
Derakhshan
and
K.
Yazdani
,
J. Mech.
32
(
1
),
55
62
(
2016
).
4.
M. K.
Dehghan Manshadi
,
D.
Khojasteh
,
M.
Mohammadi
, and
R.
Kamali
,
Int. J. Numer. Model.: Electron. Netw. Devices Fields
29
(
5
),
845
858
(
2016
).
5.
J.
Kang
and
G. W.
Auner
,
Sens. Actuators A
167
(
2
),
512
516
(
2011
).
6.
C. N.
Nhu
,
L. L.
Van
,
A. N.
Ngoc
,
V. T.
Dau
,
T. T.
Bui
, and
T. C.
Duc
,
Int. J. Nanotechnol.
15
(
11-12
),
1010
1023
(
2018
).
7.
T. M.
Squires
and
S. R.
Quake
,
Rev. Mod. Phys.
77
(
3
),
977
1026
(
2005
).
8.
S. K.
Yoon
,
G. W.
Fichtl
, and
P. J. A.
Kenis
,
Lab Chip
6
(
12
),
1516
1524
(
2006
).
9.
A.
Olanrewaju
,
M.
Beaugrand
,
M.
Yafia
, and
D.
Juncker
,
Lab Chip
18
(
16
),
2323
2347
(
2018
).
10.
G. M.
Walker
and
D. J.
Beebe
,
Lab Chip
2
(
3
),
131
134
(
2002
).
11.
C.
Nie
,
A. J.
Frijns
,
R.
Mandamparambil
, and
J. M. J.
den Toonder
,
Biomed. Microdevices
17
(
2
),
47
(
2015
).
12.
Y.
Luo
,
J.
Qin
, and
B.
Lin
,
Front. Biosci. (Landmark Ed.)
14
(
10
),
3913
3924
(
2009
).
13.
B.
Yao
,
J.
Zhang
,
T.
Kou
,
Y.
Song
,
T.
Liu
, and
Y.
Li
,
Adv. Sci.
4
(
7
),
1700107
(
2017
).
14.
Y.
Zhang
,
L.
Zhang
,
K.
Cui
,
S.
Ge
,
X.
Cheng
,
M.
Yan
,
J.
Yu
, and
H.
Liu
,
Adv. Mater.
30
(
51
),
1801588
(
2018
).
15.
X.
Wang
,
J. A.
Hagen
, and
I.
Papautsky
,
Biomicrofluidics
7
(
1
),
014107
(
2013
).
16.
S.
Patari
and
P. S.
Mahapatra
,
ACS Omega
5
(
36
),
22931
22939
(
2020
).
17.
R. R.
Niedl
and
C.
Beta
,
Lab Chip
15
(
11
),
2452
2459
(
2015
).
18.
A. T.
Jafry
,
H.
Lim
,
W.-K.
Sung
, and
J.
Lee
,
Microfluid. Nanofluidics
21
(
3
),
57
(
2017
).
19.
J.
Park
and
J.-K.
Park
,
Sens. Actuators, B
246
,
1049
1055
(
2017
).
20.
S.
Mendez
,
E. M.
Fenton
,
G. R.
Gallegos
,
D. N.
Petsev
,
S. S.
Sibbett
,
H. A.
Stone
,
Y.
Zhang
, and
G. P.
López
,
Langmuir
26
(
2
),
1380
1385
(
2010
).
21.
B. M.
Cummins
,
R.
Chinthapatla
,
B.
Lenin
,
F. S.
Ligler
, and
G. M.
Walker
,
Technology
05
(
01
),
21
30
(
2017
).
22.
B.
Gao
,
J.
Chi
,
H.
Liu
, and
Z.
Gu
,
Sci. Rep.
7
(
1
),
7255
(
2017
).
23.
S.
Jahanshahi-Anbuhi
,
P.
Chavan
,
C.
Sicard
,
V.
Leung
,
S. M. Z.
Hossain
,
R.
Pelton
,
J. D.
Brennan
, and
C. D. M.
Filipe
,
Lab Chip
12
(
23
),
5079
5085
(
2012
).
24.
E. T. S. G.
da Silva
,
M.
Santhiago
,
F. R.
de Souza
,
W. K. T.
Coltro
, and
L. T.
Kubota
,
Lab Chip
15
(
7
),
1651
1655
(
2015
).
25.
H. H.
Cho
,
S. J.
Kim
,
A. T.
Jafry
,
B.
Lee
,
J. H.
Heo
,
S.
Yoon
,
S. H.
Jeong
,
S.-I.
Kang
,
J. H.
Lee
, and
J.
Lee
,
Part. Part. Syst. Charact.
36
(
6
),
1800483
(
2019
).
26.
C. K.
Camplisson
,
K. M.
Schilling
,
W. L.
Pedrotti
,
H. A.
Stone
, and
A. W.
Martinez
,
Lab Chip
15
(
23
),
4461
4466
(
2015
).
27.
R. B.
Channon
,
M. P.
Nguyen
,
A. G.
Scorzelli
,
E. M.
Henry
,
J.
Volckens
,
D. S.
Dandy
, and
C. S.
Henry
,
Lab Chip
18
(
5
),
793
802
(
2018
).
28.
C.
Renault
,
X.
Li
,
S. E.
Fosdick
, and
R. M.
Crooks
,
Anal. Chem.
85
(
16
),
7976
7979
(
2013
).
29.
D. L.
Giokas
,
G. Z.
Tsogas
, and
A. G.
Vlessidis
,
Anal. Chem.
86
(
13
),
6202
6207
(
2014
).
30.
J.-H.
Shin
,
G.-J.
Lee
,
W.
Kim
, and
S.
Choi
,
Sens. Actuators, B
230
,
380
387
(
2016
).
31.
B.
Kalish
,
M. K.
Tan
, and
H.
Tsutsui
,
Micromachines
11
(
8
),
773
(
2020
).
32.
F.
Dal Dosso
,
T.
Kokalj
,
J.
Belotserkovsky
,
D.
Spasic
, and
J.
Lammertyn
,
Biomed. Microdevices
20
(
2
),
44
(
2018
).
33.
A.
Nilghaz
,
L.
Guan
,
W.
Tan
, and
W.
Shen
,
ACS Sens.
1
(
12
),
1382
1393
(
2016
).
34.
L. C.
Delon
,
A.
Nilghaz
,
E.
Cheah
,
C.
Prestidge
, and
B.
Thierry
,
Adv. Healthcare Mater.
9
(
11
),
1901784
(
2020
).

Supplementary Material

You do not currently have access to this content.