Microfluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method. In this method, ceramic suspension fluid was shaped into a square mesh by controlling Saffman Taylor instability in a multiport lifted Hele–Shaw cell (MLHSC). Using the shaped ceramic structure as the template, μCGG was prepared by soft lithography. The concentration gradient was characterized and effect of the flow rates was studied using COMSOL simulations. The simulation result was further validated by creating a fluorescein dye (fluorescein isothiocanate) gradient in the fabricated μCGG. To demonstrate the use of this device for drug testing, we created various concentrations of an anticancer drug—curcumin—using the device and determined its inhibitory concentration on cervical cancer cell-line HeLa. We found that the IC50 of curcumin for HeLa matched well with the conventional multi-well drug testing method. This method of μCGG fabrication has multiple advantages over conventional photolithography such as: (i) the channel layout and inlet-outlet arrangements can be changed by simply wiping the ceramic fluid before it solidifies, (ii) it is cost effective, (iii) large area patterning is easily achievable, and (iv) the method is scalable. This technique can be utilized to achieve a broad range of concentration gradient to be used for various biological and non-biological applications.

1.
Y.
Hu
,
B.
Liu
,
Y.
Wu
,
M.
Li
,
X.
Liu
,
J.
Ding
,
X.
Han
,
Y.
Deng
,
W.
Hu
, and
C.
Zhong
,
Front. Chem.
8
, 1 (
2020
).
2.
S.
Ahrar
,
M.
Hwang
,
P. N.
Duncan
, and
E. E.
Hui
,
Analyst
139
,
187
(
2014
).
3.
C.
Kim
,
K.
Lee
,
J. H.
Kim
,
K. S.
Shin
,
K.-J.
Lee
,
T. S.
Kim
, and
J. Y.
Kang
,
Lab Chip
8
,
473
(
2008
).
4.
T. H.
Kim
,
J. M.
Lee
,
B. H.
Chung
, and
B. G.
Chung
,
Nano Converg.
2
,
12
(
2015
).
5.
Y.
Gao
,
X.
Pan
,
S.
Xu
,
Z.
Liu
,
J.
Wang
,
K.
Yu
,
C.
Wang
,
H.
Yuan
, and
S.
Wu
,
Mater. Des.
191
,
108693
(
2020
).
6.
J. M.
Campbell
,
J. B.
Balhoff
,
G. M.
Landwehr
,
S. M.
Rahman
,
M.
Vaithiyanathan
, and
A. T.
Melvin
,
Int. J. Mol. Sci.
19
,
2731
(
2018
).
7.
B. J.
Kim
and
M.
Wu
,
Ann. Biomed. Eng.
40
,
1316
(
2012
).
8.
C.-W.
Chi
,
A. R.
Ahmed
,
Z.
Dereli-Korkut
, and
S.
Wang
,
Bioanalysis
8
,
921
(
2016
).
9.
X.
Wang
,
Z.
Liu
, and
Y.
Pang
,
RSC Adv.
7
,
29966
(
2017
).
10.
B.
Lin
and
A.
Levchenko
,
Front. Bioeng. Biotechnol.
3
, 1 (
2015
).
11.
A. J.
Khadpekar
,
M.
Khan
,
A.
Sose
, and
A.
Majumder
,
Sci. Rep.
9
,
1024
(
2019
).
12.
B.
Hong
,
P.
Xue
,
Y.
Wu
,
J.
Bao
,
Y. J.
Chuah
, and
Y.
Kang
,
Biomed. Microdev.
18
,
21
(
2016
).
13.
A. C.
Glavan
,
R. V.
Martinez
,
E. J.
Maxwell
,
A. B.
Subramaniam
,
R. M. D.
Nunes
,
S.
Soh
, and
G. M.
Whitesides
,
Lab Chip
13
,
2922
(
2013
).
14.
S.
Ramesan
,
A. R.
Rezk
,
K. W.
Cheng
,
P. P. Y.
Chan
, and
L. Y.
Yeo
,
Lab Chip
16
,
2820
(
2016
).
15.
T.
ul Islam
and
P. S.
Gandhi
,
Sci. Rep.
7
,
16602
(
2017
).
16.
T.
ul Islam
and
P. S.
Gandhi
,
Sci. Rep.
6
,
37187
(
2016
).
17.
S. D.
Kanhurkar
,
P. S.
Gandhi
, and
A.
Bhattacharya
,
Chem. Eng. Sci.
252
,
117499
(
2022
).
18.
N.
Mundhara
,
A.
Majumder
, and
D.
Panda
,
Sci. Rep.
9
,
7638
(
2019
).
19.
S. D.
Kanhurkar
,
V.
Patankar
,
T.
ul Islam
,
P. S.
Gandhi
, and
A.
Bhattacharya
,
Phys. Rev. Fluids
4
,
094003
(
2019
).
20.
Y.
Zhou
,
Y.
Wang
,
T.
Mukherjee
, and
Q.
Lin
,
Lab Chip
9
,
1439
(
2009
).
21.
S. K. W.
Dertinger
,
D. T.
Chiu
,
N. L.
Jeon
, and
G. M.
Whitesides
,
Anal. Chem.
73
,
1240
(
2001
).
22.
G. M.
Walker
,
J.
Sai
,
A.
Richmond
,
M.
Stremler
,
C. Y.
Chung
, and
J. P.
Wikswo
,
Lab Chip
5
,
611
(
2005
).
23.
B. G.
Chung
,
L. A.
Flanagan
,
S. W.
Rhee
,
P. H.
Schwartz
,
A. P.
Lee
,
E. S.
Monuki
, and
N. L.
Jeon
,
Lab Chip
5
,
401
(
2005
).
24.
A.
Nilghaz
,
D. R.
Ballerini
, and
W.
Shen
,
Biomicrofluidics
7
,
051501
(
2013
).
25.
A. G. G.
Toh
,
Z. P.
Wang
,
C.
Yang
, and
N.-T.
Nguyen
,
Microfluid. Nanofluidics
16
,
1
(
2014
).

Supplementary Material

You do not currently have access to this content.