Encoded microparticles have great potential in small-volume multiplexed assays. It is important to link the micro-level assays to the macro-level by indexing and manipulating the microparticles to enhance their versatility. There are technologies to actively manipulate the encoded microparticles, but none is capable of directly manipulating the encoded microparticles with homogeneous physical properties. Here, we report the image-based laser-induced forward transfer system for active manipulation of the graphically encoded microparticles. By demonstrating the direct retrieval of the microparticles of interest, we show that this system has the potential to expand the usage of encoded microparticles.

1.
H.
Lee
,
J.
Kim
,
H.
Kim
,
J.
Kim
, and
S.
Kwon
, “
Colour-barcoded magnetic microparticles for multiplexed bioassays
,”
Nat. Mater.
9
,
745
749
(
2010
).
2.
G.
Svedberg
 et al., “
Towards encoded particles for highly multiplexed colorimetric point of care autoantibody detection
,”
Lab Chip
17
,
549
556
(
2017
).
3.
J.
Kim
,
S.
Bae
,
S.
Song
,
K.
Chung
, and
S.
Kwon
, “
Fiber composite slices for multiplexed immunoassays
,”
Biomicrofluidics
9
,
044109
(
2015
).
4.
J. F.
Djoba Siawaya
 et al., “
An evaluation of commercial fluorescent bead-based luminex cytokine assays
,”
PLoS One
3
,
e2535
(
2008
).
5.
S. W.
Song
 et al., “
One-step generation of a drug-releasing hydrogel microarray-on-a-chip for large-scale sequential drug combination screening
,”
Adv. Sci.
6
,
1801380
(
2019
).
6.
S.
Eun Chung
 et al., “
One-step pipetting and assembly of encoded chemical-laden microparticles for high-throughput multiplexed bioassays
,”
Nat. Commun.
5
,
3468
(
2014
).
7.
Y.
Song
 et al., “
Liquid-capped encoded microcapsules for multiplex assays
,”
Lab Chip
17
,
429
437
(
2017
).
8.
H. E.
Muñoz
,
J.
Che
,
J. E.
Kong
, and
D.
Di Carlo
, “
Advances in the production and handling of encoded microparticles
,”
Lab Chip
14
,
2212
2216
(
2014
).
9.
D.
Zhang
,
J.
De
,
Y.
Lei
, and
H.
Fu
, “
Organic multicomponent microparticle libraries
,”
Nat. Commun.
12
,
1
10
(
2021
).
10.
A.
Subramanian
 et al., “
A next generation connectivity map: L1000 platform and the first 1,000,000 profiles
,”
Cell
171
,
1437
1452.e17
(
2017
).
11.
Y.
Choi
 et al., “
High information capacity DNA-based data storage with augmented encoding characters using degenerate bases
,”
Sci. Rep.
9
,
1
7
(
2019
).
12.
E. M.
Payne
,
D. A.
Holland-Moritz
,
S.
Sun
, and
R. T.
Kennedy
, “
High-throughput screening by droplet microfluidics: Perspective into key challenges and future prospects
,”
Lab Chip
20
,
2247
2262
(
2020
).
13.
Y.
Feng
,
A. K.
White
,
J. B.
Hein
,
E. A.
Appel
, and
P. M.
Fordyce
, “
MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device
,”
Microsyst. Nanoeng.
6
,
1
13
(
2020
).
14.
T. H.
Linz
,
W.
Hampton Henley
, and
J.
Michael Ramsey
, “
Photobleaching kinetics-based bead encoding for multiplexed bioassays
,”
Lab Chip
17
,
1076
1082
(
2017
).
15.
R.
MacArron
 et al., “
Impact of high-throughput screening in biomedical research
,”
Nat. Rev. Drug Discovery
10
,
188
195
(
2011
).
16.
C.
Ye
 et al., “
DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery
,”
Nat. Commun.
91
(9),
1
9
(
2018
).
17.
T.
Tronser
,
A. A.
Popova
, and
P. A.
Levkin
, “
Miniaturized platform for high-throughput screening of stem cells
,”
Curr. Opin. Biotechnol.
46
,
141
149
(
2017
).
18.
W.
Lei
 et al., “
Droplet-microarray: Miniaturized platform for high-throughput screening of antimicrobial compounds
,”
Adv. Biosyst.
4
,
2000073
(
2020
).
19.
S. W.
Song
 et al., “
Uniform drug loading into prefabricated microparticles by freeze-drying
,”
Part. Part. Syst. Charact.
34
,
1600427
(
2017
).
20.
J.
Zhou
,
P.
Mukherjee
,
H.
Gao
,
Q.
Luan
, and
I.
Papautsky
, “
Label-free microfluidic sorting of microparticles
,”
APL Bioeng.
3
,
041504
(
2019
).
21.
K.
Yiannacou
and
V.
Sariola
, “
Controlled manipulation and active sorting of particles inside microfluidic chips using bulk acoustic waves and machine learning
,”
Langmuir
37
,
4192
4199
(
2021
).
22.
Y.
Zhang
 et al., “
From passive to active sorting in microfluidics: A review
,”
Rev. Adv. Mater. Sci.
60
,
313
324
(
2021
).
23.
W.
Wu
 et al., “
Precise sorting of gold nanoparticles in a flowing system
,”
ACS Photonics
3
,
2497
2504
(
2016
).
24.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluidics
17
,
1
52
(
2014
).
25.
D. J.
Collins
,
A.
Neild
, and
Y.
Ai
, “
Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting
,”
Lab Chip
16
,
471
479
(
2016
).
26.
J. D.
Adams
and
H. T.
Soh
, “
Tunable acoustophoretic band-pass particle sorter
,”
Appl. Phys. Lett.
97
,
064103
(
2010
).
27.
A. H. J.
Yang
and
H. T.
Soh
, “
Acoustophoretic sorting of viable mammalian cells in a microfluidic device
,”
Anal. Chem.
84
,
10756
10762
(
2012
).
28.
S.
Li
 et al., “
High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip
,”
Biomicrofluidics
7
,
024106
(
2013
).
29.
M.
Alshareef
 et al., “
Separation of tumor cells with dielectrophoresis-based microfluidic chip
,”
Biomicrofluidics
7
,
011803
(
2013
).
30.
L.
Mazutis
 et al., “
Single-cell analysis and sorting using droplet-based microfluidics
,”
Nat. Protoc.
8
,
870
891
(
2013
).
31.
M.
Hajari
,
A.
Ebadi
,
M. J.
Farshchi Heydari
,
M.
Fathipour
, and
M.
Soltani
, “
Dielectrophoresis-based microfluidic platform to sort micro-particles in continuous flow
,”
Microsyst. Technol.
26
,
751
763
(
2020
).
32.
S.
Fiedler
,
S. G.
Shirley
,
T.
Schnelle
, and
G.
Fuhr
, “
Dielectrophoretic sorting of particles and cells in a microsystem
,”
Anal. Chem.
70
,
1909
1915
(
1998
).
33.
Y.
Jo
,
F.
Shen
,
Y. K.
Hahn
,
J. H.
Park
, and
J. K.
Park
, “
Magnetophoretic sorting of single cell-containing microdroplets
,”
Micromachines
7
,
56
(
2016
).
34.
M.
Hejazian
,
W.
Li
, and
N. T.
Nguyen
, “
Lab on a chip for continuous-flow magnetic cell separation
,”
Lab Chip
15
,
959
970
(
2015
).
35.
A.
Mocciaro
 et al., “
Light-activated cell identification and sorting (LACIS) for selection of edited clones on a nanofluidic device
,”
Commun. Biol.
1
,
1
8
(
2018
).
36.
I.
Ricárdez-Vargas
,
P.
Rodríguez-Montero
,
R.
Ramos-García
, and
K.
Volke-Sepúlveda
, “
Modulated optical sieve for sorting of polydisperse microparticles
,”
Appl. Phys. Lett.
88
,
121116
(
2006
).
37.
J.
Marcos Fernández-Pradas
and
P.
Serra
, “
Laser-induced forward transfer: A method for printing functional inks
,”
Crystals
10
,
651
(
2020
).
38.
A.
Palla-Papavlu
 et al., “
Microfabrication of polystyrene microbead arrays by laser induced forward transfer
,”
J. Appl. Phys.
108
,
033111
(
2010
).
39.
A. I.
Kuznetsov
,
R.
Kiyan
, and
B. N.
Chichkov
, “
Laser fabrication of 2D and 3D metal nanoparticle structures and arrays
,”
Opt. Express
18
(
20
),
21198
21203
(
2010
).
40.
J.
Marcos Fernández-Pradas
and
P.
Serra
, “
Laser-induced forward transfer: A method for printing functional inks
,”
Crystals
10
,
651
(
2020
).
41.
J.
Luo
 et al., “
Printing functional 3D microdevices by laser-induced forward transfer
,”
Small
13
,
1602553
(
2017
).

Supplementary Material

You do not currently have access to this content.