The alveolus is a basic functional unit of the human respiratory system, and the airflow in the alveoli plays an important role in determining the transport and deposition of particulate matter, which is crucial for inhaled disease diagnosis and drug delivery. In the present study, taking advantage of the precise control ability of the microfluidic technique, a rhythmically expanding alveolar chip with multiple alveoli in two generations is designed and both the geometric and kinematic similarities are matched with the real human respiration system. With the help of a micro-PIV measurement system, the microflow patterns inside each alveolus can be studied. The observed vortex and radial flow patterns and the discovery of stagnant saddle points are similar to those captured in our previous platform with only one alveolus [Lv et al., Lab Chip 20, 2394–2402 (2020)]. However, the interactions between multiple alveoli also uncover new phenomena, such as the finding of stagnant saddle points in non-vortex flow patterns and significant differences in the flow pattern around the points between the time of T/4 and 3T/4. The obtained results could enrich the understanding of microflow in a whole alveolar tree with multiple generations.

1.
Berg
,
E. J.
and
Robinson
,
R. J.
, “
Stereoscopic particle image velocimetry analysis of healthy and emphysemic alveolar sac models
,”
J. Biomech. Eng.
133
,
061004
(
2011
).
2.
Berg
,
E. J.
,
Weisman
,
J. L.
,
Oldham
,
M. J.
, and
Robinson
,
R. J.
, “
Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV)
,”
J. Biomech.
43
,
1039
1047
(
2010
).
3.
Boillot
,
A.
and
Prasad
,
A. K.
, “
Optimization procedure for pulse separation in cross-correlation PIV
,”
Exp. Fluids
21
,
87
93
(
1996
).
4.
Butler
,
J. P.
and
Tsuda
,
A.
, “
Logistic trajectory maps and aerosol mixing due to asynchronous flow at airway bifurcations
,”
Respir. Physiol. Neurobiol.
148
,
195
206
(
2005
).
5.
Chhabra
,
S.
and
Prasad
,
A. K.
, “
Flow and particle dispersion in lung acini: Effect of geometric and dynamic parameters during synchronous ventilation
,”
J. Fluids Eng.
133
,
071001
(
2011
).
6.
Ciloglu
,
D.
,
Athari
,
H.
,
Bolukbasi
,
A.
, and
Rosen
,
M.
, “
Importance of physical and physiological parameters in simulated particle transport in the alveolar zone of the human lung
,”
Appl. Sci.
7
,
113
(
2017
).
7.
Cinkotai
,
F. F.
, “
Fluid flow in a model alveolar sac
,”
J. Appl. Physiol.
37
,
249
251
(
1974
).
8.
Dong
,
J.
,
Qiu
,
Y.
,
Lv
,
H.
,
Yang
,
Y.
, and
Zhu
,
Y.
, “
Investigation on microparticle transport and deposition mechanics in rhythmically expanding alveolar chip
,”
Micromachines
12
,
184
(
2021
).
9.
Dong
,
J.
,
Yang
,
Y.
, and
Zhu
,
Y. G.
, “
New insight into air flow distribution in alveoli based on air- and saline-filled lungs
,”
Microfluid. Nanofluid.
24
,
13
(
2020
).
10.
Fishler
,
R.
,
Hofemeier
,
P.
,
Etzion
,
Y.
,
Dubowski
,
Y.
, and
Sznitman
,
J.
, “
Particle dynamics and deposition in true-scale pulmonary acinar models
,”
Sci. Rep.
5
,
14071
(
2015
).
11.
Fishler
,
R.
,
Mulligan
,
M. K.
, and
Sznitman
,
J.
, “
Acinus-on-a-chip: A microfluidic platform for pulmonary acinar flows
,”
J. Biomech.
46
,
2817
2823
(
2013
).
12.
Fishler
,
R.
,
Ostrovski
,
Y.
,
Lu
,
C. Y.
, and
Sznitman
,
J.
, “
Streamline crossing: An essential mechanism for aerosol dispersion in the pulmonary acinus
,”
J. Biomech.
50
,
222
227
(
2017
).
13.
Haber
,
S.
,
Butler
,
J. P.
,
Brenner
,
H.
,
Emanuel
,
I.
, and
Tsuda
,
A.
, “
Shear flow over a self-similar expanding pulmonary alveolus during rhythmical breathing
,”
J. Fluid Mech.
405
,
243
268
(
2000
).
14.
Haber
,
S.
,
Yitzhak
,
D.
, and
Tsuda
,
A.
, “
Trajectories and deposition sites of spherical particles moving inside rhythmically expanding alveoli under gravity-free conditions
,”
J. Aerosol Med. Pulm. Drug Deliv.
23
,
405
413
(
2010
).
15.
Haefelibleuer
,
B.
and
Weibel
,
E. R.
, “
Morphometry of the human pulmonary acinus
,”
Anat. Rec.
220
,
401
414
(
1988
).
16.
Henry
,
F. S.
and
Tsuda
,
A.
, “
Onset of alveolar recirculation in the developing lungs and its consequence on nanoparticle deposition in the pulmonary acinus
,”
J. Appl. Physiol.
120
,
38
54
(
2016
).
17.
Henry
,
F. S.
and
Tsuda
,
A.
, “
Radial transport along the human acinar tree
,”
J. Biomech. Eng.
132
,
11
(
2010
).
18.
Henry
,
F. S.
,
Butler
,
J. P.
, and
Tsuda
,
A.
, “
Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theories
,”
J. Appl. Physiol.
92
,
835
845
(
2002
).
19.
Henry
,
F. S.
,
Haber
,
S.
,
Haberthur
,
D.
,
Filipovic
,
N.
,
Milasinovic
,
D.
,
Schittny
,
J. C.
, and
Tsuda
,
A.
, “
The simultaneous role of an alveolus as flow mixer and flow feeder for the deposition of inhaled submicron particles
,”
J. Biomech. Eng.
134
,
121001
(
2012
).
20.
Hofemeier
,
P.
and
Sznitman
,
J.
, “
Revisiting pulmonary acinar particle transport: Convection, sedimentation, diffusion, and their interplay
,”
J. Appl. Physiol.
118
,
1375
1385
(
2015
).
21.
Hofemeier
,
P.
and
Sznitman
,
J.
, “
Role of alveolar topology on acinar flows and convective mixing
,”
J. Biomech. Eng.
136
,
061007
(
2014
).
22.
Hofemeier
,
P.
and
Sznitman
,
J.
, “
The role of anisotropic expansion for pulmonary acinar aerosol deposition
,”
J. Biomech.
49
,
3543
3548
(
2016
).
23.
Hofemeier
,
P.
,
Koshiyama
,
K.
,
Wada
,
S.
, and
Sznitman
,
J.
, “
One (sub-)acinus for all: Fate of inhaled aerosols in heterogeneous pulmonary acinar structures
,”
Eur. J. Pharm. Sci.
113
,
53
63
(
2018
).
24.
Kolanjiyil
,
A. V.
and
Kleinstreuer
,
C.
, “
Modeling airflow and particle deposition in a human acinar region
,”
Comput. Math. Methods Med.
2019
,
1
13
(
2019
).
25.
Koullapis
,
P. G.
,
Stylianou
,
F. S.
,
Sznitman
,
J.
,
Olsson
,
B.
, and
Kassinos
,
S. C
, “
Towards whole-lung simulations of aerosol deposition: A model of the deep lung
,”
J. Aerosol Sci.
144
,
105541
(
2020
).
26.
Lv
,
H.
,
Dong
,
J.
,
Qiu
,
Y.
,
Yang
,
Y.
, and
Zhu
,
Y.
, “
Microflow in a rhythmically expanding alveolar chip with dynamic similarity
,”
Lab Chip
20
,
2394
2402
(
2020
).
27.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
, “
PIV measurements of a microchannel flow
,”
Exp. Fluids
27
,
414
419
(
1999
).
28.
Monjezi
,
M.
,
Saidi
,
M. S.
, and
Ahmadi
,
G.
, “
Submicron particle deposition in pulmonary alveoli during cyclic breathing
,”
Sci. Iran
24
,
1975
1984
(
2017
).
29.
Oakes
,
J. M.
,
Hofemeier
,
P.
,
Vignon-Clementel
,
I. E.
, and
Sznitman
,
J.
, “
Aerosols in healthy and emphysematous in silico pulmonary acinar rat models
,”
J. Biomech.
49
,
2213
2220
(
2016
).
30.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
,
316
319
(
1998
).
31.
Sera
,
T.
,
Kamiya
,
N.
,
Fukushima
,
T.
, and
Tanaka
,
G.
, “
Visualizing the flow patterns in an expanding and contracting pulmonary alveolated duct based On micro-computed tomography images
,”
J. Biomech. Eng.
143
,
074501
(
2021
).
32.
Shachar-Berman
,
L.
,
Ostrovski
,
Y.
,
Koshiyama
,
K.
,
Wada
,
S.
,
Kassinos
,
S. C.
, and
Sznitman
,
J.
, “
Targeting inhaled fibers to the pulmonary acinus: Opportunities for augmented delivery from in silico simulations
,”
Eur. J. Pharm. Sci.
137
,
105003
(
2019
).
33.
Sznitman
,
J.
,
Heimsch
,
T.
,
Wildhaber
,
J. H.
,
Tsuda
,
A.
, and
Rosgen
,
T.
, “
Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree
,”
J. Biomech. Eng.
131
,
031010
(
2009
).
34.
Sznitman
,
J.
,
Schmuki
,
S.
,
Sutter
,
R.
,
Tsuda
,
A.
, and
Rosgen
,
T.
, “
CFD investigation of respiratory flows in a space-filling pulmonary acinus model
,”
WIT Tr. Biomed. Health
12
,
147
-+
(
2007
).
35.
Tippe
,
A.
and
Tsuda
,
A.
, “
Recirculating flow in an expanding alveolar model: Experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus
,”
J. Aerosol Sci.
31
,
979
986
(
2000
).
36.
Tsuda
,
A.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, “
Effects of alveolated duct structure on aerosol kinetics. I. Diffusional deposition in the absence of gravity
,”
J. Appl. Physiol.
76
,
2497
2509
(
1994
).
37.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
, “
Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus
,”
J. Appl. Physiol.
79
,
1055
1063
(
1995
).
38.
Tsuda
,
A.
,
Henry
,
F. S.
, and
Butler
,
J. P.
, “
Gas and aerosol mixing in the acinus
,”
Respir. Physiol. Neurobiol.
163
,
139
149
(
2008
).
39.
Tsuda
,
A.
,
Henry
,
F. S.
,
Otani
,
Y.
,
Haber
,
S.
, and
Butler
,
J. P.
, “
Aerosol transport and deposition in the rhythmically expanding pulmonary acinus
,”
J. Aerosol Med.
9
,
389
408
(
1996
).
40.
Tsuda
,
A.
,
Rogers
,
R. A.
,
Hydon
,
P. E.
, and
Butler
,
J. P.
, “
Chaotic mixing deep in the lung
,”
Proc. Natl. Acad. Sci. U.S.A.
99
,
10173
10178
(
2002
).
41.
van Ertbruggen
,
C.
,
Corieri
,
P.
,
Theunissen
,
R.
,
Riethmuller
,
M. L.
, and
Darquenne
,
C.
, “
Validation of CFD predictions of flow in a 3D alveolated bend with experimental data
,”
J. Biomech.
41
,
399
405
(
2008
).
42.
Weibel
,
E. R.
,
Sapoval
,
B.
, and
Filoche
,
M.
, “
Design of peripheral airways for efficient gas exchange
,”
Respir. Physiol. Neurobiol.
148
,
3
21
(
2005
).
43.
Zhang
,
W.
,
Dong
,
J.
,
Lv
,
H.
,
Bai
,
W.
,
Lu
,
H.
,
Noack
,
B. R.
,
Zhu
,
Y.
, and
Yang
,
Y.
, “
Microparticle transport and sedimentation in a rhythmically expanding alveolar chip
,”
Micromachines
13
,
485
(
2022
).
You do not currently have access to this content.