Inertial, size-based focusing was investigated in the microfluidic labyrinth device consisting of several U-shaped turns along with circular loops. Turns are associated with tight curvature and, therefore, induce strong Dean forces for separating particles; however, systematic studies exploring this possibility do not exist. We characterized the focusing dynamics of different-sized rigid particles, cancer cells, and white blood cells over a range of fluid Reynolds numbers Ref. Streak widths of the focused particle streams at all the turns showed intermittent fluctuations that were substantial for smaller particles and at higher Ref. In contrast, cell streaks were less prone to fluctuations. Computational fluid dynamics simulations revealed the existence of strong turn-induced Dean vortices, which help explain the intermittent fluctuations seen in particle focusing. Next, we developed a measure of pairwise separability to evaluate the quality of separation between focused streams of two different particle sizes. Using this, we assessed the impact of a single sharp turn on separation. In general, the separability was found to vary significantly as particles traversed the tight-curvature U-turn. Comparing the separability at the entry and exit sections, we found that turns either improved or reduced separation between different-sized particles depending on Ref. Finally, we evaluated the separability at the downstream expansion section to quantify the performance of the labyrinth device in terms of achieving size-based enrichment of particles and cells. Overall, our results show that turns are better for cell focusing and separation given that they are more immune to curvature-driven fluctuations in comparison to rigid particles.

1.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Enhanced particle filtration in straight microchannels using shear-modulated inertial migration
,”
Phys. Fluids
20
(
10
),
101702
(
2008
).
2.
A. T.
Ciftlik
,
M.
Ettori
, and
M. A.
Gijs
, “
High throughput-per-footprint inertial focusing
,”
Small
9
(
16
),
2764
2773
(
2013
).
3.
D. R.
Gossett
,
H. T.
Tse
,
J. S.
Dudani
 et al., “
Inertial manipulation and transfer of microparticles across laminar fluid streams
,”
Small
8
(
17
),
2757
2764
(
2012
).
4.
J.
Hansson
,
J. M.
Karlsson
,
T.
Haraldsson
,
H.
Brismar
,
W.
van der Wijngaart
, and
A.
Russom
, “
Inertial microfluidics in parallel channels for high-throughput applications
,”
Lab Chip
12
(
22
),
4644
4650
(
2012
).
5.
S. C.
Hur
,
H. T.
Tse
, and
D.
Di Carlo
, “
Sheathless inertial cell ordering for extreme throughput flow cytometry
,”
Lab Chip
10
(
3
),
274
280
(
2010
).
6.
A. J.
Mach
and
D.
Di Carlo
, “
Continuous scalable blood filtration device using inertial microfluidics
,”
Biotechnol. Bioeng.
107
(
2
),
302
311
(
2010
).
7.
H. A.
Nieuwstadt
,
R.
Seda
,
D. S.
Li
,
J. B.
Fowlkes
, and
J. L.
Bull
, “
Microfluidic particle sorting utilizing inertial lift force
,”
Biomed. Microdevices
13
(
1
),
97
105
(
2011
).
8.
K.
Goda
,
A.
Ayazi
,
D. R.
Gossett
 et al., “
High-throughput single-microparticle imaging flow analyzer
,”
Proc. Natl. Acad. Sci. U.S.A.
109
(
29
),
11630
11635
(
2012
).
9.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
(
5673
),
987
990
(
2004
).
10.
J.
Zhou
,
A.
Kulasinghe
,
A.
Bogseth
,
K.
O’Byrne
,
C.
Punyadeera
, and
I.
Papautsky
, “
Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel
,”
Microsyst. Nanoeng.
5
(
8
),
1
12
(
2019
).
11.
J.
Zhou
,
C.
Tu
,
Y.
Liang
 et al., “
Isolation of cells from whole blood using shear-induced diffusion
,”
Sci. Rep.
8
(
1
),
9411
(
2018
).
12.
A. A.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using dean flows and differential migration
,”
Lab Chip
8
(
11
),
1906
1914
(
2008
).
13.
A.
Russom
,
A. K.
Gupta
,
S.
Nagrath
,
D.
Di Carlo
,
J. F.
Edd
, and
M.
Toner
, “
Differential inertial focusing of particles in curved low-aspect-ratio microchannels
,”
New J. Phys.
11
,
075025
(
2009
).
14.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
15.
G.
Vona
,
A.
Sabile
,
M.
Louha
 et al., “
Isolation by size of epithelial tumor cells: A new method for the immunomorphological and molecular characterization of circulating tumor cells
,”
Am. J. Pathol.
156
(
1
),
57
63
(
2000
).
16.
L.
Zabaglo
,
M. G.
Ormerod
,
M.
Parton
,
A.
Ring
,
I. E.
Smith
, and
M.
Dowsett
, “
Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells
,”
Cytometry A
55
(
2
),
102
108
(
2003
).
17.
H.
Amini
,
W.
Lee
, and
D.
Di Carlo
, “
Inertial microfluidic physics
,”
Lab Chip
14
(
15
),
2739
(
2014
).
18.
H. W.
Hou
,
M. E.
Warkiani
,
B. L.
Khoo
 et al., “
Isolation and retrieval of circulating tumor cells using centrifugal forces
,”
Sci. Rep.
3
,
1259
(
2013
).
19.
M. E.
Warkiani
,
G.
Guan
,
K. B.
Luan
 et al., “
Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells
,”
Lab Chip
14
(
1
),
128
137
(
2014
).
20.
M. E.
Warkiani
,
B. L.
Khoo
,
D. S.
Tan
 et al., “
An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells
,”
Analyst
139
(
13
),
3245
3255
(
2014
).
21.
M. E.
Warkiani
,
B. L.
Khoo
,
L.
Wu
 et al., “
Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics
,”
Nat. Protoc.
11
(
1
),
134
148
(
2016
).
22.
E.
Lin
,
L.
Rivera-Baez
,
S.
Fouladdel
 et al., “
High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells
,”
Cell Syst.
5
(
3
),
295
304.e4
(
2017
).
23.
T. T.
Jin
,
S.
Yan
,
J.
Zhang
,
D.
Yuan
,
X. F.
Huang
, and
W. H.
Li
, “
A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform
,”
Biomicrofluidics
10
(
3
),
3952
3960
(
2016
).
24.
J.
Zhang
,
S.
Yan
,
R.
Sluyter
,
W. H.
Li
,
G.
Alici
, and
N. T.
Nguyen
, “
Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel
,”
Sci. Rep.
4
,
032002
(
2014
).
25.
J.
Zhang
,
W. H.
Li
,
M.
Li
,
G.
Alici
, and
N. T.
Nguyen
, “
Particle inertial focusing and its mechanism in a serpentine microchannel
,”
Microfluid. Nanofluid.
17
(
2
),
305
316
(
2014
).
26.
S. M.
Ahmmed
,
S. S.
Bithi
,
A. A.
Pore
 et al., “
Multi-sample deformability cytometry of cancer cells
,”
APL Bioeng.
2
(
3
),
032002
(
2018
).
27.
A.
Gangadhar
,
H.
Sari-Sarraf
, and
S. A.
Vanapalli
, “Staining-free, in-flow enumeration of tumor cells in blood using digital holographic microscopy and deep learning,” bioRxiv (
2022
).
28.
G.
Moallem
,
A. A.
Pore
,
A.
Gangadhar
,
H.
Sari-Sarraf
, and
S. A.
Vanapalli
, “Detection of live breast cancer cells in brightfield microscopy images containing white blood cells by image analysis and deep learning,” bioRxiv (
2021
).
29.
D. R.
Gossett
and
D.
Di Carlo
, “
Particle focusing mechanisms in curving confined flows
,”
Anal. Chem.
81
(
20
),
8459
8465
(
2009
).
30.
B.
Ho
and
L.
Leal
, “
Inertial migration of rigid spheres in two-dimensional unidirectional flows
,”
J. Fluid Mech.
65
(
2
),
365
400
(
1974
).
31.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
(
5
),
912
920
(
2011
).
32.
J.
Zhang
,
D.
Yuan
,
Q.
Zhao
 et al., “
Fundamentals of differential particle inertial focusing in symmetric sinusoidal microchannels
,”
Anal. Chem.
91
(
6
),
4077
4084
(
2019
).
33.
A. J.
Chung
,
D. R.
Gossett
, and
D.
Di Carlo
, “
Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows
,”
Small
9
(
5
),
685
690
(
2013
).

Supplementary Material

You do not currently have access to this content.