Residual limb volume fluctuation and the resulting contact pressures are some of the key factors leading to skin ulcerations, suboptimal prosthetic functioning, pain, and diminishing quality of life of transtibial amputees. Self-management of socket fit is complicated by peripheral neuropathy, reducing the perception of pressure and pain in the residual limb. We introduce a novel proof-of-concept for a transtibial prosthetic socket liner with the potential to dynamically adjust the fit between the limb and socket. The core of the technology is a small air microfluidic chip (10 cm3 and 10 g) with 10 on-chip valves that enable sequential pressurizing of 10 actuators in custom sizes to match the pressures required by the residual limb's unique anatomy. The microfluidic chip largely reduced the number of electromechanical solenoid valves needed for sequential control of 10 actuators (2 instead of 10 valves), resulting in the reduction of the required power, size, mass, and cost of the control box toward an affordable and wearable prosthetic socket. Proof-of-concept testing demonstrated that the applied pressures can be varied in the desired sequence and to redistribute pressure. Future work will focus on integrating the system with biofidelic prosthetic sockets and residual limb models to investigate the ability to redistribute pressure away from pressure-sensitive regions (e.g., fibular head) to pressure tolerant areas. Overall, the dynamic prosthesis socket liner is very encouraging for creating a dynamic socket fit system that can be seamlessly integrated with existing socket fabrication methods for managing residual limb volume fluctuations and contact pressure.

1.
UN News, “One lower limb lost to diabetes every 30 s, UN agency says,” 2005.
2.
A. J. M.
Boulton
, “
The diabetic foot: Grand overview, epidemiology and pathogenesis
,”
Diabetes Metab. Res. Rev.
24
(
Suppl 1
),
S3
S6
(
2008
).
3.
A.
Johannesson
,
G.-U.
Larsson
,
N.
Ramstrand
,
A.
Turkiewicz
,
A.-B.
Wirehn
, and
I.
Atroshi
, “
Incidence of lower-limb amputation in the diabetic and nondiabetic general population: A 10-year population-based cohort study of initial unilateral and contralateral amputations and reamputations
,”
Diabetes Care
32
(
2
),
275
280
(
2009
).
4.
J. B.
Webster
,
R. M.
Williams
,
A. P.
Turner
,
D. C.
Norvell
, and
J. M.
Czerniecki
, “
Prosthetic fitting, use, and satisfaction following lower-limb amputation: A prospective study
,”
J. Rehabil. Res. Dev.
49
(
10
),
1493
1504
(
2012
).
5.
S.
Brunelli
,
C.
Bonanni
,
C.
Foti
, and
M.
Traballesi
, “
A literature review of the quality of life, health status and prosthesis satisfaction in older patients with a trans-tibial amputation
,”
Can. Prosthet. Orthot. J.
3
(
1
),
3
(
2020
).
6.
E.
Batbaatar
,
J.
Dorjdagva
,
A.
Luvsannyam
, and
P.
Amenta
, “
Conceptualisation of patient satisfaction: A systematic narrative literature review
,”
Perspect. Public Health
135
(
5
),
243
250
(
2015
).
7.
E. C.
Baars
,
E.
Schrier
,
P. U.
Dijikstra
, and
J. H. B.
Geertzen
, “
Prosthesis satisfaction in lower limb amputees
,”
Medicine
97
(
39
),
e12296
(
2018
).
8.
G. M.
Berke
,
J.
Fergason
,
J. R.
Milani
,
J.
Hattingh
,
M.
McDowell
,
V.
Nguyen
, and
G. E.
Reiber
, “
Comparison of satisfaction with current prosthetic care in veterans and service members from Vietnam and OIF/OEF conflicts with major traumatic limb loss
,”
J. Rehabil. Res. Dev.
47
(
4
),
361
372
(
2010
).
9.
L. W.
Pezzin
,
T. R.
Dillingham
,
E. J.
MacKenzie
,
P.
Ephraim
, and
P.
Rossbach
, “
Use and satisfaction with prosthetic limb devices and related services
,”
Arch. Phys. Med. Rehabil.
85
(
5
),
723
729
(
2004
).
10.
P.
Saeedi
,
I.
Petersohn
,
P.
Salpea
,
B.
Malanda
,
S.
Karuranga
,
N.
Unwin
,
S.
Colagiuri
,
L.
Guariguata
,
A. A.
Motala
,
K.
Ogurtsova
,
J. E.
Shaw
,
D.
Bright
, and
R.
Williams
, “
Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition
,”
Diabetes Res Clin Pract.
157
,
107843
(
2019
).
11.
H. E.
Meulenbelt
,
J. H.
Geertzen
,
M. F.
Jonkman
, and
P. U.
Dijkstra
, “
Determinants of skin problems of the stump in lower-limb amputees
,”
Am. Congr. Rehabil. Med.
90
(
1
),
74
81
(
2009
).
12.
L.
Paterno
,
M.
Ibrahimi
,
E.
Gruppioni
,
A.
Menciassi
, and
L.
Ricotti
, “
Sockets for limb prostheses: A review of existing technologies and open challenges
,”
IEEE Trans. Biomed. Eng.
65
(
9
),
1996
2010
(
2018
).
13.
W. J.
Board
,
G. M.
Street
, and
C.
Caspers
, “
A comparison of trans-tibial amputee suction and vacuum socket conditions
,”
Prosthet. Orthot. Int.
25
,
202
209
(
2001
).
14.
A. T.
Tantua
,
J. H. B.
Geertzen
,
J. J. A. M. v. d.
Dungen
,
J.-K. C.
Breek
, and
P. U.
Dijkstra
, “
Reduction of residual limb volume in people with transtibial amputation
,”
J. Rehabil. Res. Dev.
51
(
7
),
1119
1126
(
2014
).
15.
N. L.
Dudek
,
M. B.
Marks
, and
S. C.
Marshall
, “
Skin problems in an amputee clinic
,”
Am. J. Phys. Med. Rehabil.
85
(
5
),
424
429
(
2006
).
16.
M.
Graser
,
S.
Day
, and
A.
Buis
, “
Exploring the role of transtibial prosthetic use in deep tissue injury development: A scoping review
,”
BMC Biomed. Eng.
2
,
2
(
2020
).
17.
J. E.
Sanders
,
D. S.
Harrison
,
K. J.
Allyn
, and
T. R.
Myers
, “
Clinical utility of In-socket residual limb volume change measurement: Case study results
,”
Prosthet. Orthot. Int.
33
(
4
),
378
390
(
2009
).
18.
D. M.
Sengeh
and
H.
Herr
, “
A variable-impedance prosthetic socket for a transtibial amputee designed from magnetic resonance imaging data
,”
J. Prosthet. Orthot.
25
(
3
),
129
137
(
2013
).
19.
C.
Comotti
,
D.
Regazzoni
, and
C.
Rizzi
, “
Multi-material design and 3D printing method of lower limb prosthetic sockets
,” in
REHAB 2015—3rd Workshop on ICTs for Improving Patients Rehabilitation Research
,
Lisbon, Portugal
(Association for Computing Machinery, New York, NY,
2015
).
20.
G.
Pirouzi
,
N.
Abu Osman
,
A.
Oshkour
,
S.
Ali
, and
H. A. W.
Gholizadeh
, “
Development of an air pneumatic suspension system for transtibial prostheses
,”
Sensors
14
(
9
),
16754
16765
(
2014
).
21.
J. E.
Sanders
and
D. V.
Cassisi
, “
Mechanical performance of inflatable inserts used in limb prosthetics
,”
J. Rehabil. Res. Dev.
38
(
4
),
365
374
(
2001
), see https://www.rehab.research.va.gov/jour/01/38/4/pdf/Sanders.pdf.
22.
V. L.
Phillips
, “
Socket insert having a bladder system
,” U.S. patent 7,655,049 B2 (
2 February 2010
).
23.
W.
Carrigan
,
C.
Nothnagle
,
P.
Savant
,
F.
Gao
, and
M. B. J.
Wijesundara
, “
Pneumatic actuator inserts for interface pressure mapping and fit improvement in lower extremity prosthetics
,” in
IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
,
UTown, Singapore
(IEEE Computer Society,
2016
).
24.
M. J.
Highsmith
,
J. T.
Kahle
,
T. D.
Klenow
,
C. R.
Andrews
,
K. L.
Lewis
,
R. C.
Bradley
,
J. M.
Ward
,
J. J.
Orriola
, and
J. T.
Highsmith
, “
Interventions to manage residual limb ulceration due to prosthetic use in individuals with lower extremity amputation: A systematic review of the literature
,”
Technol. Innovation
18
(
2
),
115
123
(
2016
).
25.
W. C.
Lee
,
M.
Zhang
, and
A. F.
Mak
, “
Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material
,”
Arch. Phys. Med. Rehabil.
86
(
4
),
641
649
(
2004
).
26.
M.
Cianchetti
,
C.
Laschi
,
A.
Menciassi
, and
P.
Dario
, “
Biomedical applications of soft robotics
,”
Nature Rev. Mater.
3
(
6
),
143
153
(
2018
).
27.
S.
Konishi
,
F.
Kawai
, and
P.
Cusin
, “
Thin flexible end-effector using pneumatic balloon actuator
,”
Sens. Actuators, A
89
(
1–2
),
28
35
(
2001
).
28.
A.
Yousefpour
,
M.
Hojjati
, and
J.-P.
Immarigeon
, “
Fusion bonding/welding of thermoplastic composites
,”
J. Thermoplast. Compos. Mater.
17
(
4
),
303
(
2004
).
29.
F.
Connolly
,
D.
Wagner
,
C.
Walsh
, and
K.
Bertoldi
, “
Sew-free anisotropic textile composites for rapid design and manufacturing of soft wearable robots
,”
Extreme Mech. Lett.
27
,
52
58
(
2019
).
30.
M. A.
Unger
,
H. P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
, “
Monolithic microfabricated valves and pumps by multilayer soft lithography
,”
Science
288
(
5463
),
113
116
(
2000
).
31.
Y. S.
Lee
,
N.
Bhattacharjee
, and
A.
Folch
, “
3D-printed Quake-style microvalves and micropumps
,”
Lab Chip
18
(
8
),
1207
1214
(
2018
).
32.
H.-K.
Lee
,
S.-I.
Chang
, and
E.
Yoon
, “
A flexible polymer tactile sensor: Fabrication and modular expandability for large area development
,”
J. Microelectromech. Syst.
15
(
6
),
1681
1686
(
2006
).
33.
R.
Gao
,
M.
Hébert
,
J.
Huissoon
, and
C. L.
Ren
, “
μPump: An open-source pressure pump for precision fluid handling in microfluidics
,”
HardwareX
7
,
e00096
(
2020
).
34.
D.
Dittmer
, Senior Physiatrist and Sports Medicine Physician, Department of Physical and Rehabilitation Medicine, Grand River Hospital, Kitchener-Waterloo, ON, Canada.
35.
A.
Schirm
, Certified Prosthetist, Kitchener-Waterloo, ON, Canada.
36.
M.
Xavier
,
A.
Fleming
, and
Y.
Yong
, “
Finite element modeling of soft fluidic actuators: Overview and recent developments
,”
Adv. Intell. Syst.
3
(
2
),
2000187
(
2021
).

Supplementary Material

You do not currently have access to this content.