One of the issues limiting the development of personalized medicine is the absence of realistic models that reflect the nature and complexity of tumor tissues. We described a new tissue culture approach that combines a microfluidic chip with the microdissected breast cancer tumor. “Tumor-on-a-chip” devices are suitable for precision medicine since the viability of tissue samples is maintained during the culture period by continuously feeding fresh media and eliminating metabolic wastes from the tissue. However, the mass transport of oxygen, which arguably is the most critical nutrient, is rarely assessed. According to our results, transportation of oxygen provides satisfactory in vivo oxygenation within the system. A high level of dissolved oxygen, around 98%–100% for every 24 h, was measurable in the outlet medium. The microfluidic chip system developed within the scope of this study allows living and testing tumor tissues under laboratory conditions. In this study, tumors were generated in CD-1 mice using MDA-MB-231 and SKBR-3 cell lines. Microdissected tumor tissues were cultured both in the newly developed microfluidic chip system and in conventional 24-well culture plates. Two systems were compared for two different types of tumors. The confocal microscopy analyses, lactate dehydrogenase release, and glucose consumption values showed that the tissues in the microfluidic system remained more viable with respect to the conventional well plate culturing method, up to 96 h. The new culturing technique described here may be superior to conventional culturing techniques for developing new treatment strategies, such as testing chemotherapeutics on tumor samples from individual patients.

2.
M. I.
Nounou
,
F.
Elamrawy
,
N.
Ahmed
,
K.
Abdelraouf
,
S.
Goda
, and
H.
Syed-Sha-Qhattal
, “
Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies supplementary issue: Targeted therapies in breast cancer treatment
,”
Breast Cancer Basic Clin. Res.
9
,
17
34
(
2015
).
4.
M.
Astolfi
,
A.
St-Georges-Robillard
,
F.
Leblond
,
A.-M.
Mes-Masson
, and
T.
Gervais
, “Microfluidics and spectroscopic imaging for personalized medicine in ovarian cancer,”
SPIE Newsroom.
2016
,
10
12
.
5.
F.
Olubajo
,
S.
Achawal
, and
J.
Greenman
, “
Development of a microfluidic culture paradigm for ex vivo maintenance of human glioblastoma tissue: A new glioblastoma model?
,”
Transl. Oncol.
13
(
1
),
1
10
(
2020
).
6.
A. M.
Privalova
,
S. V.
Uglanova
,
N. R.
Kuznetsova
,
N. L.
Klyachko
,
Y. I.
Golovin
,
V. V.
Korenkov
,
E. L.
Vodovozova
, and
E. A.
Markvicheva
, “
Microencapsulated multicellular tumor spheroids as a tool to test novel anticancer nanosized drug delivery systems in vitro
,”
J. Nanosci. Nanotechnol.
15
,
4806
4814
(
2015
).
7.
S.
Damiati
,
U. B.
Kompella
,
S. A.
Damiati
, and
R.
Kodzius
, “
Microfluidic devices for drug delivery systems and drug screening
,”
Genes
9
(
2
),
103
(
2018
).
8.
E. P.
Carter
,
J. A.
Gopsill
,
J. J.
Gomm
,
J. L.
Jones
, and
R. P.
Grose
, “
A 3D in vitro model of the human breast duct: A method to unravel myoepithelial-luminal interactions in the progression of breast cancer
,”
Breast Cancer Res.
19
(
1
),
50
(
2017
).
9.
N.
Kashaninejad
,
M. R.
Nikmaneshi
,
H.
Moghadas
,
A. K.
Oskouei
,
M.
Rismanian
,
M.
Barisam
,
M. S.
Saidi
, and
B.
Firoozabadi
, “
Organ-tumor-on-a-chip for chemosensitivity assay: A critical review
,”
Micromachines
7
(
8
),
130
(
2016
).
10.
B.
Majumder
,
U.
Baraneedharan
,
S.
Thiyagarajan
,
P.
Radhakrishnan
,
H.
Narasimhan
,
M.
Dhandapani
,
N.
Brijwani
,
D. D.
Pinto
,
A.
Prasath
,
B. U.
Shanthappa
,
A.
Thayakumar
,
R.
Surendran
,
G. K.
Babu
,
A. M.
Shenoy
,
M. A.
Kuriakose
,
G.
Bergthold
,
P.
Horowitz
,
M.
Loda
,
R.
Beroukhim
,
S.
Agarwal
,
S.
Sengupta
,
M.
Sundaram
, and
P. K.
Majumder
, “
Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity
,”
Nat. Commun.
6
,
1
14
(
2015
).
11.
M.
Astolfi
,
B.
Péant
,
M. A.
Lateef
,
N.
Rousset
,
J.
Kendall-Dupont
,
E.
Carmona
,
F.
Monet
,
F.
Saad
,
D.
Provencher
,
A. M.
Mes-Masson
, and
T.
Gervais
, “
Micro-dissected tumor tissues on chip: An ex vivo method for drug testing and personalized therapy
,”
Lab Chip
16
(
2
),
312
325
(
2016
).
12.
P. M
Van Midwoud
,
E.
Verpoorte
, and
G. M. M.
Groothuis
, “
An alternative approach based on microfluidics to study drug metabolism and toxicity using liver and intestinal tissue
,”
Ph.D. dissertation
(University of Groningen,
2010
).
13.
W.
Asghar
,
R.
El Assal
,
H.
Shafiee
,
S.
Pitteri
,
R.
Paulmurugan
, and
U.
Demirci
, “
Engineering cancer microenvironments for in vitro 3-D tumor models
,”
Mater. Today
18
(
10
),
539
553
(
2015
).
14.
J. B.
Spinelli
,
H.
Yoon
,
A. E.
Ringel
,
S.
Jeanfavre
,
C. B.
Clish
, and
M. C.
Haigis
, “
Supports breast cancer biomass
,”
Science
358
(
6365
),
941
(
2017
).
15.
V.
Vaira
,
G.
Fedele
,
S.
Pyne
,
E.
Fasoli
,
G.
Zadra
,
D.
Bailey
,
E.
Snyder
,
A.
Faversani
,
G.
Coggi
,
R.
Flavin
,
S.
Bosari
, and
M.
Loda
, “
Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors
,”
Proc. Natl. Acad. Sci. U.S.A.
107
(
18
),
8352
8356
(
2010
).
16.
A. R.
Perestrelo
,
A. C. P.
Águas
,
A.
Rainer
, and
G.
Forte
, “
Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering
,”
Sensors
15
(
12
),
31142
31170
(
2015
).
17.
S. D.
Carr
,
V. L.
Green
,
N. D.
Stafford
, and
J.
Greenman
, “
Analysis of radiation-induced cell death in head and neck squamous cell carcinoma and rat liver maintained in microfluidic devices
,”
Otolaryngol. Head Neck Surg.
150
(
1
),
73
80
(
2014
).
18.
M. G.
Christensen
,
C.
Cawthorne
,
C. E.
Dyer
,
J.
Greenman
, and
N.
Pamme
, “
Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices
,”
Microfluid. Nanofluid.
25
(
4
),
1
12
(
2021
).
19.
N.
Gupta
,
J. R.
Liu
,
B.
Patel
,
D. E.
Solomon
,
B.
Vaidya
, and
V.
Gupta
, “
Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research
,”
Bioeng. Transl. Med.
1
(
1
),
63
81
(
2016
).
20.
I. A. M.
De Graaf
,
P.
Olinga
,
M. H.
De Jager
,
M. T.
Merema
,
R.
de Kanter
,
E. G.
van de Kerkhof
, and
G. M. M.
Groothuis
, “
Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies
,”
Nat. Protoc.
5
(
9
),
1540
1551
(
2010
).
21.
M.
Azimzadeh
,
P.
Khashayar
,
M.
Amereh
,
N.
Tasnim
,
M.
Hoorfar
, and
M.
Akbari
, “
Microfluidic-based oxygen (O2) sensors for on-chip monitoring of cell, tissue and organ metabolism
,”
Biosensors
12
,
6
(
2022
).
22.
M.
Baydoun
,
A.
Treizeibré
,
J.
Follet
,
S. B.
Vanneste
,
C.
Creusy
,
L.
Dercourt
,
B.
Delaire
,
A.
Mouray
,
E.
Viscogliosi
,
G.
Certad
, and
V.
Senez
, “
An interphase microfluidic culture system for the study of ex vivo intestinal tissue
,”
Micromachines
11
(
2
),
150
(
2020
).
23.
G. M.
Ramzy
,
T.
Koessler
,
E.
Ducrey
,
T.
McKee
,
F.
Ris
,
N.
Buchs
,
L.
Rubbia-Brandt
,
P. Y.
Dietrich
, and
P.
Nowak-Sliwinska
, “
Patient-derived in vitro models for drug discovery in colorectal carcinoma
,”
Cancers
12
(
6
),
1423
1421
(
2020
).
24.
L. F.
Horowitz
,
A. D.
Rodriguez
,
T.
Ray
, and
A.
Folch
, “
Microfluidics for interrogating live intact tissues
,”
Microsyst. Nanoeng.
6
(
1
),
1
27
(
2020
).
25.
L. F.
Horowitz
,
A. D.
Rodriguez
,
Z.
Dereli-Korkut
,
R.
Lin
,
K.
Castro
,
A. M.
Mikheev
,
R. J.
Monnat
, Jr.,
A.
Folch
, and
R. C.
Rostomily
, “
Multiplexed drug testing of tumor slices using a microfluidic platform
,”
NPJ Precis. Oncol.
4
(
1
),
1
15
(
2020
).
26.
L. T.
Baxter
and
R. K.
Jain
, “
Transport of fluid and macromolecules in tumors. i. Role of interstitial pressure and convection
,”
Microvas. Res.
37
(
1
),
77
104
(
1989
).
27.
J. M.
Sosa
,
D. E.
Huber
,
B.
Welk
, and
H. L.
Fraser
, “
Development and application of MIPARTM: A novel software package for two- and three-dimensional microstructural characterization
,”
Integr. Mater. Manuf. Innov.
3
(
1
),
123
140
(
2014
).
28.
B.
Gantenbein-Ritter
,
C. M.
Sprecher
,
S.
Chan
,
S.
Illien-Jünger
, and
S.
Grad
, “
Confocal imaging protocols for live/dead staining in three-dimensional carriers
,”
Methods Mol. Biol.
740
,
127
140
(
2011
).
29.
T.
Collins
,
E.
Pyne
,
M.
Christensen
,
A.
Iles
,
N.
Pamme
, and
I. M.
Pires
, “
Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models in vitro
,”
Biomicrofluidics
15
(
4
),
044103
(
2021
).
30.
A. D.
Armour
,
H. M.
Powell
, and
S. T.
Boyce
, “
Fluorescein diacetate for determination of cell viability in tissue-engineered skin
,”
Tissue Eng. Part C
14
(
1
),
89
96
(
2008
).
31.
I. A.
Zlatskiy
,
A. V.
Zlatska
,
N. V.
Antipova
,
S. A.
Dolenko
,
I. M.
Gordiienko
,
O. S.
Gubar
,
R. G.
Vasyliev
,
D. A.
Zubov
,
S. N.
Novikova
, and
A. V.
Syroeshkin
, “
Comparative analysis of the different dyes’ potential to assess human normal and cancer cell viability in vitro under different D/H ratios in a culture medium
,”
Sci. World J.
2020
, 2373021.
32.
P. M.
van Midwoud
,
G. M. M.
Groothuis
,
M. T.
Merema
, and
E.
Verpoorte
, “
Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies
,”
Biotechnol. Bioeng.
105
(
1
),
184
194
(
2010
).
33.
S.
Misra
,
C. F.
Moro
,
M.
Del Chiaro
,
S.
Pouso
,
A.
Sebestyén
,
M.
Löhr
,
M.
Björnstedt
, and
C. S.
Verbeke
, “
Ex vivo organotypic culture system of precision-cut slices of human pancreatic ductal adenocarcinoma
,”
Sci. Rep.
9
(
1
),
1
16
(
2019
).
You do not currently have access to this content.