The mechanical properties of cells are of great significance to their normal physiological activities. The current methods used for the measurement of a cell’s mechanical properties have the problems of complicated operation, low throughput, and limited measuring range. Based on micropipette technology, we designed a double-layer micro-valve-controlled microfluidic chip with a series of micropipette arrays. The chip has adjustment pressure ranges of 0.03–1 and 0.3–10 kPa and has a pressure stabilization design, which can achieve a robust measurement of a single cell's mechanical properties under a wide pressure range and is simple to operate. Using this chip, we measured the mechanical properties of the cells treated with different concentrations of paraformaldehyde (PFA) and observed that the viscoelasticity of the cells gradually increased as the PFA concentration increased. Then, this method was also used to characterize the changes in the mechanical properties of the differentiation pathways of stem cells from the apical papilla to osteogenesis.

1.
R. D.
González-Cruz
,
V. C.
Fonseca
, and
E. M.
Darling
,
Proc. Natl. Acad. Sci. U.S.A.
109
(
24
),
E1523
(
2012
).
2.
M.
Urbanska
,
M.
Winzi
,
K.
Neumann
,
S.
Abuhattum
,
P.
Rosendahl
,
P.
Müller
,
A.
Taubenberger
,
K.
Anastassiadis
, and
J.
Guck
,
Development
144
,
4313
(
2017
).
3.
T.
Mammoto
and
D. E.
Ingber
,
Development
137
,
1407
(
2010
).
4.
C. J.
Chan
,
C. P.
Heisenberg
, and
T.
Hiiragi
,
Curr. Biol.
27
,
R1024
(
2017
).
5.
B.
Orzechowska
,
J.
Pabijan
,
J.
Wiltowska-Zuber
,
J.
Zemła
, and
M.
Lekka
,
J. Biomech.
74
,
134
(
2018
).
6.
Y.
Zhang
,
Y.
Ling
,
D.
Zhang
,
M.
Wang
,
C.
Purslow
,
Y.
Yang
,
C.
Li
, and
Z.
Huang
,
Biomed. Opt. Express
12
(
1
),
588
(
2021
).
7.
V.
Swaminathan
,
K.
Mythreye
,
E. T.
O'Brien
,
A.
Berchuck
,
G. C.
Blobe
, and
R.
Superfine
,
Cancer Res.
71
,
5075
(
2011
).
8.
Y. M.
Efremov
,
M. E.
Lomakina
,
D. V.
Bagrov
,
P. I.
Makhnovskiy
,
A. Y.
Alexandrova
,
M. P.
Kirpichnikov
, and
K. V.
Shaitan
,
Biochim. Biophys. Acta Mol. Cell Res.
1843
(
5
),
1013
(
2014
).
9.
T. W.
Remmerbach
,
F.
Wottawah
,
J.
Dietrich
,
B.
Lincoln
,
C.
Wittekind
, and
J.
Guck
,
Cancer Res.
69
(
5
),
1728
(
2009
).
10.
J.
Guck
and
E. R.
Chilvers
,
Sci. Transl. Med.
5
,
212ra163
(
2013
).
11.
Y.
Chen
,
P.
Li
,
P. H.
Huang
,
Y.
Xie
,
J. D.
Mai
,
L.
Wang
,
N. T.
Nguyen
, and
T. J.
Huang
,
Lab Chip
14
(
4
),
626
(
2014
).
12.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
,
Lab Chip
12
(
13
),
2369
(
2012
).
14.
Y.
Nematbakhsh
and
C. T.
Lim
,
Acta Mech. Sin.
31
,
268
(
2015
).
16.
17.
M.
Puig-De-Morales
,
M.
Grabulosa
,
J.
Alcaraz
,
J.
Mullol
,
G. N.
Maksym
,
J. J.
Fredberg
, and
D.
Navajas
,
J. Appl. Physiol.
91
(
3
),
1152
(
2001
).
18.
J.
Guck
,
R.
Ananthakrishnan
,
H.
Mahmood
,
T. J.
Moon
,
C. C.
Cunningham
, and
J.
Käs
,
Biophys. J.
81
,
767
(
2001
).
19.
P. H.
Wu
,
D. R. B.
Aroush
,
A.
Asnacios
,
W. C.
Chen
,
M. E.
Dokukin
,
B. L.
Doss
,
P.
Durand-Smet
, et al.,
Nat. Methods
15
,
491
(
2018
).
20.
C. T.
Lim
,
E. H.
Zhou
, and
S. T.
Quek
,
J. Biomech.
39
(
2
),
195
(
2006
).
21.
T.
Luo
,
K.
Mohan
,
P. A.
Iglesias
, and
D. N.
Robinson
,
Nat. Mater.
12
(
11
),
1064
(
2013
).
22.
J.
Brugués
,
B.
Maugis
,
J.
Casademunt
,
P.
Nassoy
,
F.
Amblard
, and
P.
Sens
,
Proc. Natl. Acad. Sci. U.S.A.
107
(
35
),
15415
(
2010
).
23.
M.
Biro
and
J. L.
Maître
,
Methods Cell Biol.
125
,
255
(
2015
).
24.
Y.
Liu
,
M.
Cui
,
J.
Huang
,
M.
Sun
,
X.
Zhao
, and
Q.
Zhao
,
Micromachines
10
(
5
),
348
(
2019
).
25.
Z.
Chen
,
Y.
Zhu
,
D.
Xu
,
M. M.
Alam
,
L.
Shui
, and
H.
Chen
,
Lab Chip
20
,
2343
(
2020
).
26.
J. R.
Lange
,
C.
Metzner
,
S.
Richter
,
W.
Schneider
,
M.
Spermann
,
T.
Kolb
,
G.
Whyte
, and
B.
Fabry
,
Biophys. J.
112
,
1472
(
2017
).
27.
Q.
Guo
,
S.
Park
, and
H.
Ma
,
Lab Chip
12
(
15
),
2687
2695
(
2012
).
28.
J.
Wei
,
X. Q.
Sun
, and
B. X.
Hou
,
Stem Cells Int.
2021
, 6612324.
29.
D. P.
Theret
,
M. J.
Levesque
,
M.
Sato
,
R. M.
Nerem
, and
L. T.
Wheeler
,
J. Biomech. Eng.
110
,
190
199
(
1988
).
30.
L. M.
Lee
and
A. P.
Liu
,
Lab Chip
15
,
264
(
2015
).
31.
S.
Hu
,
R.
Wang
,
C. M.
Tsang
,
S. W.
Tsao
,
D.
Sun
, and
R. H.
Lam
,
RSC Adv.
8
(
2
),
1030
(
2018
).
32.
G. R.
Plaza
,
N.
Mari
,
B. G.
Gálvez
,
A.
Bernal
,
G. V.
Guinea
,
R.
Daza
,
J.
Pérez-Rigueiro
,
C.
Solanas
, and
M.
Elices
,
Phys. Rev. E
90
(
5
),
052715
(
2014
).
33.
W. M.
Yuan
,
C.
Xiang
,
C. D.
Xue
,
B.
Liu
, and
K. R.
Qin
,
Anal. Methods
11
(
44
),
5680
(
2019
).
34.
S. O.
Kim
,
J.
Kim
,
T.
Okajima
, and
N. J.
Cho
,
Nano Converg.
4
(
1
),
5
(
2017
).
35.
H.
Yu
,
C. Y.
Tay
,
W. S.
Leong
,
S. C. W.
Tan
,
K.
Liao
, and
L. P.
Tan
,
Biochem. Biophys. Res. Commun.
393
(
1
),
150
155
(
2010
).

Supplementary Material

You do not currently have access to this content.